
Package ‘BEARscc’
October 14, 2021

Type Package

Title BEARscc (Bayesian ERCC Assesstment of Robustness of Single Cell
Clusters)

Version 1.12.0

Author David T. Severson <david_severson@hms.harvard.edu>

Maintainer Benjamin Schuster-Boeckler

<benjamin.schuster-boeckler@ludwig.ox.ac.uk>

Description BEARscc is a noise estimation and injection tool that is
designed to assess putative single-cell RNA-seq clusters in the
context of experimental noise estimated by ERCC spike-in controls.

License GPL-3

Imports ggplot2, SingleCellExperiment, data.table, stats, utils,
graphics, compiler

Suggests testthat, cowplot, knitr, rmarkdown, BiocStyle, NMF

VignetteBuilder knitr

RoxygenNote 6.0.1

biocViews ImmunoOncology, SingleCell, Clustering, Transcriptomics

git_url https://git.bioconductor.org/packages/BEARscc

git_branch RELEASE_3_13

git_last_commit 79b6626

git_last_commit_date 2021-05-19

Date/Publication 2021-10-14

R topics documented:
BEARscc-package . 2
analysis_examples . 3
BEARscc_examples . 4
cluster_consensus . 5
compute_consensus . 6

1

2 BEARscc-package

estimate_noiseparameters . 7
report_cell_metrics . 10
report_cluster_metrics . 11
simulate_replicates . 12

Index 15

BEARscc-package BEARscc (Bayesian ERCC Assesstment of Robustness of Single Cell
Clusters)

Description

BEARscc is a noise estimation and injection tool that is designed to assess putative single-cell
RNA-seq clusters in the context of experimental noise estimated by ERCC spike-in controls.

Details

Single-cell transcriptome sequencing data are subject to substantial technical variation and batch
effects that can confound the classification of cellular sub-types. Unfortunately, current clustering
algorithms don’t account for this uncertainty. To address this shortcoming, we have developed a
noise perturbation algorithm called BEARscc that is designed to determine the extent to which
classifications by existing clustering algorithms are robust to observed technical variation.

BEARscc makes use of ERCC spike-in measurements to model technical variance as a function of
gene expression and technical dropout effects on lowly expressed genes. In our benchmarks, we
found that BEARscc accurately models read count fluctuations and drop-out effects across tran-
scripts with diverse expression levels. Applying our approach to publicly available single-cell tran-
scriptome data of mouse brain and intestine, we have demonstrated that BEARscc identified cells
that cluster consistently, irrespective of technical variation. For more details, see the manuscript
that is now available on bioRxiv.

Author(s)

David T. Severson <david_severson@hms.harvard.edu>

Maintainer: Benjamin Schuster-Boeckler <benjamin.schuster-boeckler@ludwig.ox.ac.uk>

References

Source code and README: <https://bitbucket.org/bsblabludwig/bearscc/overview> Associated preprint:
<https://www.biorxiv.org/content/early/2017/06/05/118919>

analysis_examples 3

analysis_examples BEARscc downstream example objects.

Description

The analysis_examples Rdata object contains downstream data objects for use in various help
pages for dynamic execution resulting from running tutorial in README and vignette on BEARscc_examples.
The objects are a result of applying BEARscc functions as described in the README found at
https://bitbucket.org/bsblabludwig/bearscc.git or the vignette that accompanies this package.

Usage

data("analysis_examples")

Format

An R data file with:

data.frame "BEARscc_clusts.df" Toy dataframe of previously computed cluster labels for each cell across various cluster numbers and the original clustering.
[,1] 2 cluster case
[,2] 3 cluster case
[,3] 4 cluster case
[,4] 5 cluster case
[,5] Original cluster case

data.frame "clusters.df" Toy dataframe of previously computed hierarchical clustering of 10 BEARscc simulated technical replicates as described in README and original hierarchical clustering, see recluster below.
[,1] Cluster labels from simulated replicate 1.
[,2] Cluster labels from simulated replicate 2.
[,3] Cluster labels from simulated replicate 3.
[,4] Cluster labels from simulated replicate 4.
[,5] Cluster labels from simulated replicate 5.
[,6] Cluster labels from simulated replicate 6.
[,7] Cluster labels from simulated replicate 7.
[,8] Cluster labels from simulated replicate 8.
[,9] Cluster labels from simulated replicate 9.
[,10] Cluster labels from simulated replicate 10.
[,11] Original cluster case

function "recluster" A function used to quickly illustrate replicate-wise clustering and the resulting consensus aspect of BEARscc. It is utilized in the README.
matrix "noise_consensus" 50 by 50 matrix of previously computed output from compute_consensus(), which is the noise consensus matrix resulting from the toy dataset, BEARscc_examples.

SCEList "BEAR_analyzed.sce" A SingleCellExperiment object discussed extensively in the vignette and ReadME.

Value

An R data file with a function, matrix, two data.frame objects and a SingleCellExperiment
object.

4 BEARscc_examples

Source

These data are the result of running the README, https://bitbucket.org/bsblabludwig/bearscc.git,
on a subset of observations obtained by Drs. Michael White and Richard Owen in the Xin Lu Lab.
Samples were sequenced by the Wellcome Trust Center for Genomics, Oxford, UK. The original
data used to generate these objects are available in full with GEO accession number, GSE95155.

References

Source code and README: <https://bitbucket.org/bsblabludwig/bearscc/overview> Associated preprint:
<https://www.biorxiv.org/content/early/2017/06/05/118919>

Examples

data(analysis_examples)

BEARscc_examples Example data for BEARscc.

Description

A toy dataset for applying BEARscc functions as described in the README on https://bitbucket.org/bsblabludwig/bearscc.git
and vignette accompanying this package on Bioconductor.

Usage

data("BEARscc_examples")

Format

And R data file with:

df "data.counts.df" Toy dataframe of endogenous counts with 117 genes and 50 samples.

df "ERCC.counts.df" Toy dataframe of ERCC counts with 57 spike-ins and 50 samples.

df "ERCC.meta.df" Toy dataframe of spike-in concentration values and spike-in labels as row names.

[,1] Spike-in actual concentration.
SCEList "BEAR_examples.sce" A SingleCellExpression object described in more detail in the accompanying vignette.

Value

An R data file containing three data.frame objects and a single SingleCellExpression object
for the purpose of tutorials, testing, and help file examples.

cluster_consensus 5

Source

These data are a subset of observations Drs. Michael White and Richard Owen in the Xin Lu Lab.
Samples were sequenced by the Wellcome Trust Center for Genomics, Oxford, UK. These data are
available in full with GEO accession number, GSE95155.

References

Source code and README: <https://bitbucket.org/bsblabludwig/bearscc/overview> Associated preprint:
<https://www.biorxiv.org/content/early/2017/06/05/118919>

Examples

data(BEARscc_examples)

cluster_consensus Cluster the consensus matrix.

Description

This function will perform hierarchical clustering on the noise consensus matrix allowing the user
to investigate the appropriate number of clusters, k, considering the noise within the experiment.

Usage

cluster_consensus(consensus_matrix, cluster_num, method = "complete")

Arguments

consensus_matrix

A noise consensus output by compute_consensus().

cluster_num The number of clusters expected from the hierarchical clustering of the noise
consensus matrix.

method The hierarchical clustering method to be used on the consensus.

Details

We have found it useful to identify the optimal number of clusters in terms of resiliance to noise by
examining these metrics by cutting hierarchical clustering dendograms of the noise consensus and
comparing the results to the original clustering labels. To do this create a vector containing each
number of clusters one wishes to examine (the function automatically determines the results for the
dataset as a single cluster) and then cluster the consensus with this function.

Frequently one will want to assess multiple possible cluster number situations at once. In this case
it is recommended that one use a lapply in conjunction with a vector of all biologically reasonable
cluster numbers to fulfill the task of attempting to identify the optimal cluster number.

6 compute_consensus

Value

The output is a vector of cluster labels based on hierarchical clustering of the noise consensus. In
the event that a vector is supplied for number of clusters in conjunction with lapply, then the output
is a data.frame of the cluster labels for each of the various number of clusters deemed biologically
reasonable by the user.

Author(s)

David T. Severson <david_severson@hms.harvard.edu>

Maintainer: Benjamin Schuster-Boeckler <benjamin.schuster-boeckler@ludwig.ox.ac.uk>

See Also

compute_consensus report_cluster_metrics report_cell_metrics

Examples

data(analysis_examples)

vector <- seq(from=2, to=5, by=1)
BEARscc_clusts.df <- cluster_consensus(noise_consensus, vector)
BEARscc_clusts.df

compute_consensus Compute consensus matrix.

Description

Computes the consensus matrix using a data.frame of cluster labels across different BEARscc sim-
ulated technical replicates.

Usage

compute_consensus(cluster_labels)

Arguments

cluster_labels A data.frame of labels assigned to each sample (rownames) across various sim-
ulated technical replicates designed by BEARscc (colnames).

Details

We provide a visual and quantitative representation of the clustering variation on a cell-by-cell level
by using cluster labels to compute the number of times any given pair of cells associates in the same
cluster; this forms the ’noise consensus matrix’. Each element of this matrix represents the fraction
of simulated technical replicates in which two cells cluster together (the ’association frequency’),
after using a clustering method of the user’s choice to generate a data.frame of clustering labels.
This consensus matrix may be used to compute BEARscc metrics at both the cluster and cell level.

estimate_noiseparameters 7

Value

When the number of samples are n, then the noise consensus resulting from this function is an n x n
matrix describing the fraction of simulated technical replicates in which each cell of the experiment
associates with another cell.

A brief description of subfunctions

compute_consensus relies on the following subfunction to compute the noise consensus. This
function obtains all of the necessary information form the options of compute_consensus.

• names=rownames(cluster_labels)

• create_cm(cluster_labels,names)

Author(s)

David T. Severson <david_severson@hms.harvard.edu>

Maintainer: Benjamin Schuster-Boeckler <benjamin.schuster-boeckler@ludwig.ox.ac.uk>

See Also

• cluster_consensus()

• report_cluster_metrics()

• report_cell_metrics()

Examples

data("analysis_examples")

noise_consensus <- compute_consensus(clusters.df)
noise_consensus

estimate_noiseparameters

Estimates noise in single cell data.

Description

Estimates the drop-out model and technical variance from spike-ins present in the sample.

Usage

estimate_noiseparameters(SCEList, plot=FALSE, sd_inflate=0, max_cumprob=0.9999,
bins=10, write.noise.model=TRUE, file="noise_estimation",
dropout_inflate=1, model_view=c("Observed", "Optimized"),
alpha_resolution=0.005, tie_function="maximum")

8 estimate_noiseparameters

Arguments

SCEList A SingleCellExperiment object that must contain the observed counts matrix
as "observed_expression" in assays, and must have the relevant spike-in
samples identified using isSpike() as well as contain the expected actual con-
centrations of these spike-ins as spikeConcentrations in metadata. Please
see the vignette for more detail about constructing the appropriate SCEList.

plot When plot=TRUE produces plots to investigate quality of data fits with root file
name set by file option.

sd_inflate An optional parameter to modulate the estimated noise. The estimated standard
deviation of spike-ins can be scaled by this factor. We recommend leaving the
value at the default of 0.

bins The parameter determines the number of bins for comparison of the quality of
fit between the mixed-model and observed data for each spike-in alpha in or-
der to calculate the relationship between alpha and mean in the noise model.
This should be set lower for small datasets and higher for datasets with more
observations

max_cumprob Because a cumulative distribution will range from n=0 to a countable infinity,
the event space needs to be set to cover a reasonable fraction of the probability
density. This parameter determines the the fraction of probability density cov-
ered by the event space, which in turn defines the highes count number in the
event space. We recommend users use the default value of 0.9999.

write.noise.model

When write.noise.model=TRUE outputs two tab-delimited files containing the
dropout effects and noise model parameters; this allows users to apply the noise
generation on a seperate high compute node. The root file name is set by file
option.

file Describes the root name for files written out by write.noise.model and plot
options.

dropout_inflate

A scaling parameter for increasing explicitly the number of drop-outs present
beyond those estimated by spike-ins. The value must be greater than 0 or an error
will occur. Values below one will diminish drop-outs in simulated replicates, and
values above one will increase drop-outs in simulated replicates. We recommend
users use the default value of 1.

model_view model_view=c("Observed","Optimized","Poisson","Neg. Binomial" de-
termines the statistical distributions that should be plotted for the ERCC plots
output by plot=TRUE.

alpha_resolution

Because the alpha parameter is enumerated discretely and empirically evaluated
for each value for each spike-in, it is necessary to specify the resolution (how
small the step is between each explicit alpha test); this parameter defines the
resolution of alpha values tested for maximum empirical fit to spike-ins. It is
recommended that users utilize the default resolution.

tie_function The parameter tie_function=c("minimum","maximum") tells BEARscc how
to handle a tie alpha value for fitting the mixture model to an individual spike-in.

estimate_noiseparameters 9

If maximum, then BEARscc will chose the maximum alpha value with the best
fit; conversely, if minimum is set, then BEARscc will choose the minimum alpha
value with the best fit.

Details

BEARscc consists of three steps: modelling technical variance based on spike-ins (Step 1); sim-
ulating technical replicates (Step 2); and clustering simulated replicates (Step 3). In Step 1, an
experiment-specific model of technical variability ("noise") is estimated using observed spike-in
read counts. This model consists of two parts. In the first part, expression-dependent variance is
approximated by fitting read counts of each spike-in across cells to a mixture model (see Methods).
The second part, addresses drop-out effects. Based on the observed drop-out rate for spike-ins of
a given concentration, the ’drop-out injection distribution’ models the likelihood that a given tran-
script concentration will result in a drop-out. The ’drop-out recovery distribution’ is estimated from
the drop-out injection distribution using Bayes’ theorem and models the likelihood that a transcript
that had no observed counts in a cell was a false negative. This function performs the first step of
BEARscc. For further algorithmic detail please refer to our manuscript methods.

Value

The resulting output of estimate_noiseparameters() is another SingleCellExperiment class
object; however four new annotations that describe the drop-out and variance models computed by
BEARscc have been added to the metadata of the SingleCellExperiment object. Specifically.

dropout_parameters

A data.frame listing gene-wise parameters necessary for computing drop-oout
recovery and injection probabilities in order to define the two drop-out models
for zero observation and positive values within the drop-out range by simulate_replicates().

spikein_parameters

A data.frame of the estimated noise model parameters utilized by simulate_replicates()
to simulate replicates in non-zero observations.

genewiseDropouts

A data.frame of the estimated probabilities used in the Bayes’ calculation of
the probabilities described in dropout_parameters. While these are not use in
further analysis, they are supplied here for the user’s reference.

Note

Frequently, the user will want to compute simulated technical replicates in a high performance com-
putational environment. While the function outputs the necessary information for create_noiseinjected_counts(),
with the option write.noise.model=TRUE users are able to save two tab delimited files neces-
sary to run HPC_generate_noise_matrices.R on a high performance computational cluster. The
option file is used to indicate the desired root label of the files, "*_bayesianestimates.xls" and
"*_parameters4randomize.xls".

In the examples section, the parameter, alpha_resolution is set to 0.25, which is a terrible resolu-
tion for estimating noise, but allows the example to run in reasonable to time for checking the help
files. We recommend the default parameter: alpha_resolution=0.005.

10 report_cell_metrics

Author(s)

David T. Severson <david_severson@hms.harvard.edu>

Maintainer: Benjamin Schuster-Boeckler <benjamin.schuster-boeckler@ludwig.ox.ac.uk>

Examples

library("SingleCellExperiment")
data("BEARscc_examples")

#For execution on local machine
BEAR_examples.sce <- estimate_noiseparameters(BEAR_examples.sce,

alpha_resolution=0.25, write.noise.model=FALSE)
BEAR_examples.sce

#To save results as files for abnalysis on a
#high performance computational cluster
estimate_noiseparameters(BEAR_examples.sce, write.noise.model=TRUE,

alpha_resolution=0.25, file="noise_estimation",
model_view=c("Observed","Optimized"))

report_cell_metrics Reports BEARscc metrics for cells.

Description

To quantitatively evaluate the results, three metrics are calculated from the noise consensus ma-
trix: ’stability’ is the average frequency with which cells within a cluster associate with each other
across simulated replicates; ’promiscuity’ measures the association frequency between cells within
a cluster and those outside of it; and ’score’ is the difference between ’stability’ and ’promiscu-
ity’. Importantly, ’score’ reflects the overall "robustness" of a cluster and its constitutive samples
to technical variance. These metrics may be calculated on cell or cluster-wise basis; here, they are
calculated cell-wise.

Usage

report_cell_metrics(cluster_labels, consensus_matrix)

Arguments

cluster_labels Cluster labels for each cell across various cluster numbers and the original clus-
tering.

consensus_matrix

A noise consensus output by compute_consensus()

Value

A melted data.frame of BEARscc metrics for each cell:

report_cluster_metrics 11

[,1] "Cluster.identity" The number of the cluster within the respective clustering
[,2] "Cell" The identifier of the sample in question.
[,3] "Cluster.size" Number of samples in the cluster.
[,4] "Metric" Whether the metric is the BEARscc Score, Promiscuity, or Stability.
[,5] "Value" Value of the relevant BEARscc metric for the cell in a given clustering.
[,6] "Clustering" The clustering pertinant to the cell-wise metrics described.

Author(s)

David T. Severson <david_severson@hms.harvard.edu>

Maintainer: Benjamin Schuster-Boeckler <benjamin.schuster-boeckler@ludwig.ox.ac.uk>

Examples

data(analysis_examples)

cell_scores.df <- report_cell_metrics(BEARscc_clusts.df, noise_consensus)
cell_scores.df

report_cluster_metrics

Reports BEARscc metrics for clusters.

Description

To quantitatively evaluate the results, three metrics are calculated from the noise consensus ma-
trix: ’stability’ is the average frequency with which cells within a cluster associate with each other
across simulated replicates; ’promiscuity’ measures the association frequency between cells within
a cluster and those outside of it; and ’score’ is the difference between ’stability’ and ’promiscuity’.
Importantly, ’score’ reflects the overall "robustness" of a cluster to technical variance. These metrics
may be calculated on cell or cluster-wise basis; here, they are calculated cluster-wise.

Usage

report_cluster_metrics(cluster_labels, consensus_matrix,
weighted_mean = FALSE, plot = FALSE, file = "Rplot")

Arguments

cluster_labels Cluster labels for each cell across various cluster numbers and the original clus-
tering.

consensus_matrix

A noise consensus output by compute_consensus()

weighted_mean A flag indicating whether to weigh observed clusters evenly or scale them by
the number of samples in the cluster.

12 simulate_replicates

plot A flag to determine whether to plot the boxplot of cluster metrics evaluated from
the noise consensus with root file.

file A string indicating the root desired for the resulting plots of the function.

Value

A melted data.frame of BEARscc metrics for each cluster:

[,1] "Cluster.identity" The number of the cluster within the respective clustering.
[,2] "Cluster.size" Number of samples in the cluster.
[,3] "Metric" Whether the metric is the BEARscc score, promiscuity, or stability.
[,4] "Value" Value of the relevant BEARscc metric for the cluster in a clustering.
[,5] "Clustering" The clustering pertinant to the cell-wise metrics described.
[,6] "Singlet" A binary output concerning whether the cluster consists of a single sample.
[,7] "Clustering.Mean" The average of the respective metric across cells of the clsuter.

Author(s)

David T. Severson <david_severson@hms.harvard.edu>

Maintainer: Benjamin Schuster-Boeckler <benjamin.schuster-boeckler@ludwig.ox.ac.uk>

Examples

data(analysis_examples)

cluster_scores.df <- report_cluster_metrics(BEARscc_clusts.df, noise_consensus,
plot=TRUE, file="example")

cluster_scores.df

simulate_replicates Computes BEARscc simulated technical replicates.

Description

Computes BEARscc simulated technical replicates from the previously estimated noise parameters
computed with the function estimate_noise_parameters().

Usage

simulate_replicates(SCEList, max_cumprob=0.9999, n = 3)

Arguments

SCEList A SingleCellExpression object that has been appropriately processed by estimate_noiseparameters()
to add the necessary parameters describing the noise model for drop-outs and
variance in the single cell experiment.

simulate_replicates 13

max_cumprob Because a cumulative distribution will range from n=0 to a countable infinity,
the event space needs to be set to cover a reasonable fraction of the probability
density. This parameter determines the the fraction of probability density cov-
ered by the event space, which in turn defines the highes count number in the
event space. We recommend users use the default value of 0.9999. However, if
the default value was altered in estimate_noiseparameters(), then the value
used in that function is most definitely what should be input here!

n The number of simulated technical replicates to generate.

Details

In the second step of BEARscc, the algorithm applies the model from first step to produce simulated
technical replicates. For every observed gene count below which drop-outs occurred amongst the
spike-ins, BEARscc assesses whether to convert the count to zero (using the drop-out injection
distribution). For observations where the count is zero, the drop-out recovery distribution is used
to estimate a new value, based on the overall drop-out frequency for that gene. After this drop-out
processing, all non-zero counts are substituted with a value generated by the model of expression
variance created in the first step. parameterized to the observed counts for each gene. This second
step is repeated any number of times (as prescribed by parameter n) to generate a collection of
simulated technical replicates for downstream analysis.

Value

The resulting object is a list of counts data that is added to the metadata of the SingleCellExpression
object as a long list titled "simulated_replicates". Each element of the list is a data.frame of
the counts representing a BEARscc simulated technical replicate, e.g for n=10 we would have the
list:

[,1] Counts data.frame of simulated replicate 1.
[,2] Counts data.frame of simulated replicate 2.
[,3] Counts data.frame of simulated replicate 3.
[,4] Counts data.frame of simulated replicate 4.
[,5] Counts data.frame of simulated replicate 5.
[,6] Counts data.frame of simulated replicate 6.
[,7] Counts data.frame of simulated replicate 7.
[,8] Counts data.frame of simulated replicate 8.
[,9] Counts data.frame of simulated replicate 9.

[,10] Counts data.frame of simulated replicate 10.
[,11] Counts data.frame of observed data.

A brief description of subfunctions

simulate_replicates relies on the following subfunctions to generate simulated technical repli-
cates. These functions share many common options with the user interactive function. For those
options that are internal to the programming; these are annotated to give an idea of flow. For further
detail please examine source code in the R directory of this package:

14 simulate_replicates

• spikes_prepared <-execute_noiseinjected_counts(n=1,noise_parameters=estimated_noise,total_sampling)

• probs4detection.genes<-t(data.frame(noise_parameters$bayes_parameters,row.names
= "k")[,4:eval(dim(noise_parameters$bayes_parameters)[2]-1)])

• probs4detection.k<-data.frame(noise_parameters$bayes_parameters[,2:4,with=FALSE],row.names
= "k")

• noisy_counts<-data.table(noise_parameters$original.counts,keep.rownames = TRUE)[,apply(.SD,1
,`genewise_permute_count`,probs4detection.k=probs4detection.k,probs4detection.genes=probs4detection.genes,parameters=noise_parameters$ERCC_parameters,total_sampling=total_sampling)]

• probabilityA<-probs4detection.genes[gsub("-",".",x[1]),]

• apply(data.frame(as.numeric(x[-1])),1,`permute_count`,probs4detection.k,probabilityA=probabilityA,parameters,total_sampling)

• Under various conditions some form of nx<-randomizer(x,parameters,total_sampling)
is invoked.

Note

Frequently, the user will want to compute simulated technical replicates in a high performance com-
putational environment. When running estimate_noiseparameters() using the option write.noise.model=TRUE,
the user recives the files with root file="noise_estimation", "noise_estimation_counts4clusterperturbation.xls",
"noise_estimation_bayesianestimates.xls" and "noise_estimation_parameters4randomize.xls". These
files may be input into the example code, HPC_generate_noise_matrices.R, on a high perfor-
mance computational environment for faster processing.

Author(s)

David T. Severson <david_severson@hms.harvard.edu>

Maintainer: Benjamin Schuster-Boeckler <benjamin.schuster-boeckler@ludwig.ox.ac.uk>

See Also

The example code for running the simulation of technical replicates on a high performance com-
puting cluster can be found in inst/example/.

The code for generating simulated technical replicates on a high powered compute node requires
the function, HPC_simulate_replicates().

Examples

library("SingleCellExperiment")
data(analysis_examples)

BEAR_simreplicates.sce<-simulate_replicates(BEAR_analyzed.sce, n=3)
BEAR_simreplicates.sce

Index

∗ cluster
BEARscc-package, 2
cluster_consensus, 5

∗ datasets
analysis_examples, 3
BEARscc_examples, 4

∗ distribution
estimate_noiseparameters, 7

∗ error
compute_consensus, 6

∗ list
report_cell_metrics, 10
report_cluster_metrics, 11

∗ models
BEARscc-package, 2
compute_consensus, 6
estimate_noiseparameters, 7
simulate_replicates, 12

∗ optimize
BEARscc-package, 2
cluster_consensus, 5

∗ robust
BEARscc-package, 2
simulate_replicates, 12

. (report_cell_metrics), 10

.Random.seed (analysis_examples), 3

analysis_examples, 3
apply_bayes (estimate_noiseparameters),

7

BEAR_analyzed.sce (analysis_examples), 3
BEAR_examples.sce (BEARscc_examples), 4
BEARscc (BEARscc-package), 2
BEARscc-package, 2
BEARscc_clusts.df (analysis_examples), 3
BEARscc_examples, 4
build_dropoutmodel

(estimate_noiseparameters), 7

calculate_cell_metrics
(report_cell_metrics), 10

calculate_cell_metrics_by_cluster
(report_cell_metrics), 10

calculate_cluster_metrics
(report_cluster_metrics), 11

calculate_cluster_metrics_by_cluster
(report_cluster_metrics), 11

cleanup_model_names
(estimate_noiseparameters), 7

cluster_consensus, 5
clusters.df (analysis_examples), 3
compute_alpha

(estimate_noiseparameters), 7
compute_consensus, 6
compute_genewise_dropouts

(estimate_noiseparameters), 7
counts2mpc (estimate_noiseparameters), 7
create_cm (compute_consensus), 6
create_null_dropout_model

(estimate_noiseparameters), 7

data.counts.df (BEARscc_examples), 4

ERCC.counts.df (BEARscc_examples), 4
ERCC.meta.df (BEARscc_examples), 4
estimate_missingdata

(estimate_noiseparameters), 7
estimate_mu2sigma

(estimate_noiseparameters), 7
estimate_noiseparameters, 7
estimate_undetected2molpercell

(estimate_noiseparameters), 7
example_code (simulate_replicates), 12
execute_noiseinjected_counts

(simulate_replicates), 12
execute_sim_replicates

(simulate_replicates), 12

fill_out_count_probability_table
(simulate_replicates), 12

15

16 INDEX

gene_name (simulate_replicates), 12
genewise_dropouts

(simulate_replicates), 12

HPC_simulate_replicates
(simulate_replicates), 12

iterate_alphas
(estimate_noiseparameters), 7

iterate_spikeins
(estimate_noiseparameters), 7

L1 (report_cluster_metrics), 11

mean.prom (report_cluster_metrics), 11
melt_spikeins

(estimate_noiseparameters), 7

noise_consensus (analysis_examples), 3

Overall.mean (report_cluster_metrics),
11

permute_count_in_dropout_range
(simulate_replicates), 12

plot_alpha2mu
(estimate_noiseparameters), 7

plot_cluster_metrics
(report_cluster_metrics), 11

plot_mu2sigma
(estimate_noiseparameters), 7

plot_obs2actual
(estimate_noiseparameters), 7

plot_spikein_fits
(estimate_noiseparameters), 7

prepare_data
(estimate_noiseparameters), 7

randomizer (simulate_replicates), 12
recluster (analysis_examples), 3
report_cell_metrics, 10
report_cluster_metrics, 11
rn (report_cell_metrics), 10

sample_models
(estimate_noiseparameters), 7

simulate_replicates, 12
size (report_cluster_metrics), 11
subcompute_sample_models

(estimate_noiseparameters), 7

subplot_spikein_fits
(estimate_noiseparameters), 7

transcripts (estimate_noiseparameters),
7

V1 (estimate_noiseparameters), 7
value (report_cluster_metrics), 11

write_noise_model
(estimate_noiseparameters), 7

	BEARscc-package
	analysis_examples
	BEARscc_examples
	cluster_consensus
	compute_consensus
	estimate_noiseparameters
	report_cell_metrics
	report_cluster_metrics
	simulate_replicates
	Index

