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Website

Visit our website to learn more about sequins: www.sequin.xyz.

Overview

In this document, we show how to conduct statistical analysis that models the performance of sequin
controls in next-generation-sequencing (NGS) experiment. We call the sequins RnaQuin for “RNA-Seq
sequins”, MetaQuin for “metagenomic sequins”, VarQuin for “genomics variant sequins”, and the statistical
framework Anaquin.

This vignette is written for R-usage. However, Anaquin is a framework covering the entire NGS workflow.
Consequently, the R-package (and it’s documentation) is a subset of the overall Anaquin framework. We also
distribute a detailed workflow guide on our website.

It is important to note Anaquin is both command-line tool and R-package. Our workflow guide has the
details on how the command-line tool can be used with the R-package.

Sequins

Next-generation sequencing (NGS) enables rapid, cheap and high-throughput determination of sequences
within a user’s sample. NGS methods have been applied widely, and have fuelled major advances in the life
sciences and clinical health care over the past decade. However, NGS typically generates a large amount of
sequencing data that must be first analyzed and interpreted with bioinformatics tools. There is no standard
way to perform an analysis of NGS data; different tools provide different advantages in different situations.
The complexity and variation of sequences further compound this problem, and there is little reference by
which compare next-generation sequencing and analysis.

To address this problem, we have developed a suite of synthetic nucleic-acid sequins (sequencing spike-ins).
Sequins are fractionally added to the extracted nucleic-acid sample prior to library preparation, so they
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are sequenced along with your sample of interest. We can use the sequins as an internal quantitative and
qualitative control to assess any stage of the next-generation sequencing workflow.

Sequins are ‘spiked-in’ to a user's This allows sequins to act as

RMA or DMNA sample. The sample internal controls and reference
(with sequins) is then sequenced. standards durnig NGS analysis.
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Sequins are synthetic RNA or DNA Resultant reads from the sample align to the human genome,
standards that represent genome features whilst reads from sequins align to a synthetic chromosome or genome.

(such as genes, mutations etc.)

Figure 1: NGS Workflow for sequins

Mixture

Sequins are combined together across a range of concentrations to formulate a mixture. Mixture file (CSV) is
a text file that specifies the concentration of each sequin within a mixture. Mixture files are often required as
input to enable Anaquin to perform quantitative analysis. Mixture file can be downloaded from our website.

Let’s demonstrate RnaQuin mixture A with a simple example. Load the mixture file (you can also download
the file directly from our website):

library('Anaquin')

## Loading required package: ggplot2

data("RnaQuinIsoformMixture")
head (RnaQuinIsoformMixture)

## Name Length MixA MixB
## 1 R1_101_1 719 11.329650  0.472075
## 2 R1_101_2 430 3.776550  1.416225
## 3 R1_102_1 1490 13.217925  7.553100
## 4 R1_102_2 1362 1.888275 52.871700
## 5 R1_103_1 1754 60.424806 453.186000

## 6 R1_103_2 1856 906.372094 30.212400

Each row represents a sequin. Name gives the sequin names, Length is the length of the sequins in nucleotide
bases, MizA gives the concentration level in attoml/ul for Mixture A.

Imagine we have two RNA-Seq experiments; a well-designed experiment and a poorly-designed experiment.
We would like to quantify their isoform expression.

Let’s simulate the experiments:

set.seed(1234)
siml <- 1.0 + 1.2*log2(RnaQuinIsoformMixture$MixA) + rnorm(nrow(RnaQuinIsoformMixture),0,1)
sim2 <- c¢(1.0 + rnorm(100,1,3), 1.0 +

1.2*1log2(tail (RnaQuinIsoformMixture,64)$MixA) +

rnorm(64,0,1))

In the first experiment, sequins are expected to correlate linearly with the measured FPKM. Indeed, the
variables are strongly correlated:



names <- row.names(RnaQuinIsoformMixture)
input <- log2(RnaQuinIsoformMixture$MixA)

title <- 'Isoform expression (Good)'
xlab <- 'Input concentration (log2)'
ylab <- 'Measured FPKM (log2)'

plotLinear(names, input, siml, title=title, xlab=xlab, ylab=ylab)

## Warning: Use of “data$x”™ is discouraged. Use “x~ instead.

## Warning: Use of “data$y” is discouraged. Use "y~ instead.

## Warning: Use of “data$x™ is discouraged. Use “x° instead.

## Warning: Use of “data$y” is discouraged. Use "y~ instead.

Isoform expression (Good)
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In our second experiment, the weakly expressed isoforms exhibit stochastic behavior and are clearly not linear
with the input concentration. Furthermore, there is a limit of quantification (LOQ); below which accuracy of
the experiment becomes questionable.

names <- row.names (RnaQuinIsoformMixture)
input <- log2(RnaQuinIsoformMixture$MixA)

title <- 'Isoform expression (Bad)'
xlab <- 'Input concentration (log2)'

ylab <- 'Measured FPKM (log2)'

plotLinear (names, input, sim2, title=title, xlab=xlab, ylab=ylab)
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The primary observation is that the artificial scale imposed by sequins allow us to quantify our experiments.

Quantifying transcriptome assembly

To quantify RNA-Seq transcriptome assembly, we need to run a transcriptome assember; a software that can
assemble transcripts and estimates their abundances. Our workflow guide has the details.

Here, we use a data set generated by Cufflinks, described in Section 5.4.5.1 in the user guide:

data(UserGuideData_5.4.5.1)
head (UserGuideData_5.4.5.1)

##
##
##
##
##
##
##

R1_101_1
R1_101_2
R1_102_1
R1_102_2

10.
5.
0.

14.

Input
0708
0354
8886
2176

R1_103_1 107.4220
R1_103_2 859.3750

O O O O O O

Sn

.990264
.393023
.519463
.902349
.995439
.904095



The first column gives the input concentration for each sequin in attomol/ul. The second column is the
measured sensitivity. Run the following R-code to generate a sensitivity plot.

title <- 'Assembly Plot'
xlab <- 'Input Concentration (log2)'
ylab <- 'Sensitivity'

# Sequin names
names <- row.names(UserGuideData_5.4.5.1)

# Input concentration
x <- log2(UserGuideData_5.4.5.1$Input)

# Measured sensitivity
y <- UserGuideData_5.4.5.1$Sn

plotLogistic(names, x, y, title=title, xlab=xlab, ylab=ylab, showLOA=TRUE)

## Warning: Use of “data$x™ is discouraged. Use “x° instead.
## Warning: Use of “data$y” is discouraged. Use "y~ instead.
## Warning: Use of “data$x” is discouraged. Use “x° instead.

## Warning: Use of “data$y” is discouraged. Use "y~ instead.

Assembly Plot
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The fitted logistic curve reveals clear relationship between input concentration and sensitivity. Unsurprisingly,
the assembler has higher sensitivity with highly expressed isoforms. The limit-of-assembly (LOA) is defined
as the intersection of the curve to sensitivity of 0.70.



Quantifying gene expression

Quantifying gene/isoform expression involves building a linear model between input concentration and
measured FPKM. In this section, we consider a dataset generated by Cufflinks, described in Section 5.4.5.1
of the user guide.

Load the data set:

data(UserGuideData_5.4.6.3)
head (UserGuideData_5.4.6.3)

## Input Observedl Observed2  Observed3
## R1_101  15.1062 0.958838 1.456650 0.960190
## R1_102 15.1062 0.806596 .604539 0.652783
## R1_103 966.7970 2.650470 .890570 3.211090
## R1_11  241.6990 3.876010 .919950 4.246390
## R1_12 30.2124 0.779118 .898644 0.733175
## R1_13 7734.3800 1305.710000 1328.950000 1358.970000
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The first column gives input concentration for each sequin in attomol/ul. The other columns are the FPKM
values for each replicate (three replicates in total). The following code will quantify the first replicate:

title <- 'Gene Expression'

xlab <- 'Input Concentration (log2)'
ylab <- 'FPKM (log2)'

# Sequin names
names <- row.names(UserGuideData_5.4.6.3)

# Input concentration
x <- log2(UserGuideData_5.4.6.3$Input)

# Measured FPKM
y <- log2(UserGuideData_5.4.6.330bservedl)

plotLinear(names, x, y, title=title, xlab=xlab, ylab=ylab, showLOQ=TRUE)

## Warning: Use of “data$x™ is discouraged. Use “x” instead.

## Warning: Use of “data$y” is discouraged. Use "y~ instead.

## Warning: Use of “data$x™ is discouraged. Use “x° instead.

## Warning: Use of “data$y” is discouraged. Use "y~ instead.



Gene Expression
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Coefficient of determination is over 0.90; over 90% of the variation (e.g. technical bias) can be explained by
the model. LOQ is 3.78 attomol/ul, this is the estimated emphirical detection limit.

We can also quantify multiple replicates:

title <- 'Gene Expression'
xlab <- 'Input Concentration (log2)'
ylab <- 'FPKM (log2)'

# Sequin names
names <- row.names(UserGuideData_5.4.6.3)

# Input concentration
x <- log2(UserGuideData_5.4.6.3%Input)

# Measured FPKM
y <- log2(UserGuideData_5.4.6.3[,2:4])

plotLinear(names, x, y, title=title, xlab=xlab, ylab=ylab, showLOQ=TRUE)

## Warning: Use of “data$x” is discouraged. Use “x° instead.
## Warning: Use of “data$y” is discouraged. Use "y~ instead.
## Warning: Use of “data$x™ is discouraged. Use “x° instead.
## Warning: Use of “data$y” is discouraged. Use "y~ instead.
## Warning: Use of “data$x” is discouraged. Use “x° instead.

## Warning: Use of “data$ymin” is discouraged. Use “ymin®~ instead.



## Warning: Use of “data$x™ is discouraged. Use “x° instead.

## Warning: Use of “data$ymax”™ is discouraged. Use “ymax™ instead.

Gene Expression
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Differential analysis

In this section, we show how to quantify differential expression analysis between expected fold-change and
measured fold-change. We apply our method to a data set described in Section 5.6.3 of the user guide.

data(UserGuideData_5.6.3)
head (UserGuideData_5.6.3)

## ExpLFC ObsLFC SD Pval Qval Mean Label
## R1_101 -3 -1.890122 0.701723 7.069675e-03 2.056337e-02 9.953556 TP
## R1_102 -4 -2.051777 0.546374 1.731616e-04 7.646243e-04 17.285262 TP
## R1_103 -1 3.837784 0.377602 2.883289e-24 6.534028e-23 1221.301532 TP
## R1_11 -4 -2.431582 0.591352 3.924117e-05 1.974336e-04 47.174250 TP
## R1_12 1 1.542757 0.425562 2.887104e-04 1.214989e-03 73.008720 TP
## R1_13 0 0.717701 0.242493 3.079564e-03 1.000416e-02 44053.259914 FP

For each of the sequin gene, we have expected log-fold change, measured log-fold change, standard deviation,

p-value, g-value and mean. The estimation was done by DESeq?2.

Run the following code to construct a folding plot:

title <- 'Gene Fold Change'
xlab <- 'Expected fold change (log2)'
ylab <- 'Measured fold change (log2)'



# Sequin names
names <- row.names (UserGuideData_5.6.3)

# Expected log-fold
x <- UserGuideData_5.6.3$ExpLFC

# Measured log-fold
y <- UserGuideData_5.6.3$0bsLFC

plotLinear (names, x, y, title=title, xlab=xlab, ylab=ylab, showAxis=TRUE,
showLOQ=FALSE)

## Warning: Use of “data$x” is discouraged. Use “x° instead.

## Warning: Use of “data$y” is discouraged. Use "y~ instead.

## Warning: Use of “data$x™ is discouraged. Use “x° instead.

## Warning: Use of “data$y” is discouraged. Use "y~ instead.

Gene Fold Change
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Outliers are obvious throughout the reference scale. Overall, DESeq2 is able to account for 78% of the
variation.

We can also construct a ROC plot. [1] has details on how the true-positives and false-positives are defined.

title <- 'ROC Plot'

# Sequin names
seqs <- row.names (UserGuideData_5.6.3)



# Expected Tatio
ratio <- UserGuideData_5.6.3$ExpLFC

# How the ROC points are ranked (scoring function)
score <- 1-UserGuideData_5.6.3$Pval

# Classtfied labels (TP/FP)
label <- UserGuideData_5.6.3%Label

plotROC(seqs, score, ratio, label, title=title, refGroup=0)

ROC Plot

’
1.00 1 > &
z
’
’
’
’
’
,
’
0.754 I /’ -4
’
/, -3
’
/, -2
’
, -
o 0.50 A1 /’ L
14 1
’
’
’ 2
,
/, 3
’
0.25 1 it 4
,
’
’
,
’
,
,
’
0.00 4 ,’
0.00 0.25 0.50 0.75 1.00
FPR

AUC statistics for LFC 3 and 4 are higher than LFC 1 and 2. Overall, all LFC ratios can be correctly
classified relative to LFC 0.
Furthermore, we can construct limit of detection ratio (LOD) curves:

xlab <- 'Average Counts'
ylab <- 'P-value'
title <- 'LOD Curves'

# Measured mean
mean <- UserGuideData_5.6.3%Mean

# Expected log-fold
ratio <- UserGuideData_5.6.38ExpLFC

# P-value
pval <- UserGuideData_5.6.3$Pval

10



gqval <- UserGuideData_5.6.38Qval

plotLOD(mean, pval, abs(ratio), gval=qval, xlab=xlab, ylab=ylab, title=title, FDR=0.05)

LOD Curves
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Unsurprisingly, p-value is inverse quadratically related with average counts. All the LFC ratios systematically
outperform LFC 0. The function also estimates the empirical detection limits, [1] has the details.
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