
CHARGE: CHromosome Assessment in R with

Gene Expression data

Benjamin Mayne

October 29, 2019

Contents

1 Introduction 2

2 Preparing the data 2

3 Expression variation 3

4 Clustering analysis 5

5 Bimodal Test 8

6 Expression Finder 10

7 Session Information 10

8 References 12

1

1 Introduction

Chromosomal duplications, additions and deletions are important clinically
as they may manifest into different diseases and disorders. For example, Trisomy
21, where individuals have three copies of chromosome 21 results in intellectual
disability. In addition, in the field of cancer, chromosomal deletions can promote
carcinogenesis. Detection of either chromosomal duplications or deletions from
gene expression data can be done using clustering methods. CHARGE, can
identify these genomic regions and whole chromosomes that have either been
duplicated or deleted. Using Hartigan’s Dip Test [1] and a bimodal test [2] the
likelihood of there being two distinct groups for a given genomic region can be
determined. This can be an informative measure to determine if a genomic re-
gion has either been duplicated or deleted in given set of samples. This vignette
contains a tutorial to identify samples with and without Trisomy 21. The data
set is from a publicly available data set (GSE55504) containing 16 fibroblast
samples from individuals with (n=8) and without Trisomy 21 (n=8).

2 Preparing the data

CHARGE works primarily with SummarizedExperiment objects [3], a class
of data objects containing the experimental, meta and genomic location data
all in one. Here, in this example, the experimental data is normalised gene
expression data from the RNA-seq data set. The data was mapped to the
human reference genome, normalised using edgeR [4] and contains 16 samples.
The data can be loaded into the R environment from the CHARGE package as
shown below.

> library(CHARGE)

> library(GenomicRanges)

> library(SummarizedExperiment)

> library(EnsDb.Hsapiens.v86)

> data(datExprs)

> datExprs

class: RangedSummarizedExperiment

dim: 14375 16

metadata(0):

assays(1): counts

rownames(14375): ENSG00000227232 ENSG00000225972 ... ENSG00000012817

ENSG00000198692

rowData names(0):

colnames(16): GSM1338325 GSM1338326 ... GSM1338339 GSM1338340

colData names(3): title geo_accession Group

2

3 Expression variation

The first step in using CHARGE is to remove genes with a low expression
variation over the region of interest. Genes that have a low variation between
samples may not be useful for clustering analysis and can be filtered out of
downstream analyses. In this example, genes on chromosome 21 with a low
expression variation will be removed from the analysis. The cvExpr function
calculates the Coefficient of Variation (CV) of each gene over a defined region.
The input is the SummarizedExperiment, datExpr and a GRanges object con-
taining the region of interest. Here, the length of chromosome 21 will be used
as a GRanges object.

> chr21 <- seqlengths(EnsDb.Hsapiens.v86)["21"]

> chr21Ranges <- GRanges("21", IRanges(end = chr21, width=chr21))

> cvExpr.out <- cvExpr(se = datExprs, region = chr21Ranges)

The CV of the genes can be visualised using the function plotcvExpr. This
function uses the output from cvExpr and produces a barplot of the CV for
each gene (Figure 1). The user then has the option of removing genes below a
specified quantile CV. Once a threshold has been determined clustering analysis
can be performed. In this example, genes below the 25% quantile will be removed
from the analysis as these are genes with low variation between samples. This
will be performed is subsequent functions below in the CHARGE pipeline.

> plotcvExpr(cvExpr = cvExpr.out)

3

E
N

S
G

00
00

01
88

68
1

E
N

S
G

00
00

01
54

64
0

E
N

S
G

00
00

01
54

71
9

E
N

S
G

00
00

01
66

26
5

E
N

S
G

00
00

01
56

23
9

E
N

S
G

00
00

01
56

26
5

E
N

S
G

00
00

01
42

14
9

E
N

S
G

00
00

01
59

07
9

E
N

S
G

00
00

02
43

64
6

E
N

S
G

00
00

01
59

13
1

E
N

S
G

00
00

02
41

83
7

E
N

S
G

00
00

01
59

21
6

E
N

S
G

00
00

02
36

83
0

E
N

S
G

00
00

01
59

26
3

E
N

S
G

00
00

01
57

54
0

E
N

S
G

00
00

01
83

52
7

E
N

S
G

00
00

01
85

43
7

E
N

S
G

00
00

01
83

48
6

E
N

S
G

00
00

01
73

27
6

E
N

S
G

00
00

01
60

20
0

E
N

S
G

00
00

01
60

20
8

E
N

S
G

00
00

01
60

21
8

E
N

S
G

00
00

01
60

22
6

E
N

S
G

00
00

01
84

90
0

E
N

S
G

00
00

02
72

82
5

E
N

S
G

00
00

02
15

44
7

C
V

0

50

100

150

200 0%
25%
50%
75%

Figure 1: The expression variation of chromosome 21 genes found to be ex-
pressed in the data set.

4

4 Clustering analysis

The clusterExpr function requires the SummarizedExperiment and the out-
put from cvExpr along with the user defined CV threshold. The function per-
forms a clustering analysis using the defined genes and labels each sample as
either hyperploidy or hypoploidy with respect to each group. For example, if a
sample is labelled hyperploidy it means the average level of gene expression over
the genomic region of interest is higher than the samples labelled hypoploidy.
If the user is using a set of control samples where the number of chromosomes
are known, then the labeling can be used to determine the other samples have
chromosomal deletions or duplications.

> datExprs <- clusterExpr(se = datExprs, cvExpr = cvExpr.out,

+ threshold = "25%")

The output of clusterExpr is the inputted SummarizedExperiment, but with
an extra column in the meta data titled, Ploidy. This column has labelled
each sample as either hyperploidy or hypoploidy. Since this data set contains
control samples we would presume the Trisomy 21 samples have been labelled
hyperploidy and the control samples and hypoploidy. This can be checked as
shown below.

> data.frame(colData(datExprs))[c("Group", "Ploidy")]

Group Ploidy

1 Normal Hypoploidy

2 Normal Hypoploidy

3 Normal Hypoploidy

4 Normal Hypoploidy

5 Normal Hypoploidy

6 Normal Hypoploidy

7 Normal Hypoploidy

8 Normal Hypoploidy

9 Trisomy Hyperploidy

10 Trisomy Hyperploidy

11 Trisomy Hyperploidy

12 Trisomy Hyperploidy

13 Trisomy Hyperploidy

14 Trisomy Hyperploidy

15 Trisomy Hyperploidy

16 Trisomy Hyperploidy

As shown the control samples (Normal) have been labelled Hypoploidy with
respect to the Trisomy 21 samples. Moreover, the Trisomy 21 samples have
been labelled Hyperploidy with respect to the control samples. In addition,
compared to the labeling that was provided with the publicly available data,
the clusterExpr has correctly labelled the data. However, in other data set

5

the correct classification may be unknown. It is therefore important to check
statically the likelihood of the genomic region being multiplied or deleted. The
clustering of the samples can be visualised using a principle component analysis
(PCA) where the output from clusterExpr is used as input. Here in this example,
there is good separation of the samples, suggesting that there are two distinct
groups. However, this can be determined statically using a bimodal test.

> pcaExpr(se = datExprs, cvExpr = cvExpr.out, threshold = "25%")

6

●

●

●●

●

● ●

●

●

−10

−5

0

5

10

−10 −5 0 5 10
Dim1 (38.1%)

D
im

2
(1

2.
7%

)

Groups

●● Hyperploidy

Hypoploidy

Figure 2: The expression variation of chromosome 21 genes found to be ex-
pressed in the data set.

7

5 Bimodal Test

The CHARGE package contains a wrapper function titled bimodalTest,
which utilizes the diptest [1] and modes [2] R packages. This function tests
for the likelihood of being two distinct groups using gene expression within the
region of interest. The function requires the same inputs as the other functions
and return a list of 2.

> bimodalTest.out <- bimodalTest(se = datExprs, cvExpr = cvExpr.out,

+ threshold = "25%")

> bimodalTest.out[[1]]

Bimodality.Coefficient Bimodality.Ratio Dip.Statistic Dip.pvalue

1 0.7657733 0.9128046 0.1198899 0.03669467

The first part of the list is a data frame containing the statistics from the
bimodality test, which contains four values. The Bimodality coefficient, ranges
from 0 to 1, where a value greater than 5/9 suggest bimodality [2]. The amount
of bimodality can be interpreted from the bimodality ratio. In this example,
since there is an even split of samples we expect the ratio to be close to 1. The
dip statistic and p-value test for unimodality [1] and can be used to determine
if the region is statically significant. Here, the p-value is less than 0.05 and
therefore we can conclude that there are two distinct groups. The density of the
samples can also be plotted as shown below.

> plot(bimodalTest.out[[2]])

8

−1.0 −0.5 0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

0.
6

"Density plot of Z−scores from gene expression"

N = 16 Bandwidth = 0.248

D
en

si
ty

Figure 3: Densiy plot of mean Z scores.

9

6 Expression Finder

This tutorial has focused on a data set where the region of interest was
known. However, in other data sets the region may be unknown. CHARGE
contains a function that uses a sliding window approach to scan regions and
tests for bimodality. The user can adjust the size of the window, defined by
the binWidth and how far the bin will slide along, known as the binStep. This
function can be run using multiple threads, which may be desirable when using
a small binWidth and binStep. In this tutorial, we’ll use a large binWidth to
cover the largest chromosome to shorten computing time.

> chrLengths <- GRanges(seqinfo(EnsDb.Hsapiens.v86)[c(1:22, "X", "Y")])

> exprFinder.out <- exprFinder(se = datExprs, ranges = chrLengths,

+ binWidth = 1e+9, binStep = 1e+9, threshold = "25%")

> exprFinder.out[1:3 ,c(1,6:10)]

seqnames strand Bimodality.Coefficient Bimodality.Ratio Dip.Statistic

1 Y * 0.7931294 0.7597249 0.14312546

2 21 * 0.7657733 0.9128046 0.11988986

3 14 * 0.7056185 NA 0.08775777

Dip.pvalue

1 0.003219665

2 0.036694669

3 0.356822561

The function returns a data frame, which can be turned into a Granges
object using the GRanges function. The function has tested every chromosome
and only chromosome Y and 21 have returned as being significant. The Y
chromosome was returned as it is most likely detecting sex differences. This
function can also be used with a smaller binWidth to identify regions that
either been duplicated or deleted.

7 Session Information

This analysis was conducted on:

> sessionInfo()

R Under development (unstable) (2019-10-24 r77329)

Platform: x86_64-pc-linux-gnu (64-bit)

Running under: Ubuntu 18.04.3 LTS

Matrix products: default

BLAS: /home/biocbuild/bbs-3.11-bioc/R/lib/libRblas.so

LAPACK: /home/biocbuild/bbs-3.11-bioc/R/lib/libRlapack.so

locale:

10

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

[3] LC_TIME=en_US.UTF-8 LC_COLLATE=C

[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8

[7] LC_PAPER=en_US.UTF-8 LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:

[1] parallel stats4 stats graphics grDevices utils datasets

[8] methods base

other attached packages:

[1] EnsDb.Hsapiens.v86_2.99.0 ensembldb_2.11.0

[3] AnnotationFilter_1.11.0 GenomicFeatures_1.39.0

[5] AnnotationDbi_1.49.0 SummarizedExperiment_1.17.0

[7] DelayedArray_0.13.0 BiocParallel_1.21.0

[9] matrixStats_0.55.0 Biobase_2.47.0

[11] CHARGE_1.7.0 GenomicRanges_1.39.0

[13] GenomeInfoDb_1.23.0 IRanges_2.21.0

[15] S4Vectors_0.25.0 BiocGenerics_0.33.0

loaded via a namespace (and not attached):

[1] httr_1.4.1 bit64_0.9-7 assertthat_0.2.1

[4] askpass_1.1 BiocFileCache_1.11.0 blob_1.2.0

[7] GenomeInfoDbData_1.2.2 Rsamtools_2.3.0 progress_1.2.2

[10] ggrepel_0.8.1 factoextra_1.0.5 pillar_1.4.2

[13] RSQLite_2.1.2 backports_1.1.5 lattice_0.20-38

[16] glue_1.3.1 digest_0.6.22 ggsignif_0.6.0

[19] XVector_0.27.0 colorspace_1.4-1 Matrix_1.2-17

[22] plyr_1.8.4 FactoMineR_1.42 XML_3.98-1.20

[25] pkgconfig_2.0.3 biomaRt_2.43.0 zlibbioc_1.33.0

[28] purrr_0.3.3 scales_1.0.0 tibble_2.1.3

[31] openssl_1.4.1 ggplot2_3.2.1 ggpubr_0.2.3

[34] lazyeval_0.2.2 magrittr_1.5 crayon_1.3.4

[37] memoise_1.1.0 MASS_7.3-51.4 tools_4.0.0

[40] prettyunits_1.0.2 hms_0.5.1 stringr_1.4.0

[43] munsell_0.5.0 cluster_2.1.0 Biostrings_2.55.0

[46] flashClust_1.01-2 compiler_4.0.0 rlang_0.4.1

[49] grid_4.0.0 RCurl_1.95-4.12 rappdirs_0.3.1

[52] leaps_3.0 labeling_0.3 bitops_1.0-6

[55] gtable_0.3.0 DBI_1.0.0 curl_4.2

[58] R6_2.4.0 GenomicAlignments_1.23.0 modes_0.7.0

[61] dplyr_0.8.3 rtracklayer_1.47.0 bit_1.1-14

[64] zeallot_0.1.0 ProtGenerics_1.19.0 stringi_1.4.3

[67] Rcpp_1.0.2 vctrs_0.2.0 scatterplot3d_0.3-41

[70] dbplyr_1.4.2 tidyselect_0.2.5 diptest_0.75-7

11

8 References

[1] Hartigan JA, Hartigan PM. The Dip Test of Unimodality. The Annals
of Statistics. 1985;13(1):70-84.

[2] Deevi S. modes: Find the Modes and Assess the Modality of Complex
and Mixture Distributions, Especially with Big Datasets. 2016.

[3] Morgan M, Obenchain V, Hester J and Pag?s H (2017). SummarizedEx-
periment: SummarizedExperiment container. R package version 1.8.0.

[4] Zhou X, Lindsay H, Robinson MD (2014). Robustly detecting differential
expression in RNA sequencing data using observation weights. Nucleic Acids
Research, 42(11), e91.

12

	Introduction
	Preparing the data
	Expression variation
	Clustering analysis
	Bimodal Test
	Expression Finder
	Session Information
	References

