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1 Introduction

This vignette contains the computations that underlie the numerical code of vsn. If you are
a new user and looking for an introduction on how to use vsn, please refer to the vignette
Robust calibration and variance stabilization with vsn, which is provided separately.

2 Setup and Notation

Consider the model
arsinh (f(b;) - yri + i) = pir + g

where uy, for k = 1,...,n, and ay, b;, for i = 1,...,d are real-valued parameters, f is a
function R — R (see below), and ey; are i.i.d. Normal with mean 0 and variance 02. y;
are the data. In applications to parray data, k indexes the features and i the arrays and/or
colour channels.

Examples for f are f(b) = b and f(b) = e®. The former is the most obvious choice; in that
case we will usually need to require b; > 0. The choice f(b) = e’ assures that the factor in
front of yy; is positive for all b € R, and as it turns out, simplifies some of the computations.

In the following calculations, | will also use the notation

h = h(y,a,b) = arsinh (f(b) -y + a) . 3]
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The probability of the data (yYxi)r=1...n, i=1...a lying in a certain volume element of y-space
(hyperrectangle with sides [y,‘jl,ygl]) is
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where ji, is the expectation value for feature k and o2 the variance.
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the likelihood is
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For the following, | will need the derivatives
Y
-~ -1 4
da H
oY ,
= —y-
o =V T B
) ) .
dy 1+ (fby+a)? V1I+Y? .
oh 1
oh _ ) m
Jda 1+Y2 o
oh y ,
— = —= . f'(b).
B Ay? f'(b) 11]
Note that for f(b) = b, we have f’(b) = 1, and for f(b) = e®, f'(b) = f(b) = €.
3 Likelihood for Incremental Normalization
Here, incremental normalization means that the model parameters fi1,..., 1, and o? are
already known from a fit to a previous set of parrays, i.e. a set of reference arrays. See Sec-
tion 4 for the profile likelihood approach that is used if 1, ..., i, and o2 are not known and

need to be estimated from the same data. Versions > 2.0 of the vsn package implement both
of these approaches; in versions 1.X only the profile likelihood approach was implemented,
and it was described in the initial publication [1].
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First, let us note that the likelihood [ is simply a product of independent terms for different i.
We can optimize the parameters (a;, b;) separately for each ¢ = 1,...,d. From the likelihood
[ we get the i-th negative log-likelihood

—log(L) = i —LL;

12]
i=1
- n 2 N[ Olyes) =) VY
LL21g(27r0)+’;< 552 + log i 13}
n Yk )2 1
:glog(%w)—nlogf Z<M+210g(1+yzfi)> 14]

This is what we want to optimize as a function of a; and b;. The optimizer benefits from
the derivatives. The derivative with respect to a; is
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Here, | have introduced the following shorthand notation for the “intermediate results” terms
Thi = M(Yri) —
1

Api = ——.
g V1I+Y2 =

Variables for these intermediate values are also used in the C code to organise the computa-
tions of the gradient.

4 Profile Likelihood

If w1,..., s and o2 are not already known, we can plug in their maximum likelihood esti-
mates, obtained from optimizing LL for 1, ..., i, and o2:
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into the negative log-likelihood. The result is called the negative profile log-likelihood
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Note that this no longer decomposes into a sum of terms for each j that are independent of
each other — the terms for different j are coupled through Equations EE] and Efil. We need

the following derivatives.

So, finally
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5 Summary

Likelihoods, from Equations [ and FAl:
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The computations in the C code are organised into steps for computing the terms “scale”,
“residuals” and “jacobian”.

Partial derivatives with respect to a;, from Equations ] and PX:

(;ZZ_ (—LL;) = ; (% + AkiYki) Api 28]
ai (—PLL) = é (T’” n A;”Yk,) A 29]
Partial derivatives with respect to b;, from Equations EIJ and P4
aabi( LL;) = nt ((:;)) + f'(b: ); (% + AmYm) AkiYri 30
S (-PLn) = -nt 4, >; (%5 4 A¥ie) v 51
Note that the terms have many similarities — this is used in the implementation in the C
code.
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