
Package ‘scater’
October 17, 2020

Type Package

Version 1.16.2

Date 2020-06-26

License GPL-3

Title Single-Cell Analysis Toolkit for Gene Expression Data in R

Description A collection of tools for doing various analyses of
single-cell RNA-seq gene expression data, with a focus on
quality control and visualization.

Depends SingleCellExperiment, ggplot2

Imports BiocGenerics, SummarizedExperiment, Matrix, ggbeeswarm, rlang,
grid, DelayedArray, DelayedMatrixStats, methods, S4Vectors,
stats, utils, viridis, Rcpp, BiocNeighbors, BiocSingular,
BiocParallel

Suggests BiocStyle, BiocFileCache, biomaRt, beachmat, cowplot,
destiny, knitr, scRNAseq, robustbase, rmarkdown, Rtsne, uwot,
NMF, testthat, pheatmap, Biobase, limma, DropletUtils

VignetteBuilder knitr

biocViews ImmunoOncology, SingleCell, RNASeq, QualityControl,
Preprocessing, Normalization, Visualization,
DimensionReduction, Transcriptomics, GeneExpression,
Sequencing, Software, DataImport, DataRepresentation,
Infrastructure, Coverage

LinkingTo Rcpp, beachmat

SystemRequirements C++11

BuildResaveData no

RoxygenNote 7.1.0

NeedsCompilation yes

URL http://bioconductor.org/packages/scater/

BugReports https://support.bioconductor.org/

git_url https://git.bioconductor.org/packages/scater

git_branch RELEASE_3_11

git_last_commit e01dfed

git_last_commit_date 2020-06-26

1

http://bioconductor.org/packages/scater/
https://support.bioconductor.org/

2 R topics documented:

Date/Publication 2020-10-16

Author Davis McCarthy [aut, cre],
Kieran Campbell [aut],
Aaron Lun [aut, ctb],
Quin Wills [aut],
Vladimir Kiselev [ctb]

Maintainer Davis McCarthy <davis@ebi.ac.uk>

R topics documented:
addPerCellQC . 3
annotateBMFeatures . 4
bootstraps . 5
calculateAverage . 6
calculateCPM . 7
calculateDiffusionMap . 9
calculateFPKM . 12
calculateMDS . 13
calculateNMF . 15
calculatePCA . 18
calculateTPM . 21
calculateTSNE . 23
calculateUMAP . 26
defunct . 30
getExplanatoryPCs . 31
getVarianceExplained . 32
ggcells . 33
isOutlier . 35
librarySizeFactors . 37
logNormCounts . 39
makePerCellDF . 41
makePerFeatureDF . 43
medianSizeFactors . 44
mockSCE . 46
multiplot . 47
nexprs . 48
normalizeCounts . 49
norm_exprs . 52
numDetectedAcrossCells . 53
numDetectedAcrossFeatures . 55
perCellQCMetrics . 56
perFeatureQCMetrics . 59
plotColData . 61
plotDots . 63
plotExplanatoryPCs . 65
plotExplanatoryVariables . 66
plotExpression . 67
plotHeatmap . 69
plotHighestExprs . 71
plotPlatePosition . 72
plotReducedDim . 74

addPerCellQC 3

plotRLE . 76
plotRowData . 78
plotScater . 79
quickPerCellQC . 80
readSparseCounts . 82
Reduced dimension plots . 83
retrieveCellInfo . 85
retrieveFeatureInfo . 86
runColDataPCA . 88
runMultiUMAP . 89
scater-plot-args . 91
scater-utils . 92
SCESet . 92
sumCountsAcrossCells . 93
sumCountsAcrossFeatures . 96
uniquifyFeatureNames . 98
updateSCESet . 99

Index 101

addPerCellQC Add QC to an SE

Description

Convenient utilities to compute QC metrics and add them to a SummarizedExperiment’s metadata.

Usage

addPerCellQC(x, ...)

addPerFeatureQC(x, ...)

Arguments

x A SummarizedExperiment object or one of its subclasses.

... For addPerCellQC, further arguments to pass to perCellQCMetrics.
For addPerFeatureQC, further arguments to pass to perFeatureQCMetrics.

Details

These functions are simply wrappers around perCellQCMetrics and perFeatureQCMetrics, re-
spectively. The computed QC metrics are automatically appended onto the existing colData or
rowData. No protection is provided to avoid duplicated column names.

Value

An object like x but with the QC metrics added to the row or column metadata.

Author(s)

Aaron Lun

4 annotateBMFeatures

See Also

perCellQCMetrics and perFeatureQCMetrics, which do the actual work.

Examples

example_sce <- mockSCE()
example_sce <- addPerCellQC(example_sce)
colData(example_sce)

example_sce <- addPerFeatureQC(example_sce)
rowData(example_sce)

annotateBMFeatures Get feature annotation information from Biomart

Description

Use the biomaRt package to add feature annotation information to an SingleCellExperiment.

Usage

annotateBMFeatures(
ids,
biomart = "ENSEMBL_MART_ENSEMBL",
dataset = "mmusculus_gene_ensembl",
id.type = "ensembl_gene_id",
symbol.type,
attributes = c(id.type, symbol.type, "chromosome_name", "gene_biotype",
"start_position", "end_position"),

filters = id.type,
...

)

getBMFeatureAnnos(x, ids = rownames(x), ...)

Arguments

ids A character vector containing feature identifiers.

biomart String defining the biomaRt to be used, to be passed to useMart.

dataset String defining the dataset to use, to be passed to useMart.

id.type String specifying the type of identifier in ids.

symbol.type String specifying the type of symbol to retrieve. If missing, this is set to "mgi_symbol"
if dataset="mmusculus_gene_ensembl", or to "hgnc_symbol" if dataset="hsapiens_gene_ensembl",

attributes Character vector defining the attributes to pass to getBM.

filters String defining the type of identifier in ids, to be used as a filter in getBM.

... For annotateBMFeatures, further named arguments to pass to biomaRt::useMart.
For getBMFeatureAnnos, further arguments to pass to annotateBMFeatures.

x A SingleCellExperiment object.

bootstraps 5

Details

These functions provide convenient wrappers around biomaRt to quickly obtain annotation in the
required format.

Value

For annotateBMFeatures, a DataFrame containing feature annotation, with one row per value in
ids.

For getBMFeatureAnnos, x is returned containing the output of annotateBMFeatures appended to
its rowData.

Author(s)

Aaron Lun, based on code by Davis McCarthy

Examples

Not run:
Making up Ensembl IDs for demonstration purposes.
mock_id <- paste0("ENSMUSG", sprintf("%011d", seq_len(1000)))
anno <- annotateBMFeatures(ids=mock_id)

End(Not run)

bootstraps Accessor and replacement for bootstrap results in a
SingleCellExperiment object

Description

SingleCellExperiment objects can contain bootstrap expression values (for example, as generated
by the kallisto software for quantifying feature abundance). These functions conveniently access
and replace the ’bootstrap’ elements in the assays slot with the value supplied, which must be an
matrix of the correct size, namely the same number of rows and columns as the SingleCellExperiment
object as a whole.

Usage

bootstraps(object)

bootstraps(object) <- value

S4 method for signature 'SingleCellExperiment'
bootstraps(object)

S4 replacement method for signature 'SingleCellExperiment,array'
bootstraps(object) <- value

Arguments

object a SingleCellExperiment object.

value an array of class "numeric" containing bootstrap expression values

6 calculateAverage

Value

If accessing bootstraps slot of an SingleCellExperiment, then an array with the bootstrap values,
otherwise an SingleCellExperiment object containing new bootstrap values.

Author(s)

Davis McCarthy

Examples

example_sce <- mockSCE()
bootstraps(example_sce)

calculateAverage Calculate per-feature average counts

Description

Calculate average counts per feature after normalizing observations using size factors.

Usage

calculateAverage(x, ...)

S4 method for signature 'ANY'
calculateAverage(
x,
size_factors = NULL,
subset_row = NULL,
BPPARAM = SerialParam()

)

S4 method for signature 'SummarizedExperiment'
calculateAverage(x, ..., exprs_values = "counts")

S4 method for signature 'SingleCellExperiment'
calculateAverage(x, size_factors = NULL, ...)

Arguments

x A numeric matrix of counts where features are rows and
Alternatively, a SummarizedExperiment or a SingleCellExperiment containing
such counts.

... For the generic, arguments to pass to specific methods.
For the SummarizedExperiment method, further arguments to pass to the ANY
method.
For the SingleCellExperiment method, further arguments to pass to the Summa-
rizedExperiment method.

size_factors A numeric vector containing size factors. If NULL, these are calculated or ex-
tracted from x.

calculateCPM 7

subset_row A vector specifying the subset of rows of object for which to return a result.

BPPARAM A BiocParallelParam object specifying whether the calculations should be par-
allelized. Only relevant for parallelized rowSums(x), e.g., for DelayedMatrix
inputs.

exprs_values A string specifying the assay of x containing the count matrix.

Details

The size-adjusted average count is defined by dividing each count by the size factor and taking the
average across cells. All sizes factors are scaled so that the mean is 1 across all cells, to ensure that
the averages are interpretable on the same scale of the raw counts.

If no size factors are supplied, they are determined automatically:

• For count matrices and SummarizedExperiment inputs, the sum of counts for each cell is used
to compute a size factor via the librarySizeFactors function.

• For SingleCellExperiment instances, the function searches for sizeFactors from x. If none
are available, it defaults to library size-derived size factors.

If size_factors are supplied, they will override any size factors present in x.

Value

A numeric vector of average count values with same length as number of features (or the number
of features in subset_row if supplied).

Author(s)

Aaron Lun

See Also

librarySizeFactors, for the default calculation of size factors.

logNormCounts, for the calculation of normalized expression values.

Examples

example_sce <- mockSCE()
ave_counts <- calculateAverage(example_sce)
summary(ave_counts)

calculateCPM Calculate counts per million (CPM)

Description

Calculate count-per-million (CPM) values from the count data.

8 calculateCPM

Usage

calculateCPM(x, ...)

S4 method for signature 'ANY'
calculateCPM(x, size_factors = NULL, subset_row = NULL)

S4 method for signature 'SummarizedExperiment'
calculateCPM(x, ..., exprs_values = "counts")

S4 method for signature 'SingleCellExperiment'
calculateCPM(x, size_factors = NULL, ...)

Arguments

x A numeric matrix of counts where features are rows and cells are columns.
Alternatively, a SummarizedExperiment or a SingleCellExperiment containing
such counts.

... For the generic, arguments to pass to specific methods.
For the SummarizedExperiment method, further arguments to pass to the ANY
method.
For the SingleCellExperiment method, further arguments to pass to the Summa-
rizedExperiment method.

size_factors A numeric vector containing size factors to adjust the library sizes. If NULL, the
library sizes are used directly.

subset_row A vector specifying the subset of rows of x for which to return a result.

exprs_values A string or integer scalar specifying the assay of x containing the count matrix.

Details

If size_factors are provided or available in x, they are used to define the effective library sizes.
This is done by scaling all size factors such that the mean factor is equal to the mean sum of
counts across all features. The effective library sizes are then used as the denominator of the CPM
calculation.

Value

A numeric matrix of CPM values.

Author(s)

Aaron Lun

See Also

normalizeCounts, on which this function is based.

Examples

example_sce <- mockSCE()
cpm(example_sce) <- calculateCPM(example_sce)
str(cpm(example_sce))

calculateDiffusionMap 9

calculateDiffusionMap Create a diffusion map from cell-level data

Description

Produce a diffusion map for the cells, based on the data in a SingleCellExperiment object.

Usage

calculateDiffusionMap(x, ...)

S4 method for signature 'ANY'
calculateDiffusionMap(
x,
ncomponents = 2,
ntop = 500,
subset_row = NULL,
scale = FALSE,
transposed = FALSE,
...

)

S4 method for signature 'SummarizedExperiment'
calculateDiffusionMap(x, ..., exprs_values = "logcounts")

S4 method for signature 'SingleCellExperiment'
calculateDiffusionMap(
x,
...,
exprs_values = "logcounts",
dimred = NULL,
n_dimred = NULL

)

runDiffusionMap(x, ..., altexp = NULL, name = "DiffusionMap")

Arguments

x For calculateDiffusionMap, a numeric matrix of log-expression values where
rows are features and columns are cells. Alternatively, a SummarizedExperi-
ment or SingleCellExperiment containing such a matrix.
For runDiffusionMap, a SingleCellExperiment object.

... For the calculateDiffusionMap generic, additional arguments to pass to spe-
cific methods. For the ANY method, additional arguments to pass to DiffusionMap.
For the SummarizedExperiment and SingleCellExperiment methods, additional
arguments to pass to the ANY method.
For runDiffusionMap, additional arguments to pass to calculateDiffusionMap.

ncomponents Numeric scalar indicating the number of diffusion components to obtain.

ntop Numeric scalar specifying the number of features with the highest variances to
use for dimensionality reduction.

10 calculateDiffusionMap

subset_row Vector specifying the subset of features to use for dimensionality reduction. This
can be a character vector of row names, an integer vector of row indices or a
logical vector.

scale Logical scalar, should the expression values be standardized?

transposed Logical scalar, is x transposed with cells in rows?

exprs_values Integer scalar or string indicating which assay of x contains the expression val-
ues.

dimred String or integer scalar specifying the existing dimensionality reduction results
to use.

n_dimred Integer scalar or vector specifying the dimensions to use if dimred is specified.

altexp String or integer scalar specifying an alternative experiment containing the input
data.

name String specifying the name to be used to store the result in the reducedDims of
the output.

Details

The function DiffusionMap is used internally to compute the diffusion map. The behaviour of
DiffusionMap seems to be non-deterministic, in a manner that is not responsive to any set.seed
call. The reason for this is unknown.

Value

For calculateDiffusionMap, a matrix is returned containing the diffusion map coordinates for
each cell (row) and dimension (column).

For runDiffusionMap, a modified x is returned that contains the diffusion map coordinates in
reducedDim(x,name).

Feature selection

This section is relevant if x is a numeric matrix of (log-)expression values with features in rows and
cells in columns; or if x is a SingleCellExperiment and dimred=NULL. In the latter, the expression
values are obtained from the assay specified by exprs_values.

The subset_row argument specifies the features to use for dimensionality reduction. The aim is to
allow users to specify highly variable features to improve the signal/noise ratio, or to specify genes
in a pathway of interest to focus on particular aspects of heterogeneity.

If subset_row=NULL, the ntop features with the largest variances are used instead. We literally
compute the variances from the expression values without considering any mean-variance trend, so
often a more considered choice of genes is possible, e.g., with scran functions. Note that the value
of ntop is ignored if subset_row is specified.

If scale=TRUE, the expression values for each feature are standardized so that their variance is unity.
This will also remove features with standard deviations below 1e-8.

Using reduced dimensions

If x is a SingleCellExperiment, the method can be applied on existing dimensionality reduction
results in x by setting the dimred argument. This is typically used to run slower non-linear algo-
rithms (t-SNE, UMAP) on the results of fast linear decompositions (PCA). We might also use this
with existing reduced dimensions computed from a priori knowledge (e.g., gene set scores), where
further dimensionality reduction could be applied to compress the data.

calculateDiffusionMap 11

The matrix of existing reduced dimensions is taken from reducedDim(x,dimred). By default,
all dimensions are used to compute the second set of reduced dimensions. If n_dimred is also
specified, only the first n_dimred columns are used. Alternatively, n_dimred can be an integer
vector specifying the column indices of the dimensions to use.

When dimred is specified, no additional feature selection or standardization is performed. This
means that any settings of ntop, subset_row and scale are ignored.

If x is a numeric matrix, setting transposed=TRUE will treat the rows as cells and the columns
as the variables/diemnsions. This allows users to manually pass in dimensionality reduction re-
sults without needing to wrap them in a SingleCellExperiment. As such, no feature selection or
standardization is performed, i.e., ntop, subset_row and scale are ignored.

Using alternative Experiments

This section is relevant if x is a SingleCellExperiment and altexp is not NULL. In such cases, the
method is run on data from an alternative SummarizedExperiment nested within x. This is useful for
performing dimensionality reduction on other features stored in altExp(x,altexp), e.g., antibody
tags.

Setting altexp with exprs_values will use the specified assay from the alternative Summarized-
Experiment. If the alternative is a SingleCellExperiment, setting dimred will use the specified
dimensionality reduction results from the alternative. This option will also interact as expected with
n_dimred.

Note that the output is still stored in the reducedDims of the output SingleCellExperiment. It is
advisable to use a different name to distinguish this output from the results generated from the main
experiment’s assay values.

Author(s)

Aaron Lun, based on code by Davis McCarthy

References

Haghverdi L, Buettner F, Theis FJ (2015). Diffusion maps for high-dimensional single-cell analysis
of differentiation data. Bioinformatics 31(18), 2989-2998.

See Also

DiffusionMap, to perform the underlying calculations.

plotDiffusionMap, to quickly visualize the results.

Examples

example_sce <- mockSCE()
example_sce <- logNormCounts(example_sce)

example_sce <- runDiffusionMap(example_sce)
reducedDimNames(example_sce)
head(reducedDim(example_sce))

12 calculateFPKM

calculateFPKM Calculate FPKMs

Description

Calculate fragments per kilobase of exon per million reads mapped (FPKM) values from the feature-
level counts.

Usage

calculateFPKM(x, lengths, ..., subset_row = NULL)

Arguments

x A numeric matrix of counts where features are rows and cells are columns.

Alternatively, a SummarizedExperiment or a SingleCellExperiment containing
such counts.

lengths Numeric vector providing the effective length for each feature in x.

... Further arguments to pass to calculateCPM.

subset_row A vector specifying the subset of rows of x for which to return a result.

Value

A numeric matrix of FPKM values.

Author(s)

Aaron Lun, based on code by Davis McCarthy

See Also

calculateCPM, for the initial calculation of CPM values.

Examples

example_sce <- mockSCE()
eff_len <- runif(nrow(example_sce), 500, 2000)
fout <- calculateFPKM(example_sce, eff_len)
str(fout)

calculateMDS 13

calculateMDS Perform MDS on cell-level data

Description

Perform multi-dimensional scaling (MDS) on cells, based on the data in a SingleCellExperiment
object.

Usage

calculateMDS(x, ...)

S4 method for signature 'ANY'
calculateMDS(
x,
ncomponents = 2,
ntop = 500,
subset_row = NULL,
scale = FALSE,
transposed = FALSE,
method = "euclidean"

)

S4 method for signature 'SummarizedExperiment'
calculateMDS(x, ..., exprs_values = "logcounts")

S4 method for signature 'SingleCellExperiment'
calculateMDS(
x,
...,
exprs_values = "logcounts",
dimred = NULL,
n_dimred = NULL

)

runMDS(x, ..., altexp = NULL, name = "MDS")

Arguments

x For calculateMDS, a numeric matrix of log-expression values where rows are
features and columns are cells. Alternatively, a SummarizedExperiment or Sin-
gleCellExperiment containing such a matrix.
For runMDS, a SingleCellExperiment object.

... For the calculateMDS generic, additional arguments to pass to specific meth-
ods. For the SummarizedExperiment and SingleCellExperiment methods, addi-
tional arguments to pass to the ANY method.
For runMDS, additional arguments to pass to calculateMDS.

ncomponents Numeric scalar indicating the number of MDS?g dimensions to obtain.

ntop Numeric scalar specifying the number of features with the highest variances to
use for dimensionality reduction.

14 calculateMDS

subset_row Vector specifying the subset of features to use for dimensionality reduction. This
can be a character vector of row names, an integer vector of row indices or a
logical vector.

scale Logical scalar, should the expression values be standardized?

transposed Logical scalar, is x transposed with cells in rows?

method String specifying the type of distance to be computed between cells.

exprs_values Integer scalar or string indicating which assay of x contains the expression val-
ues.

dimred String or integer scalar specifying the existing dimensionality reduction results
to use.

n_dimred Integer scalar or vector specifying the dimensions to use if dimred is specified.

altexp String or integer scalar specifying an alternative experiment containing the input
data.

name String specifying the name to be used to store the result in the reducedDims of
the output.

Details

The function cmdscale is used internally to compute the MDS components.

Value

For calculateMDS, a matrix is returned containing the MDS coordinates for each cell (row) and
dimension (column).

For runMDS, a modified x is returned that contains the MDS coordinates in reducedDim(x,name).

Feature selection

This section is relevant if x is a numeric matrix of (log-)expression values with features in rows and
cells in columns; or if x is a SingleCellExperiment and dimred=NULL. In the latter, the expression
values are obtained from the assay specified by exprs_values.

The subset_row argument specifies the features to use for dimensionality reduction. The aim is to
allow users to specify highly variable features to improve the signal/noise ratio, or to specify genes
in a pathway of interest to focus on particular aspects of heterogeneity.

If subset_row=NULL, the ntop features with the largest variances are used instead. We literally
compute the variances from the expression values without considering any mean-variance trend, so
often a more considered choice of genes is possible, e.g., with scran functions. Note that the value
of ntop is ignored if subset_row is specified.

If scale=TRUE, the expression values for each feature are standardized so that their variance is unity.
This will also remove features with standard deviations below 1e-8.

Using reduced dimensions

If x is a SingleCellExperiment, the method can be applied on existing dimensionality reduction
results in x by setting the dimred argument. This is typically used to run slower non-linear algo-
rithms (t-SNE, UMAP) on the results of fast linear decompositions (PCA). We might also use this
with existing reduced dimensions computed from a priori knowledge (e.g., gene set scores), where
further dimensionality reduction could be applied to compress the data.

The matrix of existing reduced dimensions is taken from reducedDim(x,dimred). By default,
all dimensions are used to compute the second set of reduced dimensions. If n_dimred is also

calculateNMF 15

specified, only the first n_dimred columns are used. Alternatively, n_dimred can be an integer
vector specifying the column indices of the dimensions to use.

When dimred is specified, no additional feature selection or standardization is performed. This
means that any settings of ntop, subset_row and scale are ignored.

If x is a numeric matrix, setting transposed=TRUE will treat the rows as cells and the columns
as the variables/diemnsions. This allows users to manually pass in dimensionality reduction re-
sults without needing to wrap them in a SingleCellExperiment. As such, no feature selection or
standardization is performed, i.e., ntop, subset_row and scale are ignored.

Using alternative Experiments

This section is relevant if x is a SingleCellExperiment and altexp is not NULL. In such cases, the
method is run on data from an alternative SummarizedExperiment nested within x. This is useful for
performing dimensionality reduction on other features stored in altExp(x,altexp), e.g., antibody
tags.

Setting altexp with exprs_values will use the specified assay from the alternative Summarized-
Experiment. If the alternative is a SingleCellExperiment, setting dimred will use the specified
dimensionality reduction results from the alternative. This option will also interact as expected with
n_dimred.

Note that the output is still stored in the reducedDims of the output SingleCellExperiment. It is
advisable to use a different name to distinguish this output from the results generated from the main
experiment’s assay values.

Author(s)

Aaron Lun, based on code by Davis McCarthy

See Also

cmdscale, to perform the underlying calculations.

plotMDS, to quickly visualize the results.

Examples

example_sce <- mockSCE()
example_sce <- logNormCounts(example_sce)

example_sce <- runMDS(example_sce)
reducedDimNames(example_sce)
head(reducedDim(example_sce))

calculateNMF Perform NMF on cell-level data

Description

Perform non-negative matrix factorization (NMF) for the cells, based on the data in a SingleCell-
Experiment object.

16 calculateNMF

Usage

calculateNMF(x, ...)

S4 method for signature 'ANY'
calculateNMF(
x,
ncomponents = 2,
ntop = 500,
subset_row = NULL,
scale = FALSE,
transposed = FALSE,
...

)

S4 method for signature 'SummarizedExperiment'
calculateNMF(x, ..., exprs_values = "logcounts")

S4 method for signature 'SingleCellExperiment'
calculateNMF(
x,
...,
exprs_values = "logcounts",
dimred = NULL,
n_dimred = NULL

)

runNMF(x, ..., altexp = NULL, name = "NMF")

Arguments

x For calculateNMF, a numeric matrix of log-expression values where rows are
features and columns are cells. Alternatively, a SummarizedExperiment or Sin-
gleCellExperiment containing such a matrix.
For runNMF, a SingleCellExperiment object.

... For the calculateNMF generic, additional arguments to pass to specific meth-
ods. For the ANY method, additional arguments to pass to Rtsne. For the Sum-
marizedExperiment and SingleCellExperiment methods, additional arguments
to pass to the ANY method.
For runNMF, additional arguments to pass to calculateNMF.

ncomponents Numeric scalar indicating the number of NMF dimensions to obtain.

ntop Numeric scalar specifying the number of features with the highest variances to
use for dimensionality reduction.

subset_row Vector specifying the subset of features to use for dimensionality reduction. This
can be a character vector of row names, an integer vector of row indices or a
logical vector.

scale Logical scalar, should the expression values be standardized?

transposed Logical scalar, is x transposed with cells in rows?

exprs_values Integer scalar or string indicating which assay of x contains the expression val-
ues.

calculateNMF 17

dimred String or integer scalar specifying the existing dimensionality reduction results
to use.

n_dimred Integer scalar or vector specifying the dimensions to use if dimred is specified.

altexp String or integer scalar specifying an alternative experiment containing the input
data.

name String specifying the name to be used to store the result in the reducedDims of
the output.

Details

The function nmf is used internally to compute the NMF. Note that the algorithm is not deterministic,
so different runs of the function will produce differing results. Users are advised to test multiple
random seeds, and then use set.seed to set a random seed for replicable results.

Value

For calculateNMF, a numeric matrix is returned containing the NMF coordinates for each cell
(row) and dimension (column).

For runNMF, a modified x is returned that contains the NMF coordinates in reducedDim(x,name).

In both cases, the matrix will have the attribute "basis" containing the gene-by-factor basis matrix.

Feature selection

This section is relevant if x is a numeric matrix of (log-)expression values with features in rows and
cells in columns; or if x is a SingleCellExperiment and dimred=NULL. In the latter, the expression
values are obtained from the assay specified by exprs_values.

The subset_row argument specifies the features to use for dimensionality reduction. The aim is to
allow users to specify highly variable features to improve the signal/noise ratio, or to specify genes
in a pathway of interest to focus on particular aspects of heterogeneity.

If subset_row=NULL, the ntop features with the largest variances are used instead. We literally
compute the variances from the expression values without considering any mean-variance trend, so
often a more considered choice of genes is possible, e.g., with scran functions. Note that the value
of ntop is ignored if subset_row is specified.

If scale=TRUE, the expression values for each feature are standardized so that their variance is unity.
This will also remove features with standard deviations below 1e-8.

Using reduced dimensions

If x is a SingleCellExperiment, the method can be applied on existing dimensionality reduction
results in x by setting the dimred argument. This is typically used to run slower non-linear algo-
rithms (t-SNE, UMAP) on the results of fast linear decompositions (PCA). We might also use this
with existing reduced dimensions computed from a priori knowledge (e.g., gene set scores), where
further dimensionality reduction could be applied to compress the data.

The matrix of existing reduced dimensions is taken from reducedDim(x,dimred). By default,
all dimensions are used to compute the second set of reduced dimensions. If n_dimred is also
specified, only the first n_dimred columns are used. Alternatively, n_dimred can be an integer
vector specifying the column indices of the dimensions to use.

When dimred is specified, no additional feature selection or standardization is performed. This
means that any settings of ntop, subset_row and scale are ignored.

18 calculatePCA

If x is a numeric matrix, setting transposed=TRUE will treat the rows as cells and the columns
as the variables/diemnsions. This allows users to manually pass in dimensionality reduction re-
sults without needing to wrap them in a SingleCellExperiment. As such, no feature selection or
standardization is performed, i.e., ntop, subset_row and scale are ignored.

Using alternative Experiments

This section is relevant if x is a SingleCellExperiment and altexp is not NULL. In such cases, the
method is run on data from an alternative SummarizedExperiment nested within x. This is useful for
performing dimensionality reduction on other features stored in altExp(x,altexp), e.g., antibody
tags.

Setting altexp with exprs_values will use the specified assay from the alternative Summarized-
Experiment. If the alternative is a SingleCellExperiment, setting dimred will use the specified
dimensionality reduction results from the alternative. This option will also interact as expected with
n_dimred.

Note that the output is still stored in the reducedDims of the output SingleCellExperiment. It is
advisable to use a different name to distinguish this output from the results generated from the main
experiment’s assay values.

Author(s)

Aaron Lun

See Also

nmf, for the underlying calculations.

plotNMF, to quickly visualize the results.

Examples

example_sce <- mockSCE()
example_sce <- logNormCounts(example_sce)

example_sce <- runNMF(example_sce)
reducedDimNames(example_sce)
head(reducedDim(example_sce))

calculatePCA Perform PCA on expression data

Description

Perform a principal components analysis (PCA) on cells, based on the expression data in a Single-
CellExperiment object.

calculatePCA 19

Usage

calculatePCA(x, ...)

S4 method for signature 'ANY'
calculatePCA(
x,
ncomponents = 50,
ntop = 500,
subset_row = NULL,
scale = FALSE,
transposed = FALSE,
BSPARAM = bsparam(),
BPPARAM = SerialParam()

)

S4 method for signature 'SummarizedExperiment'
calculatePCA(x, ..., exprs_values = "logcounts")

S4 method for signature 'SingleCellExperiment'
calculatePCA(
x,
...,
exprs_values = "logcounts",
dimred = NULL,
n_dimred = NULL

)

S4 method for signature 'SingleCellExperiment'
runPCA(x, ..., altexp = NULL, name = "PCA")

Arguments

x For calculatePCA, a numeric matrix of log-expression values where rows are
features and columns are cells. Alternatively, a SummarizedExperiment or Sin-
gleCellExperiment containing such a matrix.
For runPCA, a SingleCellExperiment object containing such a matrix.

... For the calculatePCA generic, additional arguments to pass to specific meth-
ods. For the SummarizedExperiment and SingleCellExperiment methods, addi-
tional arguments to pass to the ANY method.
For runPCA, additional arguments to pass to calculatePCA.

ncomponents Numeric scalar indicating the number of principal components to obtain.

ntop Numeric scalar specifying the number of features with the highest variances to
use for dimensionality reduction.

subset_row Vector specifying the subset of features to use for dimensionality reduction. This
can be a character vector of row names, an integer vector of row indices or a
logical vector.

scale Logical scalar, should the expression values be standardized?

transposed Logical scalar, is x transposed with cells in rows?

BSPARAM A BiocSingularParam object specifying which algorithm should be used to per-
form the PCA.

20 calculatePCA

BPPARAM A BiocParallelParam object specifying whether the PCA should be parallelized.

exprs_values Integer scalar or string indicating which assay of x contains the expression val-
ues.

dimred String or integer scalar specifying the existing dimensionality reduction results
to use.

n_dimred Integer scalar or vector specifying the dimensions to use if dimred is specified.

altexp String or integer scalar specifying an alternative experiment containing the input
data.

name String specifying the name to be used to store the result in the reducedDims of
the output.

Details

Fast approximate SVD algorithms like BSPARAM=IrlbaParam() or RandomParam() use a random
initialization, after which they converge towards the exact PCs. This means that the result will
change slightly across different runs. For full reproducibility, users should call set.seed prior to
running runPCA with such algorithms. (Note that this includes BSPARAM=bsparam(), which uses
approximate algorithms by default.)

Value

For calculatePCA, a numeric matrix of coordinates for each cell (row) in each of ncomponents
PCs (column).

For runPCA, a SingleCellExperiment object is returned containing this matrix in reducedDims(...,name).

In both cases, the proportion of variance explained by each PC is stored as a numeric vector in the
"percentVar" attribute of the reduced dimension matrix, and the rotation matrix is stored as the
"rotation" attribute.

Feature selection

This section is relevant if x is a numeric matrix of (log-)expression values with features in rows and
cells in columns; or if x is a SingleCellExperiment and dimred=NULL. In the latter, the expression
values are obtained from the assay specified by exprs_values.

The subset_row argument specifies the features to use for dimensionality reduction. The aim is to
allow users to specify highly variable features to improve the signal/noise ratio, or to specify genes
in a pathway of interest to focus on particular aspects of heterogeneity.

If subset_row=NULL, the ntop features with the largest variances are used instead. We literally
compute the variances from the expression values without considering any mean-variance trend, so
often a more considered choice of genes is possible, e.g., with scran functions. Note that the value
of ntop is ignored if subset_row is specified.

If scale=TRUE, the expression values for each feature are standardized so that their variance is unity.
This will also remove features with standard deviations below 1e-8.

Using reduced dimensions

If x is a SingleCellExperiment, the method can be applied on existing dimensionality reduction
results in x by setting the dimred argument. This is typically used to run slower non-linear algo-
rithms (t-SNE, UMAP) on the results of fast linear decompositions (PCA). We might also use this
with existing reduced dimensions computed from a priori knowledge (e.g., gene set scores), where
further dimensionality reduction could be applied to compress the data.

calculateTPM 21

The matrix of existing reduced dimensions is taken from reducedDim(x,dimred). By default,
all dimensions are used to compute the second set of reduced dimensions. If n_dimred is also
specified, only the first n_dimred columns are used. Alternatively, n_dimred can be an integer
vector specifying the column indices of the dimensions to use.

When dimred is specified, no additional feature selection or standardization is performed. This
means that any settings of ntop, subset_row and scale are ignored.

If x is a numeric matrix, setting transposed=TRUE will treat the rows as cells and the columns
as the variables/diemnsions. This allows users to manually pass in dimensionality reduction re-
sults without needing to wrap them in a SingleCellExperiment. As such, no feature selection or
standardization is performed, i.e., ntop, subset_row and scale are ignored.

Using alternative Experiments

This section is relevant if x is a SingleCellExperiment and altexp is not NULL. In such cases, the
method is run on data from an alternative SummarizedExperiment nested within x. This is useful for
performing dimensionality reduction on other features stored in altExp(x,altexp), e.g., antibody
tags.

Setting altexp with exprs_values will use the specified assay from the alternative Summarized-
Experiment. If the alternative is a SingleCellExperiment, setting dimred will use the specified
dimensionality reduction results from the alternative. This option will also interact as expected with
n_dimred.

Note that the output is still stored in the reducedDims of the output SingleCellExperiment. It is
advisable to use a different name to distinguish this output from the results generated from the main
experiment’s assay values.

Author(s)

Aaron Lun, based on code by Davis McCarthy

See Also

runPCA, for the underlying calculations.

plotPCA, to conveniently visualize the results.

Examples

example_sce <- mockSCE()
example_sce <- logNormCounts(example_sce)

example_sce <- runPCA(example_sce)
reducedDimNames(example_sce)
head(reducedDim(example_sce))

calculateTPM Calculate TPMs

Description

Calculate transcripts-per-million (TPM) values for expression from feature-level counts.

22 calculateTPM

Usage

calculateTPM(x, ...)

S4 method for signature 'ANY'
calculateTPM(x, lengths = NULL, ...)

S4 method for signature 'SummarizedExperiment'
calculateTPM(x, ..., exprs_values = "counts")

S4 method for signature 'SingleCellExperiment'
calculateTPM(x, lengths = NULL, size_factors = NULL, ...)

Arguments

x A numeric matrix of counts where features are rows and cells are columns.
Alternatively, a SummarizedExperiment or a SingleCellExperiment containing
such counts.

... For the generic, arguments to pass to specific methods.
For the ANY method, further arguments to pass to calculateCPM.
For the SummarizedExperiment method, further arguments to pass to the ANY
method.
For the SingleCellExperiment method, further arguments to pass to the Summa-
rizedExperiment method.

lengths Numeric vector providing the effective length for each feature in x. Alternatively
NULL, see Details.

exprs_values A string specifying the assay of x containing the count matrix.

size_factors A numeric vector containing size factors to adjust the library sizes. If NULL, the
library sizes are used directly.

Details

For read count data, this function assumes uniform coverage along the (effective) length of the
transcript. Thus, the number of transcripts for a gene is proportional to the read count divided by
the transcript length. Here, the division is done before calculation of the library size to compute per-
million values, where calculateFPKM will only divide by the length after library size normalization.

For UMI count data, this function should be run with effective_length=NULL, i.e., no division by
the effective length. This is because the number of UMIs is a direct (albeit biased) estimate of the
number of transcripts.

Value

A numeric matrix of TPM values.

Author(s)

Aaron Lun, based on code by Davis McCarthy

See Also

calculateCPM, on which this function is based.

calculateTSNE 23

Examples

example_sce <- mockSCE()
eff_len <- runif(nrow(example_sce), 500, 2000)
tout <- calculateTPM(example_sce, lengths = eff_len)
str(tout)

calculateTSNE Perform t-SNE on cell-level data

Description

Perform t-stochastic neighbour embedding (t-SNE) for the cells, based on the data in a SingleCell-
Experiment object.

Usage

calculateTSNE(x, ...)

S4 method for signature 'ANY'
calculateTSNE(
x,
ncomponents = 2,
ntop = 500,
subset_row = NULL,
scale = FALSE,
transposed = FALSE,
perplexity = NULL,
normalize = TRUE,
theta = 0.5,
...,
external_neighbors = FALSE,
BNPARAM = KmknnParam(),
BPPARAM = SerialParam()

)

S4 method for signature 'SummarizedExperiment'
calculateTSNE(x, ..., exprs_values = "logcounts")

S4 method for signature 'SingleCellExperiment'
calculateTSNE(
x,
...,
pca = is.null(dimred),
exprs_values = "logcounts",
dimred = NULL,
n_dimred = NULL

)

runTSNE(x, ..., altexp = NULL, name = "TSNE")

24 calculateTSNE

Arguments

x For calculateTSNE, a numeric matrix of log-expression values where rows are
features and columns are cells. Alternatively, a SummarizedExperiment or Sin-
gleCellExperiment containing such a matrix.
For runTSNE, a SingleCellExperiment object.

... For the calculateTSNE generic, additional arguments to pass to specific meth-
ods. For the ANY method, additional arguments to pass to Rtsne. For the Sum-
marizedExperiment and SingleCellExperiment methods, additional arguments
to pass to the ANY method.
For runTSNE, additional arguments to pass to calculateTSNE.

ncomponents Numeric scalar indicating the number of t-SNE dimensions to obtain.

ntop Numeric scalar specifying the number of features with the highest variances to
use for dimensionality reduction.

subset_row Vector specifying the subset of features to use for dimensionality reduction. This
can be a character vector of row names, an integer vector of row indices or a
logical vector.

scale Logical scalar, should the expression values be standardized?

transposed Logical scalar, is x transposed with cells in rows?

perplexity Numeric scalar defining the perplexity parameter, see ?Rtsne for more details.

normalize Logical scalar indicating if input values should be scaled for numerical preci-
sion, see normalize_input.

theta Numeric scalar specifying the approximation accuracy of the Barnes-Hut algo-
rithm, see Rtsne for details.

external_neighbors

Logical scalar indicating whether a nearest neighbors search should be com-
puted externally with findKNN.

BNPARAM A BiocNeighborParam object specifying the neighbor search algorithm to use
when external_neighbors=TRUE.

BPPARAM A BiocParallelParam object specifying how the neighbor search should be par-
allelized when external_neighbors=TRUE.

exprs_values Integer scalar or string indicating which assay of x contains the expression val-
ues.

pca Logical scalar indicating whether a PCA step should be performed inside Rtsne.

dimred String or integer scalar specifying the existing dimensionality reduction results
to use.

n_dimred Integer scalar or vector specifying the dimensions to use if dimred is specified.

altexp String or integer scalar specifying an alternative experiment containing the input
data.

name String specifying the name to be used to store the result in the reducedDims of
the output.

Details

The function Rtsne is used internally to compute the t-SNE. Note that the algorithm is not deter-
ministic, so different runs of the function will produce differing results. Users are advised to test
multiple random seeds, and then use set.seed to set a random seed for replicable results.

calculateTSNE 25

The value of the perplexity parameter can have a large effect on the results. By default, the
function will set a “reasonable” perplexity that scales with the number of cells in x. (Specifically, it
is the number of cells divided by 5, capped at a maximum of 50.) However, it is often worthwhile
to manually try multiple values to ensure that the conclusions are robust.

If external_neighbors=TRUE, the nearest neighbor search step will use a different algorithm to
that in the Rtsne function. This can be parallelized or approximate to achieve greater speed for
large data sets. The neighbor search results are then used for t-SNE via the Rtsne_neighbors
function.

If dimred is specified, the PCA step of the Rtsne function is automatically turned off by default.
This presumes that the existing dimensionality reduction is sufficient such that an additional PCA
is not required.

Value

For calculateTSNE, a numeric matrix is returned containing the t-SNE coordinates for each cell
(row) and dimension (column).

For runTSNE, a modified x is returned that contains the t-SNE coordinates in reducedDim(x,name).

Feature selection

This section is relevant if x is a numeric matrix of (log-)expression values with features in rows and
cells in columns; or if x is a SingleCellExperiment and dimred=NULL. In the latter, the expression
values are obtained from the assay specified by exprs_values.

The subset_row argument specifies the features to use for dimensionality reduction. The aim is to
allow users to specify highly variable features to improve the signal/noise ratio, or to specify genes
in a pathway of interest to focus on particular aspects of heterogeneity.

If subset_row=NULL, the ntop features with the largest variances are used instead. We literally
compute the variances from the expression values without considering any mean-variance trend, so
often a more considered choice of genes is possible, e.g., with scran functions. Note that the value
of ntop is ignored if subset_row is specified.

If scale=TRUE, the expression values for each feature are standardized so that their variance is unity.
This will also remove features with standard deviations below 1e-8.

Using reduced dimensions

If x is a SingleCellExperiment, the method can be applied on existing dimensionality reduction
results in x by setting the dimred argument. This is typically used to run slower non-linear algo-
rithms (t-SNE, UMAP) on the results of fast linear decompositions (PCA). We might also use this
with existing reduced dimensions computed from a priori knowledge (e.g., gene set scores), where
further dimensionality reduction could be applied to compress the data.

The matrix of existing reduced dimensions is taken from reducedDim(x,dimred). By default,
all dimensions are used to compute the second set of reduced dimensions. If n_dimred is also
specified, only the first n_dimred columns are used. Alternatively, n_dimred can be an integer
vector specifying the column indices of the dimensions to use.

When dimred is specified, no additional feature selection or standardization is performed. This
means that any settings of ntop, subset_row and scale are ignored.

If x is a numeric matrix, setting transposed=TRUE will treat the rows as cells and the columns
as the variables/diemnsions. This allows users to manually pass in dimensionality reduction re-
sults without needing to wrap them in a SingleCellExperiment. As such, no feature selection or
standardization is performed, i.e., ntop, subset_row and scale are ignored.

26 calculateUMAP

Using alternative Experiments

This section is relevant if x is a SingleCellExperiment and altexp is not NULL. In such cases, the
method is run on data from an alternative SummarizedExperiment nested within x. This is useful for
performing dimensionality reduction on other features stored in altExp(x,altexp), e.g., antibody
tags.

Setting altexp with exprs_values will use the specified assay from the alternative Summarized-
Experiment. If the alternative is a SingleCellExperiment, setting dimred will use the specified
dimensionality reduction results from the alternative. This option will also interact as expected with
n_dimred.

Note that the output is still stored in the reducedDims of the output SingleCellExperiment. It is
advisable to use a different name to distinguish this output from the results generated from the main
experiment’s assay values.

Author(s)

Aaron Lun, based on code by Davis McCarthy

References

van der Maaten LJP, Hinton GE (2008). Visualizing High-Dimensional Data Using t-SNE. J. Mach.
Learn. Res. 9, 2579-2605.

See Also

Rtsne, for the underlying calculations.

plotTSNE, to quickly visualize the results.

Examples

example_sce <- mockSCE()
example_sce <- logNormCounts(example_sce)

example_sce <- runTSNE(example_sce)
reducedDimNames(example_sce)
head(reducedDim(example_sce))

calculateUMAP Perform UMAP on cell-level data

Description

Perform uniform manifold approximation and projection (UMAP) for the cells, based on the data
in a SingleCellExperiment object.

calculateUMAP 27

Usage

calculateUMAP(x, ...)

S4 method for signature 'ANY'
calculateUMAP(
x,
ncomponents = 2,
ntop = 500,
subset_row = NULL,
scale = FALSE,
transposed = FALSE,
pca = if (transposed) NULL else 50,
n_neighbors = 15,
...,
external_neighbors = FALSE,
BNPARAM = KmknnParam(),
BPPARAM = SerialParam()

)

S4 method for signature 'SummarizedExperiment'
calculateUMAP(x, ..., exprs_values = "logcounts")

S4 method for signature 'SingleCellExperiment'
calculateUMAP(
x,
...,
pca = if (!is.null(dimred)) NULL else 50,
exprs_values = "logcounts",
dimred = NULL,
n_dimred = NULL

)

runUMAP(x, ..., altexp = NULL, name = "UMAP")

Arguments

x For calculateUMAP, a numeric matrix of log-expression values where rows are
features and columns are cells. Alternatively, a SummarizedExperiment or Sin-
gleCellExperiment containing such a matrix.
For runTSNE, a SingleCellExperiment object containing such a matrix.

... For the calculateUMAP generic, additional arguments to pass to specific meth-
ods. For the ANY method, additional arguments to pass to umap. For the Sum-
marizedExperiment and SingleCellExperiment methods, additional arguments
to pass to the ANY method.
For runUMAP, additional arguments to pass to calculateUMAP.

ncomponents Numeric scalar indicating the number of UMAP dimensions to obtain.

ntop Numeric scalar specifying the number of features with the highest variances to
use for dimensionality reduction.

subset_row Vector specifying the subset of features to use for dimensionality reduction. This
can be a character vector of row names, an integer vector of row indices or a
logical vector.

28 calculateUMAP

scale Logical scalar, should the expression values be standardized?

transposed Logical scalar, is x transposed with cells in rows?

pca Integer scalar specifying how many PCs should be used as input into the UMAP
algorithm. By default, no PCA is performed if the input is a dimensionality
reduction result.

n_neighbors Integer scalar, number of nearest neighbors to identify when constructing the
initial graph.

external_neighbors

Logical scalar indicating whether a nearest neighbors search should be com-
puted externally with findKNN.

BNPARAM A BiocNeighborParam object specifying the neighbor search algorithm to use
when external_neighbors=TRUE.

BPPARAM A BiocParallelParam object specifying whether the PCA should be parallelized.

exprs_values Integer scalar or string indicating which assay of x contains the expression val-
ues.

dimred String or integer scalar specifying the existing dimensionality reduction results
to use.

n_dimred Integer scalar or vector specifying the dimensions to use if dimred is specified.

altexp String or integer scalar specifying an alternative experiment containing the input
data.

name String specifying the name to be used to store the result in the reducedDims of
the output.

Details

The function umap is used internally to compute the UMAP. Note that the algorithm is not deter-
ministic, so different runs of the function will produce differing results. Users are advised to test
multiple random seeds, and then use set.seed to set a random seed for replicable results.

If external_neighbors=TRUE, the nearest neighbor search is conducted using a different algorithm
to that in the umap function. This can be parallelized or approximate to achieve greater speed for
large data sets. The neighbor search results are then used directly to create the UMAP embedding.

Value

For calculateUMAP, a matrix is returned containing the UMAP coordinates for each cell (row) and
dimension (column).

For runUMAP, a modified x is returned that contains the UMAP coordinates in reducedDim(x,name).

Feature selection

This section is relevant if x is a numeric matrix of (log-)expression values with features in rows and
cells in columns; or if x is a SingleCellExperiment and dimred=NULL. In the latter, the expression
values are obtained from the assay specified by exprs_values.

The subset_row argument specifies the features to use for dimensionality reduction. The aim is to
allow users to specify highly variable features to improve the signal/noise ratio, or to specify genes
in a pathway of interest to focus on particular aspects of heterogeneity.

If subset_row=NULL, the ntop features with the largest variances are used instead. We literally
compute the variances from the expression values without considering any mean-variance trend, so

calculateUMAP 29

often a more considered choice of genes is possible, e.g., with scran functions. Note that the value
of ntop is ignored if subset_row is specified.

If scale=TRUE, the expression values for each feature are standardized so that their variance is unity.
This will also remove features with standard deviations below 1e-8.

Using reduced dimensions

If x is a SingleCellExperiment, the method can be applied on existing dimensionality reduction
results in x by setting the dimred argument. This is typically used to run slower non-linear algo-
rithms (t-SNE, UMAP) on the results of fast linear decompositions (PCA). We might also use this
with existing reduced dimensions computed from a priori knowledge (e.g., gene set scores), where
further dimensionality reduction could be applied to compress the data.

The matrix of existing reduced dimensions is taken from reducedDim(x,dimred). By default,
all dimensions are used to compute the second set of reduced dimensions. If n_dimred is also
specified, only the first n_dimred columns are used. Alternatively, n_dimred can be an integer
vector specifying the column indices of the dimensions to use.

When dimred is specified, no additional feature selection or standardization is performed. This
means that any settings of ntop, subset_row and scale are ignored.

If x is a numeric matrix, setting transposed=TRUE will treat the rows as cells and the columns
as the variables/diemnsions. This allows users to manually pass in dimensionality reduction re-
sults without needing to wrap them in a SingleCellExperiment. As such, no feature selection or
standardization is performed, i.e., ntop, subset_row and scale are ignored.

Using alternative Experiments

This section is relevant if x is a SingleCellExperiment and altexp is not NULL. In such cases, the
method is run on data from an alternative SummarizedExperiment nested within x. This is useful for
performing dimensionality reduction on other features stored in altExp(x,altexp), e.g., antibody
tags.

Setting altexp with exprs_values will use the specified assay from the alternative Summarized-
Experiment. If the alternative is a SingleCellExperiment, setting dimred will use the specified
dimensionality reduction results from the alternative. This option will also interact as expected with
n_dimred.

Note that the output is still stored in the reducedDims of the output SingleCellExperiment. It is
advisable to use a different name to distinguish this output from the results generated from the main
experiment’s assay values.

Author(s)

Aaron Lun

References

McInnes L, Healy J, Melville J (2018). UMAP: uniform manifold approximation and projection for
dimension reduction. arXiv.

See Also

umap, for the underlying calculations.

plotUMAP, to quickly visualize the results.

30 defunct

Examples

example_sce <- mockSCE()
example_sce <- logNormCounts(example_sce)

example_sce <- runUMAP(example_sce)
reducedDimNames(example_sce)
head(reducedDim(example_sce))

defunct Defunct functions

Description

Functions that have passed on to the function afterlife. Their successors are also listed.

Usage

calculateQCMetrics(...)

S4 method for signature 'SingleCellExperiment'
normalize(object, ...)

centreSizeFactors(...)

Arguments

object, ... Ignored arguments.

Details

calculateQCMetrics is succeeded by perCellQCMetrics and perFeatureQCMetrics.

normalize is succeeded by logNormCounts.

centreSizeFactors has no replacement - the SingleCellExperiment is removing support for mul-
tiple size factors, so this function is now trivial.

Value

All functions error out with a defunct message pointing towards its descendent (if available).

Author(s)

Aaron Lun

Examples

try(calculateQCMetrics())

getExplanatoryPCs 31

getExplanatoryPCs Per-PC variance explained by a variable

Description

Compute, for each principal component, the percentage of variance that is explained by one or more
variables of interest.

Usage

getExplanatoryPCs(x, dimred = "PCA", n_dimred = 10, ...)

Arguments

x A SingleCellExperiment object containing dimensionality reduction results.

dimred String or integer scalar specifying the field in reducedDims(x) that contains the
PCA results.

n_dimred Integer scalar specifying the number of the top principal components to use.

... Additional arguments passed to getVarianceExplained.

Details

This function computes the percentage of variance in PC scores that is explained by variables in the
sample-level metadata. It allows identification of important PCs that are driven by known experi-
mental conditions, e.g., treatment, disease. PCs correlated with technical factors (e.g., batch effects,
library size) can also be detected and removed prior to further analysis.

By default, the function will attempt to use pre-computed PCA results in object. This is done by
taking the top n_dimred PCs from the matrix specified by dimred. If these are not available or if
rerun=TRUE, the function will rerun the PCA using runPCA; however, this mode is deprecated and
users are advised to explicitly call runPCA themselves.

Value

A matrix containing the percentage of variance explained by each factor (column) and for each PC
(row).

Author(s)

Aaron Lun

See Also

plotExplanatoryPCs, to plot the results.

getVarianceExplained, to compute the variance explained.

32 getVarianceExplained

Examples

example_sce <- mockSCE()
example_sce <- logNormCounts(example_sce)
example_sce <- runPCA(example_sce)

r2mat <- getExplanatoryPCs(example_sce)

getVarianceExplained Per-gene variance explained by a variable

Description

Compute, for each gene, the percentage of variance that is explained by one or more variables of
interest.

Usage

getVarianceExplained(x, ...)

S4 method for signature 'ANY'
getVarianceExplained(x, variables, subset_row = NULL, chunk = 1000)

S4 method for signature 'SummarizedExperiment'
getVarianceExplained(x, variables = NULL, ..., exprs_values = "logcounts")

Arguments

x A numeric matrix of expression values, usually log-transformed and normalized.
Alternatively, a SummarizedExperiment containing such a matrix.

... For the generic, arguments to be passed to specific methods. For the Summa-
rizedExperiment method, arguments to be passed to the ANY method.

variables A DataFrame or data.frame containing one or more variables of interest. This
should have number of rows equal to the number of columns in x.
For the SummarizedExperiment method, this can also be a character vector spec-
ifying column names of colData(x) to use; or NULL, in which case all columns
in colData(x) are used.

subset_row A vector specifying the subset of rows of x for which to return a result.

chunk Integer scalar specifying the chunk size for chunk-wise processing. Only affects
the speed/memory usage trade-off.

exprs_values String or integer scalar specifying the expression values for which to compute
the variance.

Details

This function computes the percentage of variance in gene expression that is explained by variables
in the sample-level metadata. It allows problematic factors to be quickly identified, as well as the
genes that are most affected.

ggcells 33

Value

A numeric matrix containing the percentage of variance explained by each factor (column) and for
each gene (row).

Author(s)

Aaron Lun

See Also

getExplanatoryPCs, which calls this function.

plotExplanatoryVariables, to plot the results.

Examples

example_sce <- mockSCE()
example_sce <- logNormCounts(example_sce)

r2mat <- getVarianceExplained(example_sce)

ggcells Create a ggplot from a SingleCellExperiment

Description

Create a base ggplot object from a SingleCellExperiment, the contents of which can be directly
referenced in subsequent layers without prior specification.

Usage

ggcells(
x,
mapping = aes(),
features = NULL,
exprs_values = "logcounts",
use_dimred = TRUE,
use_altexps = FALSE,
prefix_altexps = FALSE,
check_names = TRUE,
extract_mapping = TRUE,
...

)

ggfeatures(
x,
mapping = aes(),
cells = NULL,
exprs_values = "logcounts",
check_names = TRUE,
extract_mapping = TRUE,
...

)

34 ggcells

Arguments

x A SingleCellExperiment object. This is expected to have row names for ggcells
and column names for ggfeatures.

mapping A list containing aesthetic mappings, usually the output of aes or related func-
tions.

features Character vector specifying the features for which to extract expression profiles
across cells. May also include features in alternative Experiments if permitted
by use_altexps.

exprs_values String or integer scalar indicating the assay to use to obtain expression values.
Must refer to a matrix-like object with integer or numeric values.

use_dimred Logical scalar indicating whether data should be extracted for dimensionality
reduction results in x. Alternatively, a character or integer vector specifying the
dimensionality reduction results to use.

use_altexps Logical scalar indicating whether (meta)data should be extracted for alternative
experiments in x. Alternatively, a character or integer vector specifying the
alternative experiments to use.

prefix_altexps Logical scalar indicating whether altExp-derived fields should be prefixed with
the name of the alternative Experiment.

check_names Logical scalar indicating whether the column names of the output data.frame
should be made syntactically valid and unique.

extract_mapping

Logical scalar indicating whether features or cells should be automatically
expanded to include variables referenced in mapping.

... Further arguments to pass to ggplot.

cells Character vector specifying the features for which to extract expression profiles
across cells.

Details

These functions generate a data.frame from the contents of a SingleCellExperiment and pass it to
ggplot. Rows, columns or metadata fields in the x can then be referenced in subsequent ggplot2
commands.

ggcells treats cells as the data values so users can reference row names of x (if provided in
features), column metadata variables and dimensionality reduction results. They can also ref-
erence row names and metadata variables for alternative Experiments.

ggfeatures treats features as the data values so users can reference column names of x (if provided
in cells) and row metadata variables.

If mapping is supplied, the function will automatically expand features or cells for any features
or cells requested in the mapping. This is convenient as features/cells do not have to specified twice
(once in data.frame construction and again in later geom or stat layers). Developers may wish to
turn this off with extract_mapping=FALSE for greater control.

Value

A ggplot object containing the specified contents of x.

Author(s)

Aaron Lun

isOutlier 35

See Also

makePerCellDF and makePerFeatureDF, for the construction of the data.frame.

Examples

example_sce <- mockSCE()
example_sce <- logNormCounts(example_sce)
example_sce <- runPCA(example_sce)

ggcells(example_sce, aes(x=PCA.1, y=PCA.2, color=Gene_0001)) +
geom_point()

ggcells(example_sce, aes(x=Mutation_Status, y=Gene_0001)) +
geom_violin() +
facet_wrap(~Cell_Cycle)

rowData(example_sce)$GC <- runif(nrow(example_sce))
ggfeatures(example_sce, aes(x=GC, y=Cell_001)) +

geom_point() +
stat_smooth()

isOutlier Identify outlier values

Description

Convenience function to determine which values in a numeric vector are outliers based on the
median absolute deviation (MAD).

Usage

isOutlier(
metric,
nmads = 3,
type = c("both", "lower", "higher"),
log = FALSE,
subset = NULL,
batch = NULL,
share_medians = FALSE,
share_mads = FALSE,
share_missing = TRUE,
min_diff = NA

)

Arguments

metric Numeric vector of values.

nmads A numeric scalar, specifying the minimum number of MADs away from median
required for a value to be called an outlier.

type String indicating whether outliers should be looked for at both tails ("both"),
only at the lower tail ("lower") or the upper tail ("higher").

36 isOutlier

log Logical scalar, should the values of the metric be transformed to the log2 scale
before computing MADs?

subset Logical or integer vector, which subset of values should be used to calculate the
median/MAD? If NULL, all values are used.

batch Factor of length equal to metric, specifying the batch to which each observation
belongs. A median/MAD is calculated for each batch, and outliers are then
identified within each batch.

share_medians Logical scalar indicating whether the median calculation should be shared across
batches. Only used if batch is specified.

share_mads Logical scalar indicating whether the MAD calculation should be shared across
batches. Only used if batch is specified.

share_missing Logical scalar indicating whether values should be shared across batches if they
cannot be computed for a batch, e.g., due to subsetting.

min_diff A numeric scalar indicating the minimum difference from the median to con-
sider as an outlier. Ignored if NA.

Details

Lower and upper thresholds are stored in the "threshold" attribute of the returned vector. By
default, this is a numeric vector of length 2 for the threshold on each side. If type="lower", the
higher limit is Inf, while if type="higher", the lower limit is -Inf.

If min_diff is not NA, the minimum distance from the median required to define an outlier is set as
the larger of nmads MADs and min_diff. This aims to avoid calling many outliers when the MAD
is very small, e.g., due to discreteness of the metric. If log=TRUE, this difference is defined on the
log2 scale.

If subset is specified, the median and MAD are computed from a subset of cells and the values are
used to define the outlier threshold that is applied to all cells. In a quality control context, this can
be handy for excluding groups of cells that are known to be low quality (e.g., failed plates) so that
they do not distort the outlier definitions for the rest of the dataset.

Missing values trigger a warning and are automatically ignored during estimation of the median and
MAD. The corresponding entries of the output vector are also set to NA values.

Value

A logical vector of the same length as the metric argument, specifying the observations that are
considered as outliers.

Handling batches

If batch is specified, outliers are defined within each batch separately using batch-specific median
and MAD values. This gives the same results as if the input metrics were subsetted by batch and
isOutlier was run on each subset, and is often useful when batches are known a priori to have
technical differences (e.g., in sequencing depth).

If share_medians=TRUE, a shared median is computed across all cells. If shared_mads=TRUE, a
shared MAD is computed using all cells (from either a batch-specific or shared median, depending
on share_medians). These settings are useful to enforce a common location or spread across
batches, e.g., we might set shared_mads=TRUE for log-library sizes if coverage varies across batches
but the variance across cells is expected to be consistent across batches.

If a batch does not have sufficient cells to compute the median or MAD (e.g., after applying
subset), the default setting of share_missing=TRUE will set these values to the shared median

librarySizeFactors 37

and MAD. This allows us to define thresholds for low-quality batches based on information in the
rest of the dataset. (Note that the use of shared values only affects this batch and not others unless
share_medians and share_mads are also set.) Otherwise, if share_missing=FALSE, all cells in
that batch will have NA in the output.

If batch is specified, the "threshold" attribute in the returned vector is a matrix with one named
column per level of batch and two rows (one per threshold).

Author(s)

Aaron Lun

See Also

quickPerCellQC, a convenience wrapper to perform outlier-based quality control.

perCellQCMetrics, to compute potential QC metrics.

Examples

example_sce <- mockSCE()
stats <- perCellQCMetrics(example_sce)

str(isOutlier(stats$sum))
str(isOutlier(stats$sum, type="lower"))
str(isOutlier(stats$sum, type="higher"))

str(isOutlier(stats$sum, log=TRUE))

b <- sample(LETTERS[1:3], ncol(example_sce), replace=TRUE)
str(isOutlier(stats$sum, log=TRUE, batch=b))

librarySizeFactors Compute library size factors

Description

Define per-cell size factors from the library sizes (i.e., total sum of counts per cell).

Usage

librarySizeFactors(x, ...)

S4 method for signature 'ANY'
librarySizeFactors(
x,
subset_row = NULL,
geometric = FALSE,
pseudo_count = 1,
BPPARAM = SerialParam()

)

S4 method for signature 'SummarizedExperiment'

38 librarySizeFactors

librarySizeFactors(x, exprs_values = "counts", ...)

computeLibraryFactors(x, ...)

Arguments

x For librarySizeFactors, a numeric matrix of counts with one row per feature
and column per cell. Alternatively, a SummarizedExperiment or SingleCellEx-
periment containing such counts.
For computeLibraryFactors, only a SingleCellExperiment is accepted.

... For the librarySizeFactors generic, arguments to pass to specific methods.
For the SummarizedExperiment method, further arguments to pass to the ANY
method.
For computeLibraryFactors, further arguments to pass to librarySizeFactors.

subset_row A vector specifying whether the size factors should be computed from a subset
of rows of x.

geometric Logical scalar indicating whether the size factor should be defined using the
geometric mean.

pseudo_count Numeric scalar specifying the pseudo-count to add during log-transformation
when geometric=TRUE.

BPPARAM A BiocParallelParam object indicating how calculations are to be parallelized.
Only relevant when x is a DelayedArray object.

exprs_values String or integer scalar indicating the assay of x containing the counts.

Details

Library sizes are converted into size factors by scaling them so that their mean across cells is unity.
This ensures that the normalized values are still on the same scale as the raw counts. Preserving
the scale is useful for interpretation of operations on the normalized values, e.g., the pseudo-count
used in logNormCounts can actually be considered an additional read/UMI. This is important for
ensuring that the effect of the pseudo-count decreases with increasing sequencing depth.

When using the library size-derived size factor, we implicitly assume that sequencing coverage is the
only difference between cells. This is reasonable for homogeneous cell populations but is compro-
mised by composition biases introduced by DE genes between cell types. In such cases, normaliza-
tion by library size factors will not be entirely correct though the effect on downstream conclusions
will vary, e.g., clustering is usually unaffected by composition biases but log-fold change estimates
will be less accurate.

A closely related alternative approach involves using the geometric mean of counts within each cell
to define the size factor, instead of the library size (which is proportional to the arithmetic mean).
This is enabled with geometric=TRUE with addition of pseudo_count to avoid undefined values
with zero counts. The geometric mean is more robust to composition biases from upregulated
features but is a poor estimator of the relative bias at low counts or with many zero counts; it is thus
is best suited for deeply sequenced features, e.g., antibody-derived tags.

Value

For librarySizeFactors, a numeric vector of size factors is returned for all methods.

For computeLibraryFactors, a numeric vector is also returned for the ANY and SummarizedEx-
periment methods. For the SingleCellExperiment method, x is returned containing the size factors
in sizeFactors(x).

logNormCounts 39

Author(s)

Aaron Lun

See Also

logNormCounts, where these size factors are used by default.

Examples

example_sce <- mockSCE()
summary(librarySizeFactors(example_sce))

logNormCounts Compute log-normalized expression values

Description

Compute log-transformed normalized expression values from a count matrix in a SingleCellExper-
iment object.

Usage

logNormCounts(x, ...)

S4 method for signature 'SummarizedExperiment'
logNormCounts(
x,
size_factors = NULL,
log = TRUE,
pseudo_count = 1,
center_size_factors = TRUE,
...,
exprs_values = "counts",
name = NULL,
BPPARAM = SerialParam()

)

S4 method for signature 'SingleCellExperiment'
logNormCounts(
x,
size_factors = NULL,
log = TRUE,
pseudo_count = 1,
center_size_factors = TRUE,
...,
exprs_values = "counts",
use_altexps = FALSE,
name = NULL,
BPPARAM = SerialParam()

)

40 logNormCounts

Arguments

x A SingleCellExperiment or SummarizedExperiment object containing a count
matrix.

... For the generic, additional arguments passed to specific methods.
For the methods, additional arguments passed to normalizeCounts.

size_factors A numeric vector of cell-specific size factors. Alternatively NULL, in which case
the size factors are extracted or computed from x.

log Logical scalar indicating whether normalized values should be log2-transformed.

pseudo_count Numeric scalar specifying the pseudo_count to add when log-transforming ex-
pression values.

center_size_factors

Logical scalar indicating whether size factors should be centered at unity before
being used.

exprs_values A string or integer scalar specifying the assay of x containing the count matrix.

name String containing an assay name for storing the output normalized values. De-
faults to "logcounts" when log=TRUE and "normcounts" otherwise.

BPPARAM A BiocParallelParam object specifying how library size factor calculations should
be parallelized. Only used if size_factors is not specified.

use_altexps Logical scalar indicating whether normalization should be performed for alter-
native experiments in x.
Alternatively, a character vector specifying the names of the alternative experi-
ments to be normalized.
Alternatively, NULL in which case alternative experiments are not used.

Details

This function is a convenience wrapper around normalizeCounts. It returns a SingleCellExperi-
ment or SummarizedExperiment containing the normalized values in a separate assay. This makes
it easier to perform normalization by avoiding book-keeping errors during a long analysis workflow.

If x is a SingleCellExperiment that contains alternative Experiments, normalized values can be
computed and stored within each alternative experiment by setting use_altexps appropriately. By
default, use_altexps=FALSE to avoid problems from attempting to library size-normalize alterna-
tive experiments that have zero total counts for some cells.

If size_factors=NULL, size factors are obtained following the rules in normalizeCounts. This is
done independently for the main and alternative Experiments when use_altexps is specified, i.e.
no information is shared between Experiments by default. However, if size_factors is supplied,
it will override any size factors available in any Experiment.

Value

x is returned containing the (log-)normalized expression values in an additional assay named as
name.

If x is a SingleCellExperiment, the size factors used for normalization are stored in sizeFactors.
These are centered if center_size_factors=TRUE.

If x contains alternative experiments and use_altexps=TRUE, each of the alternative experiments
in x will also contain an additional assay. This can be limited to particular altExps entries by
specifying them in use_altexps.

makePerCellDF 41

Author(s)

Aaron Lun, based on code by Davis McCarthy

See Also

normalizeCounts, which is used to compute the normalized expression values.

Examples

example_sce <- mockSCE()
example_sce <- logNormCounts(example_sce)
assayNames(example_sce)

makePerCellDF Create a per-cell data.frame from a SingleCellDataFrame

Description

Create a per-cell data.frame (i.e., where each row represents a cell) from a SingleCellExperiment,
most typically for creating custom ggplot2 plots.

Usage

makePerCellDF(
x,
features = NULL,
exprs_values = "logcounts",
use_dimred = TRUE,
use_altexps = FALSE,
prefix_altexps = FALSE,
check_names = FALSE

)

Arguments

x A SingleCellExperiment object. This is expected to have non-NULL row names.
features Character vector specifying the features for which to extract expression profiles

across cells. May also include features in alternative Experiments if permitted
by use_altexps.

exprs_values String or integer scalar indicating the assay to use to obtain expression values.
Must refer to a matrix-like object with integer or numeric values.

use_dimred Logical scalar indicating whether data should be extracted for dimensionality
reduction results in x. Alternatively, a character or integer vector specifying the
dimensionality reduction results to use.

use_altexps Logical scalar indicating whether (meta)data should be extracted for alternative
experiments in x. Alternatively, a character or integer vector specifying the
alternative experiments to use.

prefix_altexps Logical scalar indicating whether altExp-derived fields should be prefixed with
the name of the alternative Experiment.

check_names Logical scalar indicating whether the column names of the output data.frame
should be made syntactically valid and unique.

42 makePerCellDF

Details

This function enables us to conveniently create a per-feature data.frame from a SingleCellExperi-
ment. Each row of the returned data.frame corresponds to a column in x, while each column of the
data.frame corresponds to one aspect of the (meta)data in x. Columns are provided in the following
order:

1. Columns named according to the values in features represent the expression values across
cells for the specified feature in the exprs_values assay.

2. Columns named according to the columns of rowData(x) represent the row metadata vari-
ables.

3. If use_dimred=TRUE, columns named in the format of <DIM>.<NUM> represent the <NUM>th
dimension of the dimensionality reduction result <DIM>.

4. If use_altexps=TRUE, columns are named according to the row names and column meta-
data fields of successive alternative Experiments, representing the assay data and metadata
respectively in these objects. The names of these columns are prefixed with the name of the
alternative Experiment if prefix_altexps=TRUE. Note that alternative Experiment rows will
only be present if they are specified in features.

By default, nothing is done to resolve syntactically invalid or duplicated column names; this will
often lead (correctly) to an error in downstream functions like ggplot. If check_names=TRUE, this
is resolved by passing the column names through make.names. Of course, as a result, some columns
may not have the same names as the original fields in x.

Value

A data.frame containing one field per aspect of data in x - see Details. Each row corresponds to a
cell (i.e., column) of x.

Author(s)

Aaron Lun

See Also

ggcells, which uses this function under the hood.

Examples

example_sce <- mockSCE()
example_sce <- logNormCounts(example_sce)
example_sce <- runPCA(example_sce)

df <- makePerCellDF(example_sce, features="Gene_0001")
head(colnames(df))
tail(colnames(df))

df$Gene_0001
df$Mutation_Status
df$PCA.1

makePerFeatureDF 43

makePerFeatureDF Create a per-feature data.frame from a SingleCellDataFrame

Description

Create a per-feature data.frame (i.e., where each row represents a feature) from a SingleCellExper-
iment, most typically for creating custom ggplot2 plots.

Usage

makePerFeatureDF(
x,
cells = NULL,
exprs_values = "logcounts",
check_names = FALSE

)

Arguments

x A SingleCellExperiment object. This is expected to have non-NULL row names.

cells Character vector specifying the features for which to extract expression profiles
across cells.

exprs_values String or integer scalar indicating the assay to use to obtain expression values.
Must refer to a matrix-like object with integer or numeric values.

check_names Logical scalar indicating whether the column names of the output data.frame
should be made syntactically valid and unique.

Details

This function enables us to conveniently create a per-feature data.frame from a SingleCellExper-
iment. Each row of the returned data.frame corresponds to a row in x, while each column of the
data.frame corresponds to one aspect of the (meta)data in x. Columns are provided in the following
order:

1. Columns named according to values in cells represent the expression values across features
for the specified cell in the exprs_values assay.

2. Columns named according to the columns of rowData(x) represent the row metadata vari-
ables.

By default, nothing is done to resolve syntactically invalid or duplicated column names; this will
often lead (correctly) to an error in downstream functions like ggplot. If check_names=TRUE, this
is resolved by passing the column names through make.names. Of course, as a result, some columns
may not have the same names as the original fields in x.

Value

A data.frame containing one field per aspect of data in x - see Details. Each row corresponds to a
feature (i.e., row) of x.

Author(s)

Aaron Lun

44 medianSizeFactors

See Also

ggfeatures, which uses this function under the hood.

Examples

example_sce <- mockSCE()
example_sce <- logNormCounts(example_sce)
rowData(example_sce)$Length <- runif(nrow(example_sce))

df <- makePerFeatureDF(example_sce, cells="Cell_001")
head(colnames(df))
tail(colnames(df))

head(df$Cell_001)
head(df$Length)

medianSizeFactors Compute median-based size factors

Description

Define per-cell size factors by taking the median of ratios to a reference expression profile (a la
DESeq).

Usage

medianSizeFactors(x, ...)

S4 method for signature 'ANY'
medianSizeFactors(x, subset_row = NULL, reference = NULL)

S4 method for signature 'SummarizedExperiment'
medianSizeFactors(x, exprs_values = "counts", ...)

computeMedianFactors(x, ...)

Arguments

x For medianSizeFactors, a numeric matrix of counts with one row per feature
and column per cell. Alternatively, a SummarizedExperiment or SingleCellEx-
periment containing such counts.
For computeMedianFactors, only a SingleCellExperiment is accepted.

... For the medianSizeFactors generic, arguments to pass to specific methods.
For the SummarizedExperiment method, further arguments to pass to the ANY
method.
For computeMedianFactors, further arguments to pass to medianSizeFactors.

subset_row A vector specifying whether the size factors should be computed from a subset
of rows of x.

reference A numeric vector of length equal to nrow(x), containing the reference expres-
sion profile. Defaults to rowMeans(x).

exprs_values String or integer scalar indicating the assay of x containing the counts.

medianSizeFactors 45

Details

This function implements a modified version of the DESeq2 size factor calculation. For each cell,
the size factor is proportional to the median of the ratios of that cell’s counts to reference. The
assumption is that most genes are not DE between the cell and the reference, such that the median
captures any systematic increase due to technical biases. The modification stems from the fact that
we use the arithmetic mean instead of the geometric mean to compute reference, as the former is
more robust to the many zeros in single-cell RNA sequencing data.

That said, the median-based approach tends to perform poorly for typical scRNA-seq datasets for
various reasons:

• The high number of zeroes in the count matrix means that the median ratio for each cell is often
zero. If this method must be used, we recommend subsetting to only the highest-abundance
genes to avoid problems with zeroes. (Of course, the smaller the subset, the more sensitive the
results are to noise or violations of the non-DE majority.)

• The default reference effectively requires a non-DE majority of genes between any pair of
cells in the dataset. This is a strong assumption for heterogeneous populations containing
many cell types; most genes are likely to exhibit DE between at least one pair of cell types.

For these reasons, the simpler librarySizeFactors is usually preferred, which is no less inaccu-
rate but is guarantted to return a positive size factor for any cell with non-zero counts.

One valid application of this method lies in the normalization of antibody-derived tag counts for
quantifying surface proteins. These counts are usually large enough to avoid zeroes yet are also
susceptible to strong composition biases that preclude the use of librarySizeFactors. In such
cases, we would also set reference to the ambient profile (where possible). This assumes that
most proteins are not expressed in each cell; thus, counts for most tags for any given cell can be
attributed to background contamination that should not be DE between cells.

Value

For medianSizeFactors, a numeric vector of size factors is returned for all methods.

For computeMedianFactors, a numeric vector is also returned for the ANY and SummarizedEx-
periment methods. For the SingleCellExperiment method, x is returned containing the size factors
in sizeFactors(x).

Author(s)

Aaron Lun

See Also

logNormCounts, where these size factors can be used.

librarySizeFactors, for the default method for computing size factors.

Examples

example_sce <- mockSCE()
summary(medianSizeFactors(example_sce))

46 mockSCE

mockSCE Mock up a SingleCellExperiment

Description

Mock up a SingleCellExperiment containing simulated data, for use in documentation examples.

Usage

mockSCE(ncells = 200, ngenes = 2000, nspikes = 100)

Arguments

ncells Integer scalar, number of cells to simulate.

ngenes Integer scalar, number of genes to simulate.

nspikes Integer scalar, number of spike-in transcripts to simulate.

Details

Users should set a seed to obtain reproducible results from this function.

Value

A SingleCellExperiment object containing a count matrix in the "counts" assay, a set of simulated
colData fields, and spike-in data in the "Spikes" field of altExps.

Author(s)

Aaron Lun

See Also

SingleCellExperiment, for the constructor.

Examples

set.seed(1000)
sce <- mockSCE()
sce

multiplot 47

multiplot Multiple plot function for ggplot2 plots

Description

Place multiple ggplot plots on one page.

Usage

multiplot(..., plotlist = NULL, cols = 1, layout = NULL)

Arguments

... One or more ggplot objects.

plotlist A list of ggplot objects, as an alternative to

cols A numeric scalar giving the number of columns in the layout.

layout A matrix specifying the layout. If present, cols is ignored.

Details

If the layout is something like matrix(c(1,2,3,3),nrow=2,byrow=TRUE), then:

• plot 1 will go in the upper left;

• plot 2 will go in the upper right;

• and plot 3 will go all the way across the bottom.

There is no way to tweak the relative heights or widths of the plots with this simple function. It was
adapted from http://www.cookbook-r.com/Graphs/Multiple_graphs_on_one_page_(ggplot2)
/

Value

A ggplot object.

Examples

library(ggplot2)

This example uses the ChickWeight dataset, which comes with ggplot2
First plot
p1 <- ggplot(ChickWeight, aes(x = Time, y = weight, colour = Diet, group = Chick)) +

geom_line() +
ggtitle("Growth curve for individual chicks")

Second plot
p2 <- ggplot(ChickWeight, aes(x = Time, y = weight, colour = Diet)) +

geom_point(alpha = .3) +
geom_smooth(alpha = .2, size = 1) +
ggtitle("Fitted growth curve per diet")

Third plot
p3 <- ggplot(subset(ChickWeight, Time == 21), aes(x = weight, colour = Diet)) +

geom_density() +

http://www.cookbook-r.com/Graphs/Multiple_graphs_on_one_page_(ggplot2)/
http://www.cookbook-r.com/Graphs/Multiple_graphs_on_one_page_(ggplot2)/

48 nexprs

ggtitle("Final weight, by diet")
Fourth plot
p4 <- ggplot(subset(ChickWeight, Time == 21), aes(x = weight, fill = Diet)) +

geom_histogram(colour = "black", binwidth = 50) +
facet_grid(Diet ~ .) +
ggtitle("Final weight, by diet") +
theme(legend.position = "none") # No legend (redundant in this graph)

Combine plots and display
multiplot(p1, p2, p3, p4, cols = 2)

nexprs Count the number of non-zero counts per cell or feature

Description

Counting the number of non-zero counts in each row (per feature) or column (per cell).

Usage

nexprs(x, ...)

S4 method for signature 'ANY'
nexprs(
x,
byrow = FALSE,
detection_limit = 0,
subset_row = NULL,
subset_col = NULL,
BPPARAM = SerialParam()

)

S4 method for signature 'SummarizedExperiment'
nexprs(x, ..., exprs_values = "counts")

Arguments

x A numeric matrix of counts where features are rows and cells are columns.
Alternatively, a SummarizedExperiment containing such counts.

... For the generic, further arguments to pass to specific methods.
For the SummarizedExperiment method, further arguments to pass to the ANY
method.

byrow Logical scalar indicating whether to count the number of detected cells per fea-
ture. If FALSE, the function will count the number of detected features per cell.

detection_limit

Numeric scalar providing the value above which observations are deemed to be
expressed.

subset_row Logical, integer or character vector indicating which rows (i.e. features) to use.

subset_col Logical, integer or character vector indicating which columns (i.e., cells) to use.

normalizeCounts 49

BPPARAM A BiocParallelParam object specifying whether the calculations should be par-
allelized. Only relevant when x is a DelayedMatrix.

exprs_values String or integer specifying the assay of x to obtain the count matrix from.

Value

An integer vector containing counts per gene or cell, depending on the provided arguments.

Author(s)

Aaron Lun

See Also

numDetectedAcrossFeatures and numDetectedAcrossCells, to do this calculation for each group
of features or cells, respectively.

Examples

example_sce <- mockSCE()

nexprs(example_sce)[1:10]
nexprs(example_sce, byrow = TRUE)[1:10]

normalizeCounts Compute normalized expression values

Description

Compute (log-)normalized expression values by dividing counts for each cell by the corresponding
size factor.

Usage

normalizeCounts(x, ...)

S4 method for signature 'ANY'
normalizeCounts(
x,
size_factors = NULL,
log = TRUE,
pseudo_count = 1,
center_size_factors = TRUE,
subset_row = NULL,
downsample = FALSE,
down_target = NULL,
down_prop = 0.01,
BPPARAM = SerialParam()

)

S4 method for signature 'SummarizedExperiment'

50 normalizeCounts

normalizeCounts(x, ..., exprs_values = "counts")

S4 method for signature 'SingleCellExperiment'
normalizeCounts(x, size_factors = NULL, ...)

Arguments

x A numeric matrix-like object containing counts for cells in the columns and
features in the rows.
Alternatively, a SingleCellExperiment or SummarizedExperiment object con-
taining such a count matrix.

... For the generic, arguments to pass to specific methods.
For the SummarizedExperiment method, further arguments to pass to the ANY
or DelayedMatrix methods.
For the SingleCellExperiment method, further arguments to pass to the Summa-
rizedExperiment method.

size_factors A numeric vector of cell-specific size factors. Alternatively NULL, in which case
the size factors are extracted or computed from x.

log Logical scalar indicating whether normalized values should be log2-transformed.

pseudo_count Numeric scalar specifying the pseudo_count to add when log-transforming ex-
pression values.

center_size_factors

Logical scalar indicating whether size factors should be centered at unity before
being used.

subset_row A vector specifying the subset of rows of x for which to return a result.

downsample Logical scalar indicating whether downsampling should be performed prior to
scaling and log-transformation.

down_target Numeric scalar specifying the downsampling target when downsample=TRUE. If
NULL, this is defined by down_prop and a warning is emitted.

down_prop Numeric scalar between 0 and 1 indicating the quantile to use to define the
downsampling target when downsample=TRUE.

BPPARAM A BiocParallelParam object specifying how library size factor calculations should
be parallelized. Only used if size_factors is not specified.

exprs_values A string or integer scalar specifying the assay of x containing the count matrix.

Details

Normalized expression values are computed by dividing the counts for each cell by the size factor
for that cell. This aims to remove cell-specific scaling biases, e.g., due to differences in sequenc-
ing coverage or capture efficiency. If log=TRUE, log-normalized values are calculated by adding
pseudo_count to the normalized count and performing a log2 transformation.

If no size factors are supplied, they are determined automatically from x:

• For count matrices and SummarizedExperiment inputs, the sum of counts for each cell is used
to compute a size factor via the librarySizeFactors function.

• For SingleCellExperiment instances, the function searches for sizeFactors from x. If none
are available, it defaults to library size-derived size factors.

If size_factors are supplied, they will override any size factors present in x.

normalizeCounts 51

Value

A numeric matrix-like object of the same class as x, containing (log-)normalized expression values.

Centering the size factors

If center_size_factors=TRUE, size factors are centred at unity prior to calculation of normalized
expression values. This ensures that the computed expression values can be interpreted as being on
the same scale as original counts. We can then compare abundances between features normalized
with different sets of size factors; the most common use of this fact is in the comparison between
spike-in and endogenous abundances when modelling technical noise (see modelGeneVarWithSpikes
package for an example).

More generally, when log=TRUE, centering of the size factors ensures that the value of pseudo_count
can be interpreted as being on the same scale as the counts, i.e., the pseudo-count can actually be
thought of as a count. This is important as it implies that the pseudo-count’s impact will dimin-
ish as sequencing coverage improves. Thus, if the size factors are centered, differences between
log-normalized expression values will more closely approximate the true log-fold change with in-
creasing coverage, whereas this would not be true of other metrics like log-CPMs with a fixed
offset.

The disadvantage of using centered size factors is that the expression values are not directly com-
parable across different calls to normalizeCounts, typically for multiple batches. In theory, this is
not a problem for metrics like the CPM, but in practice, we have to apply batch correction methods
anyway to perform any joint analysis - see multiBatchNorm for more details.

Downsampling instead of scaling

If downsample=TRUE, counts for each cell are randomly downsampled according to their size factors
prior to log-transformation. This is occasionally useful for avoiding artifacts caused by scaling
count data with a strong mean-variance relationship. Each cell is downsampled according to the
ratio between down_target and that cell’s size factor. (Cells with size factors below the target are
not downsampled and are directly scaled by this ratio.) If log=TRUE, a log-transformation is also
performed after adding pseudo_count to the downsampled counts.

Note that the normalized expression values in this mode cannot be interpreted as being on the
same abundance as the original counts, but instead have abundance equivalent to counts after
downsampling to the target size factor. This motivates the use of a fixed down_target to en-
sure that expression values are comparable across different normalizeCounts calls. We automati-
cally set down_target to the 1st percentile of size factors across all cells involved in the analysis,
but this is only appropriate if the resulting expression values are only compared within the same
call to normalizeCounts. If expression values are to be compared across multiple calls (e.g., in
modelGeneVarWithSpikes or multiBatchNorm), down_target should be manually set to a con-
stant target value that can be considered a low size factor in every call.

Author(s)

Aaron Lun

See Also

logNormCounts, which wraps this function for convenient use with SingleCellExperiment instances.

downsampleMatrix, to perform the downsampling.

52 norm_exprs

Examples

example_sce <- mockSCE()
normed <- normalizeCounts(example_sce)
str(normed)

norm_exprs Additional accessors for the typical elements of a SingleCellExperi-
ment object.

Description

Convenience functions to access commonly-used assays of the SingleCellExperiment object.

Usage

norm_exprs(object)

norm_exprs(object) <- value

stand_exprs(object)

stand_exprs(object) <- value

fpkm(object)

fpkm(object) <- value

Arguments

object SingleCellExperiment class object from which to access or to which to as-
sign assay values. Namely: "exprs", norm_exprs", "stand_exprs", "fpkm". The
following are imported from SingleCellExperiment: "counts", "normcounts",
"logcounts", "cpm", "tpm".

value a numeric matrix (e.g. for exprs)

Value

a matrix of normalised expression data

a matrix of standardised expressiond data

a matrix of FPKM values

A matrix of numeric, integer or logical values.

Author(s)

Davis McCarthy

numDetectedAcrossCells 53

Examples

example_sce <- mockSCE()
example_sce <- logNormCounts(example_sce)
head(logcounts(example_sce)[,1:10])
head(exprs(example_sce)[,1:10]) # identical to logcounts()

norm_exprs(example_sce) <- log2(calculateCPM(example_sce) + 1)

stand_exprs(example_sce) <- log2(calculateCPM(example_sce) + 1)

tpm(example_sce) <- calculateTPM(example_sce, lengths = 5e4)

cpm(example_sce) <- calculateCPM(example_sce)

fpkm(example_sce)

numDetectedAcrossCells

Number of detected expression values per group of cells

Description

Computes the number of detected expression values (default defined as non-zero counts) for each
feature in each group of cells.

Usage

numDetectedAcrossCells(x, ...)

S4 method for signature 'ANY'
numDetectedAcrossCells(
x,
ids,
subset_row = NULL,
subset_col = NULL,
average = FALSE,
store_number = "ncells",
detection_limit = 0,
BPPARAM = SerialParam()

)

S4 method for signature 'SummarizedExperiment'
numDetectedAcrossCells(x, ..., exprs_values = "counts")

Arguments

x A numeric matrix of counts containing features in rows and cells in columns.
Alternatively, a SummarizedExperiment object containing such a count matrix.

... For the generic, further arguments to pass to specific methods.
For the SummarizedExperiment method, further arguments to pass to the ANY
method.
For the ANY method, further arguments to pass to the nexprs function.

54 numDetectedAcrossCells

ids A factor specifying the group to which each cell in x belongs.
Alternatively, a DataFrame of such vectors or factors, in which case each unique
combination of levels defines a group.

subset_row An integer, logical or character vector specifying the features to use. Defaults to
all features.
For the SingleCellExperiment method, this argument will not affect alternative
Experiments, where aggregation is always performed for all features (or not at
all, depending on use_alt_exps).

subset_col An integer, logical or character vector specifying the cells to use. Defaults to all
cells with non-NA entries of ids.

average Logical scalar indicating whether the proportion of non-zero counts in each
group should be computed instead.

store_number String specifying the field of the output colData to store the number of cells in
each group. If NULL, nothing is stored.

detection_limit

Numeric scalar providing the value above which observations are deemed to be
expressed.

BPPARAM A BiocParallelParam object specifying whether summation should be paral-
lelized.

exprs_values A string or integer scalar specifying the assay of x containing the matrix of
counts (or any other expression quantity that can be meaningfully summed).

Value

A SummarizedExperiment is returned containing a count matrix in the first assay. Each column
corresponds to group as defined by a unique level or combination of levels in ids. Each entry of the
matrix contains the number or proportion of cells with detected expression for a feature and group.
The identities of the levels for each column are reported in the colData.

Author(s)

Aaron Lun

See Also

nexprs, on which this function is based.

sumCountsAcrossCells, which computes the sum of counts within a group.

Examples

example_sce <- mockSCE()

ids <- sample(LETTERS[1:5], ncol(example_sce), replace=TRUE)
bycol <- numDetectedAcrossCells(example_sce, ids)
head(bycol)

numDetectedAcrossFeatures 55

numDetectedAcrossFeatures

Number of detected expression values per group of features

Description

Computes the number of detected expression values (default defined as non-zero counts) for each
cell in each group of features.

Usage

numDetectedAcrossFeatures(x, ...)

S4 method for signature 'ANY'
numDetectedAcrossFeatures(
x,
ids,
detection_limit = 0,
subset_row = NULL,
subset_col = NULL,
average = FALSE,
BPPARAM = SerialParam()

)

S4 method for signature 'SummarizedExperiment'
numDetectedAcrossFeatures(x, ..., exprs_values = "counts")

Arguments

x A numeric matrix of counts containing features in rows and cells in columns.
Alternatively, a SummarizedExperiment object containing such a count matrix.

... For the generic, further arguments to pass to specific methods.
For the SummarizedExperiment method, further arguments to pass to the ANY
method.
For the ANY method, further arguments to pass to the nexprs function.

ids A factor of length nrow(x), specifying the set to which each feature in x belongs.
Alternatively, a list of integer or character vectors, where each vector specifies
the indices or names of features in a set.

detection_limit

Numeric scalar providing the value above which observations are deemed to be
expressed.

subset_row An integer, logical or character vector specifying the features to use. Defaults to
all features.

subset_col An integer, logical or character vector specifying the cells to use. Defaults to all
cells with non-NA entries of ids.

average Logical scalar indicating whether the proportion of non-zero counts in each
group should be computed instead.

BPPARAM A BiocParallelParam object specifying whether summation should be paral-
lelized.

56 perCellQCMetrics

exprs_values A string or integer scalar specifying the assay of x containing the matrix of
counts (or any other expression quantity that can be meaningfully summed).

Value

An integer or numeric matrix containing the number of detected expression values in each group of
features (row) and cell (column).

Author(s)

Aaron Lun

See Also

nexprs, on which this function is based.

Examples

example_sce <- mockSCE()

ids <- sample(paste0("GENE_", 1:100), nrow(example_sce), replace=TRUE)
byrow <- numDetectedAcrossFeatures(example_sce, ids)
head(byrow[,1:10])

perCellQCMetrics Compute per-cell quality control metrics for a count matrix or a Sin-
gleCellExperiment.

Description

Compute per-cell quality control metrics for a count matrix or a SingleCellExperiment.

Usage

perCellQCMetrics(x, ...)

S4 method for signature 'ANY'
perCellQCMetrics(
x,
subsets = NULL,
percent_top = c(50, 100, 200, 500),
detection_limit = 0,
BPPARAM = SerialParam(),
flatten = TRUE

)

S4 method for signature 'SummarizedExperiment'
perCellQCMetrics(x, ..., exprs_values = "counts")

S4 method for signature 'SingleCellExperiment'
perCellQCMetrics(

perCellQCMetrics 57

x,
subsets = NULL,
percent_top = c(50, 100, 200, 500),
...,
flatten = TRUE,
exprs_values = "counts",
use_altexps = TRUE

)

Arguments

x A numeric matrix of counts with cells in columns and features in rows.
Alternatively, a SummarizedExperiment or SingleCellExperiment object con-
taining such a matrix.

... For the generic, further arguments to pass to specific methods.
For the SummarizedExperiment and SingleCellExperiment methods, further ar-
guments to pass to the ANY method.

subsets A named list containing one or more vectors (a character vector of feature
names, a logical vector, or a numeric vector of indices), used to identify interest-
ing feature subsets such as ERCC spike-in transcripts or mitochondrial genes.

percent_top An integer vector. Each element is treated as a number of top genes to compute
the percentage of library size occupied by the most highly expressed genes in
each cell.

detection_limit

A numeric scalar specifying the lower detection_limit for expression.

BPPARAM A BiocParallelParam object specifying whether the QC calculations should be
parallelized.

flatten Logical scalar indicating whether the nested DataFrames in the output should be
flattened.

exprs_values A string or integer scalar indicating which assays in the x contains the count
matrix.

use_altexps Logical scalar indicating whether QC statistics should be computed for alterna-
tive Experiments in x. If TRUE, statistics are computed for all alternative experi-
ments.
Alternatively, an integer or character vector specifying the alternative Experi-
ments to use to compute QC statistics.
Alternatively NULL, in which case alternative experiments are not used.

Details

This function calculates useful QC metrics for identification and removal of potentially problematic
cells. Obvious per-cell metrics are the sum of counts (i.e., the library size) and the number of
detected features. The percentage of counts in the top features also provides a measure of library
complexity.

If subsets is specified, these statistics are also computed for each subset of features. This is useful
for investigating gene sets of interest, e.g., mitochondrial genes, Y chromosome genes. These
statistics are stored as nested DataFrames in the subsets field of the output. For example, if the
input subsets contained "Mito" and "Sex", the output would look like:

58 perCellQCMetrics

output
|-- sum
|-- detected
|-- percent_top
+-- subsets

|-- Mito
| |-- sum
| |-- detected
| +-- percent
+-- Sex

|-- sum
|-- detected
+-- percent

Here, the percent field contains the percentage of each cell’s count sum assigned to each subset.

If use_altexps is TRUE, the same statistics are computed for each alternative experiment in x. This
can also be an integer or character vector specifying the alternative Experiments to use. These
statistics are also stored as nested DataFrames, this time in the altexps field of the output. For
example, if x contained the alternative Experiments "Spike" and "Ab", the output would look like:

output
|-- sum
|-- detected
|-- percent_top
+-- altexps
| |-- Spike
| | |-- sum
| | |-- detected
| | +-- percent.total
| +-- Ab
| |-- sum
| |-- detected
| +-- percent.total
+-- total

The total field contains the total sum of counts for each cell across the main and alternative Exper-
iments. The percent field contains the percentage of the total count in each alternative Experiment
for each cell.

If flatten=TRUE, the nested DataFrames are flattened by concatenating the column names with
underscores. This means that, say, the subsets$Mito$sum nested field becomes the top-level
subsets_Mito_sum field. A flattened structure is more convenient for end-users performing in-
teractive analyses, but less convenient for programmatic access as artificial construction of strings
is required.

Value

A DataFrame of QC statistics where each row corresponds to a column in x. This contains the
following fields:

• sum: numeric, the sum of counts for each cell.

• detected: numeric, the number of observations above detection_limit.

If flatten=FALSE, the DataFrame will contain the additional columns:

perFeatureQCMetrics 59

• percent_top: numeric matrix, the percentage of counts assigned to the percent_topage of
most highly expressed genes. Each column of the matrix corresponds to an entry of the sorted
percent_top, in increasing order.

• subsets: A nested DataFrame containing statistics for each subset, see Details.

• altexps: A nested DataFrame containing statistics for each alternative experiment, see De-
tails. This is only returned for the SingleCellExperiment method.

• total: numeric, the total sum of counts for each cell across main and alternative Experiments.
This is only returned for the SingleCellExperiment method.

If flatten=TRUE, nested matrices and DataFrames are flattened to remove the hierarchical structure
from the output DataFrame.

Author(s)

Aaron Lun

See Also

addPerCellQC, to add the QC metrics to the column metadata.

Examples

example_sce <- mockSCE()
stats <- perCellQCMetrics(example_sce)
stats

With subsets.
stats2 <- perCellQCMetrics(example_sce, subsets=list(Mito=1:10),

flatten=FALSE)
stats2$subsets

With alternative Experiments.
pretend.spike <- ifelse(seq_len(nrow(example_sce)) < 10, "Spike", "Gene")
alt_sce <- splitAltExps(example_sce, pretend.spike)
stats3 <- perCellQCMetrics(alt_sce, flatten=FALSE)
stats3$altexps

perFeatureQCMetrics Per-feature quality control metrics

Description

Compute per-feature quality control metrics for a count matrix or a SummarizedExperiment.

Usage

perFeatureQCMetrics(x, ...)

S4 method for signature 'ANY'
perFeatureQCMetrics(

60 perFeatureQCMetrics

x,
subsets = NULL,
detection_limit = 0,
BPPARAM = SerialParam(),
flatten = TRUE

)

S4 method for signature 'SummarizedExperiment'
perFeatureQCMetrics(x, ..., exprs_values = "counts")

Arguments

x A numeric matrix of counts with cells in columns and features in rows.
Alternatively, a SummarizedExperiment object containing such a matrix.

... For the generic, further arguments to pass to specific methods.
For the SummarizedExperiment and SingleCellExperiment methods, further ar-
guments to pass to the ANY method.

subsets A named list containing one or more vectors (a character vector of cell names,
a logical vector, or a numeric vector of indices), used to identify interesting
sample subsets such as negative control wells.

detection_limit

A numeric scalar specifying the lower detection_limit for expression.

BPPARAM A BiocParallelParam object specifying whether the QC calculations should be
parallelized.

flatten Logical scalar indicating whether the nested DataFrames in the output should be
flattened.

exprs_values A string or integer scalar indicating which assays in the x contains the count
matrix.

Details

This function calculates useful QC metrics for features, including the mean across all cells and the
number of expressed features (i.e., counts above the detection_limit).

If subsets is specified, the same statistics are computed for each subset of cells. This is useful for
obtaining statistics for cell sets of interest, e.g., negative control wells. These statistics are stored
as nested DataFrames in the output. For example, if subsets contained "empty" and "cellpool",
the output would look like:

output
|-- mean
|-- detected
+-- subsets

|-- empty
| |-- mean
| |-- detected
| +-- ratio
+-- cellpool

|-- mean
|-- detected
+-- ratio

plotColData 61

The ratio field contains the ratio of the mean within each subset to the mean across all cells.

If flatten=TRUE, the nested DataFrames are flattened by concatenating the column names with
underscores. This means that, say, the subsets$empty$mean nested field becomes the top-level
subsets_empty_mean field. A flattened structure is more convenient for end-users performing
interactive analyses, but less convenient for programmatic access as artificial construction of strings
is required.

Value

A DataFrame of QC statistics where each row corresponds to a row in x. This contains the following
fields:

• mean: numeric, the mean counts for each feature.

• detected: numeric, the percentage of observations above detection_limit.

If flatten=FALSE, the output DataFrame also contains the subsets field. This a nested DataFrame
containing per-feature QC statistics for each subset of columns.

If flatten=TRUE, subsets is flattened to remove the hierarchical structure.

Author(s)

Aaron Lun

See Also

addPerFeatureQC, to add the QC metrics to the row metadata.

Examples

example_sce <- mockSCE()
stats <- perFeatureQCMetrics(example_sce)
stats

With subsets.
stats2 <- perFeatureQCMetrics(example_sce, subsets=list(Empty=1:10))
stats2

plotColData Plot column metadata

Description

Plot column-level (i.e., cell) metadata in an SingleCellExperiment object.

62 plotColData

Usage

plotColData(
object,
y,
x = NULL,
colour_by = NULL,
shape_by = NULL,
size_by = NULL,
by_exprs_values = "logcounts",
other_fields = list(),
...

)

Arguments

object A SingleCellExperiment object containing expression values and experimental
information.

y String specifying the column-level metadata field to show on the y-axis. Alter-
natively, an AsIs vector or data.frame, see ?retrieveCellInfo.

x String specifying the column-level metadata to show on the x-axis. Alterna-
tively, an AsIs vector or data.frame, see ?retrieveCellInfo. If NULL, nothing
is shown on the x-axis.

colour_by Specification of a column metadata field or a feature to colour by, see the by
argument in ?retrieveCellInfo for possible values.

shape_by Specification of a column metadata field or a feature to shape by, see the by
argument in ?retrieveCellInfo for possible values.

size_by Specification of a column metadata field or a feature to size by, see the by argu-
ment in ?retrieveCellInfo for possible values.

by_exprs_values

A string or integer scalar specifying which assay to obtain expression values
from, for use in point aesthetics - see ?retrieveCellInfo for details.

other_fields Additional cell-based fields to include in the data.frame, see ?"scater-plot-args"
for details.

... Additional arguments for visualization, see ?"scater-plot-args" for details.

Details

If y is continuous and x=NULL, a violin plot is generated. If x is categorical, a grouped violin plot
will be generated, with one violin for each level of x. If x is continuous, a scatter plot will be
generated.

If y is categorical and x is continuous, horizontal violin plots will be generated. If x is missing or
categorical, rectangule plots will be generated where the area of a rectangle is proportional to the
number of points for a combination of factors.

Value

A ggplot object.

Author(s)

Davis McCarthy, with modifications by Aaron Lun

plotDots 63

Examples

example_sce <- mockSCE()
example_sce <- logNormCounts(example_sce)
colData(example_sce) <- cbind(colData(example_sce),

perCellQCMetrics(example_sce))

plotColData(example_sce, y = "detected", x = "sum",
colour_by = "Mutation_Status") + scale_x_log10()

plotColData(example_sce, y = "detected", x = "sum",
colour_by = "Mutation_Status", size_by = "Gene_0001",
shape_by = "Treatment") + scale_x_log10()

plotColData(example_sce, y = "Treatment", x = "sum",
colour_by = "Mutation_Status") + scale_y_log10() # flipped violin.

plotColData(example_sce, y = "detected",
x = "Cell_Cycle", colour_by = "Mutation_Status")

plotDots Create a dot plot of expression values

Description

Create a dot plot of expression values for a grouping of cells, where the size and color of each dot
represents the proportion of detected expression values and the average expression, respectively, for
each feature in each group of cells.

Usage

plotDots(
object,
features,
group = NULL,
exprs_values = "logcounts",
detection_limit = 0,
low_color = "white",
high_color = "red",
max_ave = NULL,
max_detected = NULL,
other_fields = list(),
by_exprs_values = exprs_values

)

Arguments

object A SingleCellExperiment object.

features A character vector of feature names to show as rows of the dot plot.

group Specification of a column metadata field or a feature to show as columns. Alter-
natively, an AsIs vector, see ?retrieveCellInfo for details.

64 plotDots

exprs_values A string or integer scalar specifying which assay in assays(object) to obtain
expression values from.

detection_limit

Numeric scalar providing the value above which observations are deemed to be
expressed. This is also used as the

low_color String specifying the color to use for low expression. This is also used as the
background color, see Details.

high_color String specifying the color to use for high expression.

max_ave Numeric value specifying the cap on the average expression.

max_detected Numeric value specifying the cap on the proportion of detected expression val-
ues.

other_fields Additional feature-based fields to include in the data.frame, see ?"scater-plot-args"
for details. Note that any AsIs vectors or data.frames must be of length equal to
nrow(object), not features.

by_exprs_values

A string or integer scalar specifying which assay to obtain expression values
from, to use when extracting values according to each entry of other_fields.

Details

This implements a Seurat-style “dot plot” that creates a dot for each feature (row) in each group of
cells (column). The proportion of detected expression values and the average expression for each
feature in each group of cells is visualized efficiently using the size and colour, respectively, of each
dot.

We impose two restrictions - the low end of the color scale must correspond to the detection limit,
and the color at this end of the scale must be the same as the background color. These ensure that
the visual cues from low average expression or low detected proportions are consistent, as both
will result in a stronger low_color. (In the latter case, the reduced size of the dot means that the
background color dominates.)

If these restrictions are violated, visualization can be misleading due to the difficulty of simulta-
neously interpreting both size and color. For example, if we colored by z-score on a conventional
blue-white-red color axis, a gene that is downregulated in a group of cells would show up as a
small blue dot. If the background color was also white, this might be mistaken for a gene that is
not downregulated at all. On the other hand, any other background color would effectively require
consideration of two color axes as expression decreases.

We can also cap the color and size scales at max_ave and max_detected, respectively. This aims
to preserve resolution for low-abundance genes by preventing domination of the scales by high-
abundance features.

Value

A ggplot object containing a dot plot.

Author(s)

Aaron Lun

See Also

plotExpression and plotHeatmap, for alternatives to visualizing group-level expression values.

plotExplanatoryPCs 65

Examples

sce <- mockSCE()
sce <- logNormCounts(sce)
plotDots(sce, features=rownames(sce)[1:10], group="Cell_Cycle")

plotExplanatoryPCs Plot the explanatory PCs for each variable

Description

Plot the explanatory PCs for each variable

Usage

plotExplanatoryPCs(
object,
nvars_to_plot = 10,
npcs_to_plot = 50,
theme_size = 10,
...

)

Arguments

object A SingleCellExperiment object containing expression values and experimental
information. Alternatively, a matrix containing the output of getExplanatoryPCs.

nvars_to_plot Integer scalar specifying the number of variables with the greatest explanatory
power to plot. This can be set to Inf to show all variables.

npcs_to_plot Integer scalar specifying the number of PCs to plot.

theme_size numeric scalar providing base font size for ggplot theme.

... Parameters to be passed to getExplanatoryPCs.

Details

A density plot is created for each variable, showing the R-squared for each successive PC (up to
npcs_to_plot PCs). Only the nvars_to_plot variables with the largest maximum R-squared
across PCs are shown.

If object is a SingleCellExperiment object, getExplanatoryPCs will be called to compute the
variance in expression explained by each variable in each gene. Users may prefer to run getExplanatoryPCs
manually and pass the resulting matrix as object, in which case the R-squared values are used di-
rectly.

Value

A ggplot object.

66 plotExplanatoryVariables

Examples

example_sce <- mockSCE()
example_sce <- logNormCounts(example_sce)
example_sce <- runPCA(example_sce)

plotExplanatoryPCs(example_sce)

plotExplanatoryVariables

Plot explanatory variables ordered by percentage of variance ex-
plained

Description

Plot explanatory variables ordered by percentage of variance explained

Usage

plotExplanatoryVariables(
object,
nvars_to_plot = 10,
min_marginal_r2 = 0,
theme_size = 10,
...

)

Arguments

object A SingleCellExperiment object containing expression values and experimental
information. Alternatively, a matrix containing the output of getVarianceExplained.

nvars_to_plot Integer scalar specifying the number of variables with the greatest explanatory
power to plot. This can be set to Inf to show all variables.

min_marginal_r2

Numeric scalar specifying the minimal value required for median marginal R-
squared for a variable to be plotted. Only variables with a median marginal
R-squared strictly larger than this value will be plotted.

theme_size Numeric scalar specifying the font size to use for the plotting theme

... Parameters to be passed to getVarianceExplained.

Details

A density plot is created for each variable, showing the distribution of R-squared across all genes.
Only the nvars_to_plot variables with the largest median R-squared across genes are shown.
Variables are also only shown if they have median R-squared values above min_marginal_r2.

If object is a SingleCellExperiment object, getVarianceExplained will be called to compute
the variance in expression explained by each variable in each gene. Users may prefer to run
getVarianceExplained manually and pass the resulting matrix as object, in which case the R-
squared values are used directly.

plotExpression 67

Value

A ggplot object.

Examples

example_sce <- mockSCE()
example_sce <- logNormCounts(example_sce)
plotExplanatoryVariables(example_sce)

plotExpression Plot expression values for all cells

Description

Plot expression values for a set of features (e.g. genes or transcripts) in a SingleExperiment object,
against a continuous or categorical covariate for all cells.

Usage

plotExpression(
object,
features,
x = NULL,
exprs_values = "logcounts",
log2_values = FALSE,
colour_by = NULL,
shape_by = NULL,
size_by = NULL,
by_exprs_values = exprs_values,
xlab = NULL,
feature_colours = TRUE,
one_facet = TRUE,
ncol = 2,
scales = "fixed",
other_fields = list(),
...

)

Arguments

object A SingleCellExperiment object containing expression values and other meta-
data.

features A character vector or a list specifying the features to plot. If a list is supplied,
each entry of the list can be a string, an AsIs-wrapped vector or a data.frame -
see ?retrieveCellInfo.

x Specification of a column metadata field or a feature to show on the x-axis, see
the by argument in ?retrieveCellInfo for possible values.

exprs_values A string or integer scalar specifying which assay in assays(object) to obtain
expression values from.

68 plotExpression

log2_values Logical scalar, specifying whether the expression values be transformed to the
log2-scale for plotting (with an offset of 1 to avoid logging zeroes).

colour_by Specification of a column metadata field or a feature to colour by, see the by
argument in ?retrieveCellInfo for possible values.

shape_by Specification of a column metadata field or a feature to shape by, see the by
argument in ?retrieveCellInfo for possible values.

size_by Specification of a column metadata field or a feature to size by, see the by argu-
ment in ?retrieveCellInfo for possible values.

by_exprs_values

A string or integer scalar specifying which assay to obtain expression values
from, for use in point aesthetics - see the exprs_values argument in ?retrieveCellInfo.

xlab String specifying the label for x-axis. If NULL (default), x will be used as the
x-axis label.

feature_colours

Logical scalar indicating whether violins should be coloured by feature when x
and colour_by are not specified and one_facet=TRUE.

one_facet Logical scalar indicating whether grouped violin plots for multiple features should
be put onto one facet. Only relevant when x=NULL.

ncol Integer scalar, specifying the number of columns to be used for the panels of a
multi-facet plot.

scales String indicating whether should multi-facet scales be fixed ("fixed"), free
("free"), or free in one dimension ("free_x", "free_y"). Passed to the scales
argument in the facet_wrap when multiple facets are generated.

other_fields Additional cell-based fields to include in the data.frame, see ?"scater-plot-args"
for details.

... Additional arguments for visualization, see ?"scater-plot-args" for details.

Details

This function plots expression values for one or more features. If x is not specified, a violin plot
will be generated of expression values. If x is categorical, a grouped violin plot will be generated,
with one violin for each level of x. If x is continuous, a scatter plot will be generated.

If multiple features are requested and x is not specified and one_facet=TRUE, a grouped violin plot
will be generated with one violin per feature. This will be coloured by feature if colour_by=NULL
and feature_colours=TRUE, to yield a more aesthetically pleasing plot. Otherwise, if x is speci-
fied or one_facet=FALSE, a multi-panel plot will be generated where each panel corresponds to a
feature. Each panel will be a scatter plot or (grouped) violin plot, depending on the nature of x.

Note that this assumes that the expression values are numeric. If not, and x is continuous, horizontal
violin plots will be generated. If x is missing or categorical, rectangule plots will be generated where
the area of a rectangle is proportional to the number of points for a combination of factors.

Value

A ggplot object.

Author(s)

Davis McCarthy, with modifications by Aaron Lun

plotHeatmap 69

Examples

example_sce <- mockSCE()
example_sce <- logNormCounts(example_sce)

default plot
plotExpression(example_sce, rownames(example_sce)[1:15])

plot expression against an x-axis value
plotExpression(example_sce, c("Gene_0001", "Gene_0004"),

x="Mutation_Status")
plotExpression(example_sce, c("Gene_0001", "Gene_0004"),

x="Gene_0002")

add visual options
plotExpression(example_sce, rownames(example_sce)[1:6],

colour_by = "Mutation_Status")
plotExpression(example_sce, rownames(example_sce)[1:6],

colour_by = "Mutation_Status", shape_by = "Treatment",
size_by = "Gene_0010")

plot expression against expression values for Gene_0004
plotExpression(example_sce, rownames(example_sce)[1:4],

"Gene_0004", show_smooth = TRUE)

plotHeatmap Plot heatmap of gene expression values

Description

Create a heatmap of expression values for each cell and specified features in a SingleCellExperiment
object.

Usage

plotHeatmap(
object,
features,
columns = NULL,
exprs_values = "logcounts",
center = FALSE,
zlim = NULL,
symmetric = FALSE,
color = NULL,
colour_columns_by = NULL,
order_columns_by = NULL,
by_exprs_values = exprs_values,
show_colnames = FALSE,
cluster_cols = is.null(order_columns_by),
...

)

70 plotHeatmap

Arguments

object A SingleCellExperiment object.

features A character vector of row names, a logical vector of integer vector of indices
specifying rows of object to show in the heatmap.

columns A vector specifying the subset of columns in object to show as columns in
the heatmap. Also specifies the column order if cluster_cols=FALSE and
order_columns_by=NULL. By default, all columns are used.

exprs_values A string or integer scalar indicating which assay of object should be used as
expression values for colouring in the heatmap.

center A logical scalar indicating whether each row should have its mean expression
centered at zero prior to plotting.

zlim A numeric vector of length 2, specifying the upper and lower bounds for the
expression values. This winsorizes the expression matrix prior to plotting (but
after centering, if center=TRUE). If NULL, it defaults to the range of the expres-
sion matrix.

symmetric A logical scalar specifying whether the default zlim should be symmetric around
zero. If TRUE, the maximum absolute value of zlim will be computed and mul-
tiplied by c(-1,1) to redefine zlim.

color A vector of colours specifying the palette to use for mapping expression values
to colours. This defaults to the default setting in pheatmap.

colour_columns_by

A list of values specifying how the columns should be annotated with colours.
Each entry of the list can be any acceptable input to the by argument in ?retrieveCellInfo.
A character vector can also be supplied and will be treated as a list of strings.

order_columns_by

A list of values specifying how the columns should be ordered. Each entry of
the list can be any acceptable input to the by argument in ?retrieveCellInfo.
A character vector can also be supplied and will be treated as a list of strings.
This argument is automatically appended to colour_columns_by.

by_exprs_values

A string or integer scalar specifying which assay to obtain expression values
from, for colouring of column-level data - see the exprs_values argument in
?retrieveCellInfo.

show_colnames, cluster_cols, ...

Additional arguments to pass to pheatmap.

Details

Setting center=TRUE is useful for examining log-fold changes of each cell’s expression profile
from the average across all cells. This avoids issues with the entire row appearing a certain colour
because the gene is highly/lowly expressed across all cells.

Setting zlim preserves the dynamic range of colours in the presence of outliers. Otherwise, the
plot may be dominated by a few genes, which will “flatten” the observed colours for the rest of the
heatmap.

Setting order_columns_by is useful for automatically ordering the heatmap by one or more factors
of interest, e.g., cluster identity. This the need to set colour_columns_by, cluster_cols and
columns to achieve the same effect.

plotHighestExprs 71

Value

A heatmap is produced on the current graphics device. The output of pheatmap is invisibly returned.

Author(s)

Aaron Lun

See Also

pheatmap

Examples

example_sce <- mockSCE()
example_sce <- logNormCounts(example_sce)

plotHeatmap(example_sce, features=rownames(example_sce)[1:10])

plotHeatmap(example_sce, features=rownames(example_sce)[1:10],
center=TRUE, symmetric=TRUE)

plotHeatmap(example_sce, features=rownames(example_sce)[1:10],
colour_columns_by=c("Mutation_Status", "Cell_Cycle"))

plotHighestExprs Plot the highest expressing features

Description

Plot the features with the highest average expression across all cells, along with their expression in
each individual cell.

Usage

plotHighestExprs(
object,
n = 50,
colour_cells_by = NULL,
drop_features = NULL,
exprs_values = "counts",
by_exprs_values = exprs_values,
feature_names_to_plot = NULL,
as_percentage = TRUE

)

Arguments

object A SingleCellExperiment object.

n A numeric scalar specifying the number of the most expressed features to show.

72 plotPlatePosition

colour_cells_by

Specification of a column metadata field or a feature to colour by, see ?retrieveCellInfo
for possible values.

drop_features A character, logical or numeric vector indicating which features (e.g. genes,
transcripts) to drop when producing the plot. For example, spike-in transcripts
might be dropped to examine the contribution from endogenous genes.

exprs_values A integer scalar or string specifying the assay to obtain expression values from.

by_exprs_values

A string or integer scalar specifying which assay to obtain expression values
from, for use in colouring - see ?retrieveCellInfo for details.

feature_names_to_plot

String specifying which row-level metadata column contains the feature names.
Alternatively, an AsIs-wrapped vector or a data.frame, see ?retrieveFeatureInfo
for possible values. Default is NULL, in which case rownames(object) are used.

as_percentage logical scalar indicating whether percentages should be plotted. If FALSE, the
raw exprs_values are shown instead.

Details

This function will plot the percentage of counts accounted for by the top n most highly expressed
features across the dataset. Each row on the plot corresponds to a feature and is sorted by average
expression (denoted by the point). The distribution of expression across all cells is shown as tick
marks for each feature. These ticks can be coloured according to cell-level metadata, as specified
by colour_cells_by.

Value

A ggplot object.

Examples

example_sce <- mockSCE()
colData(example_sce) <- cbind(colData(example_sce),

perCellQCMetrics(example_sce))

plotHighestExprs(example_sce, colour_cells_by="detected")
plotHighestExprs(example_sce, colour_cells_by="Mutation_Status")

plotPlatePosition Plot cells in plate positions

Description

Plots cells in their position on a plate, coloured by metadata variables or feature expression values
from a SingleCellExperiment object.

plotPlatePosition 73

Usage

plotPlatePosition(
object,
plate_position = NULL,
colour_by = NULL,
size_by = NULL,
shape_by = NULL,
by_exprs_values = "logcounts",
add_legend = TRUE,
theme_size = 24,
point_alpha = 0.6,
point_size = 24,
other_fields = list()

)

Arguments

object A SingleCellExperiment object.

plate_position A character vector specifying the plate position for each cell (e.g., A01, B12,
and so on, where letter indicates row and number indicates column). If NULL,
the function will attempt to extract this from object$plate_position. Alter-
natively, a list of two factors ("row" and "column") can be supplied, specifying
the row (capital letters) and column (integer) for each cell in object.

colour_by Specification of a column metadata field or a feature to colour by, see the by
argument in ?retrieveCellInfo for possible values.

size_by Specification of a column metadata field or a feature to size by, see the by argu-
ment in ?retrieveCellInfo for possible values.

shape_by Specification of a column metadata field or a feature to shape by, see the by
argument in ?retrieveCellInfo for possible values.

by_exprs_values

A string or integer scalar specifying which assay to obtain expression values
from, for use in point aesthetics - see the exprs_values argument in ?retrieveCellInfo.

add_legend Logical scalar specifying whether a legend should be shown.

theme_size Numeric scalar, see ?"scater-plot-args" for details.

point_alpha Numeric scalar specifying the transparency of the points, see ?"scater-plot-args"
for details.

point_size Numeric scalar specifying the size of the points, see ?"scater-plot-args" for
details.

other_fields Additional cell-based fields to include in the data.frame, see ?"scater-plot-args"
for details.

Details

This function expects plate positions to be given in a charcter format where a letter indicates the
row on the plate and a numeric value indicates the column. Each cell has a plate position such
as "A01", "B12", "K24" and so on. From these plate positions, the row is extracted as the letter,
and the column as the numeric part. Alternatively, the row and column identities can be directly
supplied by setting plate_position as a list of two factors.

74 plotReducedDim

Value

A ggplot object.

Author(s)

Davis McCarthy, with modifications by Aaron Lun

Examples

example_sce <- mockSCE()
example_sce <- logNormCounts(example_sce)

define plate positions
example_sce$plate_position <- paste0(

rep(LETTERS[1:5], each = 8),
rep(formatC(1:8, width = 2, flag = "0"), 5)

)

plot plate positions
plotPlatePosition(example_sce, colour_by = "Mutation_Status")

plotPlatePosition(example_sce, shape_by = "Treatment",
colour_by = "Gene_0004")

plotPlatePosition(example_sce, shape_by = "Treatment", size_by = "Gene_0001",
colour_by = "Cell_Cycle")

plotReducedDim Plot reduced dimensions

Description

Plot cell-level reduced dimension results stored in a SingleCellExperiment object.

Usage

plotReducedDim(
object,
dimred,
ncomponents = 2,
percentVar = NULL,
colour_by = NULL,
shape_by = NULL,
size_by = NULL,
by_exprs_values = "logcounts",
text_by = NULL,
text_size = 5,
text_colour = "black",
label_format = c("%s %i", " (%i%%)"),
other_fields = list(),
...

)

plotReducedDim 75

Arguments

object A SingleCellExperiment object.

dimred A string or integer scalar indicating the reduced dimension result in reducedDims(object)
to plot.

ncomponents A numeric scalar indicating the number of dimensions to plot, starting from the
first dimension. Alternatively, a numeric vector specifying the dimensions to be
plotted.

percentVar A numeric vector giving the proportion of variance in expression explained by
each reduced dimension. Only expected to be used in PCA settings, e.g., in the
plotPCA function.

colour_by Specification of a column metadata field or a feature to colour by, see the by
argument in ?retrieveCellInfo for possible values.

shape_by Specification of a column metadata field or a feature to shape by, see the by
argument in ?retrieveCellInfo for possible values.

size_by Specification of a column metadata field or a feature to size by, see the by argu-
ment in ?retrieveCellInfo for possible values.

by_exprs_values

A string or integer scalar specifying which assay to obtain expression values
from, for use in point aesthetics - see the exprs_values argument in ?retrieveCellInfo.

text_by String specifying the column metadata field with which to add text labels on the
plot. This must refer to a categorical field, i.e., coercible into a factor. Alterna-
tively, an AsIs vector or data.frame, see ?retrieveCellInfo.

text_size Numeric scalar specifying the size of added text.

text_colour String specifying the colour of the added text.

label_format Character vector of length 2 containing format strings to use for the axis labels.
The first string expects a string containing the result type (e.g., "PCA") and an
integer containing the component number, while the second string shows the
rounded percentage of variance explained and is only relevant when this infor-
mation is provided in object.

other_fields Additional cell-based fields to include in the data.frame, see ?"scater-plot-args"
for details.

... Additional arguments for visualization, see ?"scater-plot-args" for details.

Details

If ncomponents is a scalar equal to 2, a scatterplot of the first two dimensions is produced. If
ncomponents is greater than 2, a pairs plots for the top dimensions is produced.

Alternatively, if ncomponents is a vector of length 2, a scatterplot of the two specified dimensions
is produced. If it is of length greater than 2, a pairs plot is produced containing all pairwise plots
between the specified dimensions.

The text_by option will add factor levels as labels onto the plot, placed at the median coordinate
across all points in that level. This is useful for annotating position-related metadata (e.g., clusters)
when there are too many levels to distinguish by colour. It is only available for scatterplots.

Value

A ggplot object

76 plotRLE

Author(s)

Davis McCarthy, with modifications by Aaron Lun

Examples

example_sce <- mockSCE()
example_sce <- logNormCounts(example_sce)

example_sce <- runPCA(example_sce, ncomponents=5)
plotReducedDim(example_sce, "PCA")
plotReducedDim(example_sce, "PCA", colour_by="Cell_Cycle")
plotReducedDim(example_sce, "PCA", colour_by="Gene_0001")

plotReducedDim(example_sce, "PCA", ncomponents=5)
plotReducedDim(example_sce, "PCA", ncomponents=5, colour_by="Cell_Cycle",

shape_by="Treatment")

plotRLE Plot relative log expression

Description

Produce a relative log expression (RLE) plot of one or more transformations of cell expression
values.

Usage

plotRLE(
object,
exprs_values = "logcounts",
exprs_logged = TRUE,
style = "minimal",
legend = TRUE,
ordering = NULL,
colour_by = NULL,
by_exprs_values = exprs_values,
...

)

Arguments

object A SingleCellExperiment object.

exprs_values A string or integer scalar specifying the expression matrix in object to use.

exprs_logged A logical scalar indicating whether the expression matrix is already log-transformed.
If not, a log2-transformation (+1) will be performed prior to plotting.

style String defining the boxplot style to use, either "minimal" (default) or "full";
see Details.

legend Logical scalar specifying whether a legend should be shown.

ordering A vector specifying the ordering of cells in the RLE plot. This can be useful for
arranging cells by experimental conditions or batches.

plotRLE 77

colour_by Specification of a column metadata field or a feature to colour by, see the by
argument in ?retrieveCellInfo for possible values.

by_exprs_values

A string or integer scalar specifying which assay to obtain expression values
from, for use in point aesthetics - see the exprs_values argument in ?retrieveCellInfo.

... further arguments passed to geom_boxplot when style="full".

Details

Relative log expression (RLE) plots are a powerful tool for visualising unwanted variation in high
dimensional data. These plots were originally devised for gene expression data from microarrays
but can also be used on single-cell expression data. RLE plots are particularly useful for assessing
whether a procedure aimed at removing unwanted variation (e.g., scaling normalisation) has been
successful.

If style is “full”, the usual ggplot2 boxplot is created for each cell. Here, the box shows the inter-
quartile range and whiskers extend no more than 1.5 times the IQR from the hinge (the 25th or 75th
percentile). Data beyond the whiskers are called outliers and are plotted individually. The median
(50th percentile) is shown with a white bar. This approach is detailed and flexible, but can take a
long time to plot for large datasets.

If style is “minimal”, a Tufte-style boxplot is created for each cell. Here, the median is shown with
a circle, the IQR in a grey line, and “whiskers” (as defined above) for the plots are shown with
coloured lines. No outliers are shown for this plot style. This approach is more succinct and faster
for large numbers of cells.

Value

A ggplot object

Author(s)

Davis McCarthy, with modifications by Aaron Lun

References

Gandolfo LC, Speed TP (2017). RLE plots: visualising unwanted variation in high dimensional
data. arXiv.

Examples

example_sce <- mockSCE()
example_sce <- logNormCounts(example_sce)

plotRLE(example_sce, colour_by = "Mutation_Status", style = "minimal")

plotRLE(example_sce, colour_by = "Mutation_Status", style = "full",
outlier.alpha = 0.1, outlier.shape = 3, outlier.size = 0)

78 plotRowData

plotRowData Plot row metadata

Description

Plot row-level (i.e., gene) metadata from a SingleCellExperiment object.

Usage

plotRowData(
object,
y,
x = NULL,
colour_by = NULL,
shape_by = NULL,
size_by = NULL,
by_exprs_values = "logcounts",
other_fields = list(),
...

)

Arguments

object A SingleCellExperiment object containing expression values and experimental
information.

y String specifying the column-level metadata field to show on the y-axis. Alter-
natively, an AsIs vector or data.frame, see ?retrieveFeatureInfo.

x String specifying the column-level metadata to show on the x-axis. Alterna-
tively, an AsIs vector or data.frame, see ?retrieveFeatureInfo. If NULL, noth-
ing is shown on the x-axis.

colour_by Specification of a row metadata field or a cell to colour by, see ?retrieveFeatureInfo
for possible values.

shape_by Specification of a row metadata field or a cell to shape by, see ?retrieveFeatureInfo
for possible values.

size_by Specification of a row metadata field or a cell to size by, see ?retrieveFeatureInfo
for possible values.

by_exprs_values

A string or integer scalar specifying which assay to obtain expression values
from, for use in point aesthetics - see ?retrieveFeatureInfo for details.

other_fields Additional feature-based fields to include in the data.frame, see ?"scater-plot-args"
for details.

... Additional arguments for visualization, see ?"scater-plot-args" for details.

Details

If y is continuous and x=NULL, a violin plot is generated. If x is categorical, a grouped violin plot
will be generated, with one violin for each level of x. If x is continuous, a scatter plot will be
generated.

plotScater 79

If y is categorical and x is continuous, horizontal violin plots will be generated. If x is missing or
categorical, rectangule plots will be generated where the area of a rectangle is proportional to the
number of points for a combination of factors.

Value

A ggplot object.

Examples

example_sce <- mockSCE()
example_sce <- logNormCounts(example_sce)
rowData(example_sce) <- cbind(rowData(example_sce),

perFeatureQCMetrics(example_sce))

plotRowData(example_sce, y="detected", x="mean") +
scale_x_log10()

plotScater Plot an overview of expression for each cell

Description

Plot the relative proportion of the library size that is accounted for by the most highly expressed
features for each cell in a SingleCellExperiment object.

Usage

plotScater(
x,
nfeatures = 500,
exprs_values = "counts",
colour_by = NULL,
by_exprs_values = exprs_values,
block1 = NULL,
block2 = NULL,
ncol = 3,
line_width = 1.5,
theme_size = 10

)

Arguments

x A SingleCellExperiment object.

nfeatures Numeric scalar indicating the number of top-expressed features to show n the
plot.

exprs_values String or integer scalar indicating which assay of object should be used to
obtain the expression values for this plot.

colour_by Specification of a column metadata field or a feature to colour by, see the by
argument in ?retrieveCellInfo for possible values. The curve for each cell
will be coloured according to this specification.

80 quickPerCellQC

by_exprs_values

A string or integer scalar specifying which assay to obtain expression values
from, for use in point aesthetics - see the exprs_values argument in ?retrieveCellInfo.

block1 String specifying the column-level metadata field by which to separate the cells
into separate panels in the plot. Alternatively, an AsIs vector or data.frame, see
?retrieveCellInfo. Default is NULL, in which case there is no blocking.

block2 Same as block1, providing another level of blocking.

ncol Number of columns to use for facet_wrap if only one block is defined.

line_width Numeric scalar specifying the line width.

theme_size Numeric scalar specifying the font size to use for the plotting theme.

Details

For each cell, the features are ordered from most-expressed to least-expressed. The cumulative
proportion of the total expression for the cell is computed across the top nfeatures features. These
plots can flag cells with a very high proportion of the library coming from a small number of
features; such cells are likely to be problematic for downstream analyses.

Using the colour and blocking arguments can flag overall differences in cells under different ex-
perimental conditions or affected by different batch and other variables. If only one of block1 and
block2 are specified, each panel corresponds to a separate level of the specified blocking factor. If
both are specified, each panel corresponds to a combination of levels.

Value

A ggplot object.

Author(s)

Davis McCarthy, with modifications by Aaron Lun

Examples

example_sce <- mockSCE()
plotScater(example_sce)
plotScater(example_sce, exprs_values = "counts", colour_by = "Cell_Cycle")
plotScater(example_sce, block1 = "Treatment", colour_by = "Cell_Cycle")

quickPerCellQC Quick cell-level QC

Description

A convenient utility that identifies low-quality cells based on frequently used QC metrics.

quickPerCellQC 81

Usage

quickPerCellQC(
df,
lib_size = "sum",
n_features = "detected",
percent_subsets = NULL,
...

)

Arguments

df A DataFrame containing per-cell QC statistics, as computed by perCellQCMetrics.

lib_size String specifying the column of df containing the library size for each cell.

n_features String specifying the column of df containing the number of detected features
per cell.

percent_subsets

String specifying the column(s) of df containing the percentage of counts in
subsets of “control features”.

... Further arguments to pass to isOutlier.

Details

This function simply calls isOutlier on the various QC metrics in df.

• For lib_size, small outliers are detected on the log-scale to remove cells with low library
sizes.

• For n_features, small outliers are detected on the log-scale to remove cells with few detected
features.

• For each field in percent_subsets, large outliers are detected on the original scale. This aims
to remove cells with high spike-in or mitochondrial content.

Users can change the number of MADs used to define an outlier or specify batches by passing
appropriate arguments to

Value

A DataFrame with one row per cell and containing columns of logical vectors. Each column spec-
ifies a reason for why a cell was considered to be low quality, with the final discard column
indicating whether the cell should be discarded.

Author(s)

Aaron Lun

See Also

perCellQCMetrics, for calculation of these metrics.

isOutlier, to identify outliers with a MAD-based approach.

82 readSparseCounts

Examples

example_sce <- mockSCE()
df <- perCellQCMetrics(example_sce, subsets=list(Mito=1:100))

discarded <- quickPerCellQC(df, percent_subsets=c(
"subsets_Mito_percent", "altexps_Spikes_percent"))

colSums(as.data.frame(discarded))

readSparseCounts Read sparse count matrix from file

Description

Reads a sparse count matrix from file containing a dense tabular format.

Usage

readSparseCounts(
file,
sep = "\t",
quote = NULL,
comment.char = "",
row.names = TRUE,
col.names = TRUE,
ignore.row = 0L,
skip.row = 0L,
ignore.col = 0L,
skip.col = 0L,
chunk = 1000L

)

Arguments

file A string containing a file path to a count table, or a connection object opened in
read-only text mode.

sep A string specifying the delimiter between fields in file.
quote A string specifying the quote character, e.g., in column or row names.
comment.char A string specifying the comment character after which values are ignored.
row.names A logical scalar specifying whether row names are present.
col.names A logical scalar specifying whether column names are present.
ignore.row An integer scalar specifying the number of rows to ignore at the start of the file,

before the column names.
skip.row An integer scalar specifying the number of rows to ignore at the start of the file,

after the column names.
ignore.col An integer scalar specifying the number of columns to ignore at the start of the

file, before the column names.
skip.col An integer scalar specifying the number of columns to ignore at the start of the

file, after the column names.
chunk A integer scalar indicating the chunk size to use, i.e., number of rows to read at

any one time.

Reduced dimension plots 83

Details

This function provides a convenient method for reading dense arrays from flat files into a sparse
matrix in memory. Memory usage can be further improved by setting chunk to a smaller positive
value.

The ignore.* and skip.* parameters allow irrelevant rows or columns to be skipped. Note that
the distinction between the two parameters is only relevant when row.names=FALSE (for skip-
ping/ignoring columns) or col.names=FALSE (for rows).

Value

A dgCMatrix containing double-precision values (usually counts) for each row (gene) and column
(cell).

Author(s)

Aaron Lun

See Also

read.table, readMM

Examples

outfile <- tempfile()
write.table(data.frame(A=1:5, B=0, C=0:4, row.names=letters[1:5]),

file=outfile, col.names=NA, sep="\t", quote=FALSE)

readSparseCounts(outfile)

Reduced dimension plots

Plot specific reduced dimensions

Description

Wrapper functions to create plots for specific types of reduced dimension results in a SingleCellEx-
periment object.

Usage

plotPCASCE(object, ..., ncomponents = 2)

plotTSNE(object, ..., ncomponents = 2)

plotUMAP(object, ..., ncomponents = 2)

plotDiffusionMap(object, ..., ncomponents = 2)

plotMDS(object, ..., ncomponents = 2)

84 Reduced dimension plots

plotNMF(object, ..., ncomponents = 2)

S4 method for signature 'SingleCellExperiment'
plotPCA(object, ..., ncomponents = 2)

Arguments

object A SingleCellExperiment object.

... Additional arguments to pass to plotReducedDim.

ncomponents Numeric scalar indicating the number of dimensions components to (calculate
and) plot. This can also be a numeric vector, see ?plotReducedDim for details.

Details

Each function is a convenient wrapper around plotReducedDim that searches the reducedDims slot
for an appropriately named dimensionality reduction result:

• "PCA" for plotPCA

• "TSNE" for plotTSNE

• "DiffusionMap" for plotDiffusionMap

• "MDS" for "plotMDS"

• "NMF" for "plotNMF"

• "UMAP" for "plotUMAP"

Its only purpose is to streamline workflows to avoid the need to specify the dimred argument.

Value

A ggplot object.

Author(s)

Davis McCarthy, with modifications by Aaron Lun

See Also

runPCA, runDiffusionMap, runTSNE, runMDS, runNMF, and runUMAP, for the functions that actually
perform the calculations.

plotReducedDim, for the underlying plotting function.

Examples

example_sce <- mockSCE()
example_sce <- logNormCounts(example_sce)
example_sce <- runPCA(example_sce)

Examples plotting PC1 and PC2
plotPCA(example_sce)
plotPCA(example_sce, colour_by = "Cell_Cycle")
plotPCA(example_sce, colour_by = "Cell_Cycle", shape_by = "Treatment")

Examples plotting more than 2 PCs
plotPCA(example_sce, ncomponents = 4, colour_by = "Treatment",

retrieveCellInfo 85

shape_by = "Mutation_Status")

Same for TSNE:
example_sce <- runTSNE(example_sce)
plotTSNE(example_sce, colour_by="Mutation_Status")

Same for DiffusionMaps:
example_sce <- runDiffusionMap(example_sce)
plotDiffusionMap(example_sce)

Same for MDS plots:
example_sce <- runMDS(example_sce)
plotMDS(example_sce)

retrieveCellInfo Cell-based data retrieval

Description

Retrieves a per-cell (meta)data field from a SingleCellExperiment based on a single keyword, typi-
cally for use in visualization functions.

Usage

retrieveCellInfo(
x,
by,
search = c("colData", "assays", "altExps"),
exprs_values = "logcounts"

)

Arguments

x A SingleCellExperiment object.

by A string specifying the field to extract (see Details). Alternatively, a data.frame,
DataFrame or an AsIs vector.

search Character vector specifying the types of data or metadata to use.

exprs_values String or integer scalar specifying the assay from which expression values should
be extracted.

Details

Given an AsIs-wrapped vector in by, this function will directly return the vector values as value,
while name is set to an empty string. For data.frame or DataFrame instances with a single column,
this function will return the vector from that column as value and the column name as name. This
allows downstream visualization functions to accommodate arbitrary inputs for adjusting aesthetics.

Given a character string in by, this function will:

1. Search colData for a column named by, and return the corresponding field as the output
value. We do not consider nested elements within the colData.

86 retrieveFeatureInfo

2. Search assay(x,exprs_values) for a row named by, and return the expression vector for
this feature as the output value.

3. Search each alternative experiment in altExps(x) for a row names by, and return the expres-
sion vector for this feature at exprs_values as the output value.

Any match will cause the function to return without considering later possibilities. The search can
be modified by changing the presence and ordering of elements in search.

If there is a name clash that results in retrieval of an unintended field, users should explicitly set by
to a data.frame, DataFrame or AsIs-wrapped vector containing the desired values. Developers can
also consider setting search to control the fields that are returned.

Value

A list containing name, a string with the name of the extracted field (usually identically to by); and
value, a vector of length equal to ncol(x) containing per-cell (meta)data values. If by=NULL or
was not found in x, both name and value are set to NULL.

Author(s)

Aaron Lun

See Also

makePerCellDF, which provides a more user-friendly interface to this function.

plotColData, plotReducedDim, plotExpression, plotPlatePosition, and most other cell-based
plotting functions.

Examples

example_sce <- mockSCE()
example_sce <- logNormCounts(example_sce)

retrieveCellInfo(example_sce, "Cell_Cycle")
retrieveCellInfo(example_sce, "Gene_0001")

arbitrary.field <- rnorm(ncol(example_sce))
retrieveCellInfo(example_sce, I(arbitrary.field))
retrieveCellInfo(example_sce, data.frame(stuff=arbitrary.field))

retrieveFeatureInfo Feature-based data retrieval

Description

Retrieves a per-feature (meta)data field from a SingleCellExperiment based on a single keyword,
typically for use in visualization functions.

retrieveFeatureInfo 87

Usage

retrieveFeatureInfo(
x,
by,
search = c("rowData", "assays"),
exprs_values = "logcounts"

)

Arguments

x A SingleCellExperiment object.

by A string specifying the field to extract (see Details). Alternatively, a data.frame,
DataFrame or an AsIs vector.

search Character vector specifying the types of data or metadata to use.

exprs_values String or integer scalar specifying the assay from which expression values should
be extracted.

Details

Given a AsIs-wrapped vector in by, this function will directly return the vector values as value,
while name is set to an empty string. For data.frame or DataFrame instances with a single column,
this function will return the vector from that column as value and the column name as name. This
allows downstream visualization functions to accommodate arbitrary inputs for adjusting aesthetics.

Given a character string in by, this function will:

1. Search rowData for a column named by, and return the corresponding field as the output
value. We do not consider nested elements within the rowData.

2. Search assay(x,exprs_values) for a column named by, and return the expression vector for
this feature as the output value.

Any match will cause the function to return without considering later possibilities. The search can
be modified by changing the presence and ordering of elements in search.

If there is a name clash that results in retrieval of an unintended field, users should explicitly set by
to a data.frame, DataFrame or AsIs-wrapped vector containing the desired values. Developers can
also consider setting search to control the fields that are returned.

Value

A list containing name, a string with the name of the extracted field (usually identically to by); and
value, a vector of length equal to ncol(x) containing per-feature (meta)data values. If by=NULL or
was not found in x, both name and value are set to NULL.

Author(s)

Aaron Lun

See Also

makePerFeatureDF, which provides a more user-friendly interface to this function.

plotRowData and other feature-based plotting functions.

88 runColDataPCA

Examples

example_sce <- mockSCE()
example_sce <- logNormCounts(example_sce)
rowData(example_sce)$blah <- sample(LETTERS,

nrow(example_sce), replace=TRUE)

str(retrieveFeatureInfo(example_sce, "blah"))
str(retrieveFeatureInfo(example_sce, "Cell_001"))

arbitrary.field <- rnorm(nrow(example_sce))
str(retrieveFeatureInfo(example_sce, I(arbitrary.field)))
str(retrieveFeatureInfo(example_sce, data.frame(stuff=arbitrary.field)))

runColDataPCA Perform PCA on column metadata

Description

Perform a principal components analysis (PCA) on cells, based on the column metadata in a Sin-
gleCellExperiment object.

Usage

runColDataPCA(
x,
ncomponents = 2,
variables = NULL,
scale = TRUE,
outliers = FALSE,
BSPARAM = ExactParam(),
BPPARAM = SerialParam(),
name = "PCA_coldata"

)

Arguments

x A SingleCellExperiment object.
ncomponents Numeric scalar indicating the number of principal components to obtain.
variables List of strings or a character vector indicating which variables in colData(x) to

use. If a list, each entry can also be an AsIs vector or a data.frame, as described
in ?retrieveCellInfo.

scale Logical scalar, should the expression values be standardised so that each feature
has unit variance? This will also remove features with standard deviations below
1e-8.

outliers Logical indicating whether outliers should be detected based on PCA coordi-
nates.

BSPARAM A BiocSingularParam object specifying which algorithm should be used to per-
form the PCA.

BPPARAM A BiocParallelParam object specifying whether the PCA should be parallelized.
name String specifying the name to be used to store the result in the reducedDims of

the output.

runMultiUMAP 89

Details

This function performs PCA on variables from the column-level metadata instead of the gene ex-
pression matrix. Doing so can be occasionally useful when other forms of experimental data are
stored in the colData, e.g., protein intensities from FACs or other cell-specific phenotypic informa-
tion.

This function is particularly useful for identifying low-quality cells based on QC metrics with
outliers=TRUE. This uses an “outlyingness” measure computed by adjOutlyingness in the ro-
bustbase package. Outliers are defined those cells with outlyingness values more than 5 MADs
above the median, using isOutlier.

Value

A SingleCellExperiment object containing the first ncomponent principal coordinates for each cell.
By default, these are stored in the "PCA_coldata" entry of the reducedDims slot. The proportion
of variance explained by each PC is stored as a numeric vector in the "percentVar" attribute.

If outliers=TRUE, the output colData will also contain a logical outlier field. This specifies the
cells that correspond to the identified outliers.

Author(s)

Aaron Lun, based on code by Davis McCarthy

See Also

runPCA, for the corresponding method operating on expression data.

Examples

example_sce <- mockSCE()
qc.df <- perCellQCMetrics(example_sce, subset=list(Mito=1:10))
colData(example_sce) <- cbind(colData(example_sce), qc.df)

Can supply names of colData variables to 'variables',
as well as AsIs-wrapped vectors of interest.
example_sce <- runColDataPCA(example_sce, variables=list(

"sum", "detected", "subsets_Mito_percent", "altexps_Spikes_percent"
))
reducedDimNames(example_sce)
head(reducedDim(example_sce))

runMultiUMAP Multi-modal UMAP

Description

Perform UMAP with multiple input matrices by intersecting their simplicial sets. Typically used to
combine results from multiple data modalities into a single embedding.

Usage

runMultiUMAP(inputs, ..., metric = "euclidean")

90 runMultiUMAP

Arguments

inputs A list of numeric matrices where each row is a cell and each column is some
dimension/variable. For gene expression data, this is usually the matrix of PC
coordinates.

... Further arguments to pass to umap.

metric String specifying the type of distance to use.

Details

This is simply a convenience wrapper around umap for multi-modal analysis. All modes use the
distance metric of metric to construct the simplicial sets within each mode. Comparisons across
modes are then performed after intersecting the sets to obtain a single graph.

Value

A numeric matrix containing the low-dimensional UMAP embedding.

Author(s)

Aaron Lun

See Also

runUMAP, for the more straightforward application of UMAP.

Examples

Mocking up a gene expression + ADT dataset:
exprs_sce <- mockSCE()
exprs_sce <- logNormCounts(exprs_sce)
exprs_sce <- runPCA(exprs_sce)

adt_sce <- mockSCE(ngenes=20)
adt_sce <- logNormCounts(adt_sce)
altExp(exprs_sce, "ADT") <- adt_sce

Running a multimodal analysis using PCs for expression
and log-counts for the ADTs:
output <- runMultiUMAP(

list(
reducedDim(exprs_sce, "PCA"),
t(logcounts(altExp(exprs_sce, "ADT")))

)
)

reducedDim(exprs_sce, "combinedUMAP") <- output
plotReducedDim(exprs_sce, "combinedUMAP")

scater-plot-args 91

scater-plot-args General visualization parameters

Description

scater functions that plot points share a number of visualization parameters, which are described
on this page.

Aesthetic parameters

add_legend: Logical scalar, specifying whether a legend should be shown. Defaults to TRUE.

theme_size: Integer scalar, specifying the font size. Defaults to 10.

point_alpha: Numeric scalar in [0, 1], specifying the transparency. Defaults to 0.6.

point_size: Numeric scalar, specifying the size of the points. Defaults to NULL.

jitter_type: String to define how points are to be jittered in a violin plot. This is either with
random jitter on the x-axis ("jitter") or in a “beeswarm” style (if "swarm", default). The
latter usually looks more attractive, but for datasets with a large number of cells, or for dense
plots, the jitter option may work better.

Distributional calculations

show_median: Logical, should the median of the distribution be shown for violin plots? Defaults
to FALSE.

show_violin: Logical, should the outline of a violin plot be shown? Defaults to TRUE.

show_smooth: Logical, should a smoother be fitted to a scatter plot? Defaults to FALSE.

show_se: Logical, should standard errors for the fitted line be shown on a scatter plot when show_smooth=TRUE?
Defaults to TRUE.

Miscellaneous fields

Addititional fields can be added to the data.frame passed to ggplot by setting the other_fields
argument. This allows users to easily incorporate additional metadata for use in further ggplot
operations.

The other_fields argument should be character vector where each string is passed to retrieveCellInfo
(for cell-based plots) or retrieveFeatureInfo (for feature-based plots). Alternatively, other_fields
can be a named list where each element is of any type accepted by retrieveCellInfo or retrieveFeatureInfo.
This includes AsIs-wrapped vectors, data.frames or DataFrames.

Each additional column of the output data.frame will be named according to the name returned
by retrieveCellInfo or retrieveFeatureInfo. If these clash with inbuilt names (e.g., X, Y,
colour_by), a warning will be raised and the additional column will not be added to avoid over-
writing an existing column.

See Also

plotColData, plotRowData, plotReducedDim, plotExpression, plotPlatePosition, and most
other plotting functions.

92 SCESet

scater-utils Developer utilities

Description

Various utilities for re-use in packages that happen to depend on scater. These are exported simply
to avoid re-writing them in downstream packages, and should not be touched by end-users.

Author(s)

Aaron Lun

SCESet The "Single Cell Expression Set" (SCESet) class

Description

S4 class and the main class used by scater to hold single cell expression data. SCESet extends the
basic Bioconductor ExpressionSet class.

Details

This class is initialized from a matrix of expression values.

Methods that operate on SCESet objects constitute the basic scater workflow.

Slots

logExprsOffset: Scalar of class "numeric", providing an offset applied to expression data in the
‘exprs‘ slot when undergoing log2-transformation to avoid trying to take logs of zero.

lowerDetectionLimit: Scalar of class "numeric", giving the lower limit for an expression value
to be classified as "expressed".

cellPairwiseDistances: Matrix of class "numeric", containing pairwise distances between cells.

featurePairwiseDistances: Matrix of class "numeric", containing pairwise distances between
features.

reducedDimension: Matrix of class "numeric", containing reduced-dimension coordinates for
cells (generated, for example, by PCA).

bootstraps: Array of class "numeric" that can contain bootstrap estimates of the expression or
count values.

sc3: List containing results from consensus clustering from the SC3 package.

featureControlInfo: Data frame of class "AnnotatedDataFrame" that can contain informa-
tion/metadata about sets of control features defined for the SCESet object. bootstrap estimates
of the expression or count values.

References

Thanks to the Monocle package (github.com/cole-trapnell-lab/monocle-release/) for their CellDataSet
class, which provided the inspiration and template for SCESet.

sumCountsAcrossCells 93

sumCountsAcrossCells Aggregate expression values across groups of cells

Description

Sum counts or average expression values for each feature across groups of cells. Also aggregate
values in the colData and other metadata within each group.

Usage

sumCountsAcrossCells(x, ...)

aggregateAcrossCells(x, ...)

S4 method for signature 'ANY'
sumCountsAcrossCells(
x,
ids,
subset_row = NULL,
subset_col = NULL,
store_number = "ncells",
average = FALSE,
BPPARAM = SerialParam()

)

S4 method for signature 'SummarizedExperiment'
sumCountsAcrossCells(x, ..., exprs_values = "counts")

S4 method for signature 'SummarizedExperiment'
aggregateAcrossCells(
x,
ids,
...,
subset_row = NULL,
subset_col = NULL,
store_number = "ncells",
coldata_merge = NULL,
use_exprs_values = "counts"

)

S4 method for signature 'SingleCellExperiment'
aggregateAcrossCells(
x,
ids,
...,
subset_row = NULL,
subset_col = NULL,
coldata_merge = NULL,
store_number = "ncells",
use_exprs_values = "counts",
use_altexps = TRUE,

94 sumCountsAcrossCells

use_dimred = TRUE
)

Arguments

x For sumCountsAcrossCells, a numeric matrix of expression values (usually
counts) containing features in rows and cells in columns. Alternatively, a Sum-
marizedExperiment object containing such a matrix.
For aggregateAcrossCells, a SingleCellExperiment or SummarizedExperi-
ment containing one or more matrices of expression values to be aggregated,
possibly along with colData, reducedDims and altExps elements.

... For the generics, further arguments to be passed to specific methods.
For the sumCountsAcrossCells SummarizedExperiment method, further argu-
ments to be passed to the ANY method.
For aggregateAcrossCells, further arguments to be passed to sumCountsAcrossCells.

ids A factor specifying the group to which each cell in x belongs.
Alternatively, a DataFrame of such vectors or factors, in which case each unique
combination of levels defines a group.

subset_row An integer, logical or character vector specifying the features to use. Defaults to
all features.
For the SingleCellExperiment method, this argument will not affect alternative
Experiments, where aggregation is always performed for all features (or not at
all, depending on use_alt_exps).

subset_col An integer, logical or character vector specifying the cells to use. Defaults to all
cells with non-NA entries of ids.

store_number String specifying the field of the output colData to store the number of cells in
each group. If NULL, nothing is stored.

average Logical scalar indicating whether the average should be computed instead of the
sum.

BPPARAM A BiocParallelParam object specifying whether summation should be paral-
lelized.

exprs_values A string or integer scalar specifying the assay of x containing the matrix of
counts (or any other expression quantity that can be meaningfully summed).

coldata_merge A named list of functions specifying how each column metadata field should
be aggregated. Each function should be named according to the name of the
column in colData to which it applies. Alternatively, a single function can be
supplied, see below for more details.

use_exprs_values

A character or integer vector specifying the assay(s) of x containing count ma-
trices.

use_altexps Logical scalar indicating whether aggregation should be performed for alterna-
tive experiments in x. Alternatively, a character or integer vector specifying the
alternative experiments to be aggregated.

use_dimred Logical scalar indicating whether aggregation should be performed for dimen-
sionality reduction results in x. Alternatively, a character or integer vector spec-
ifying the dimensionality reduction results to be aggregated.

sumCountsAcrossCells 95

Details

These functions provide a convenient method for summing or averaging expression values across
multiple columns for each feature. A typical application would be to sum counts across all cells
in each cluster to obtain “pseudo-bulk” samples for further analyses, e.g., differential expression
analyses between conditions.

The behaviour of sumCountsAcrossCells is equivalent to that of colsum. However, this function
can operate on any matrix representation in object; can do so in a parallelized manner for large
matrices without resorting to block processing; and can natively support combinations of multiple
factors in ids.

Any NA values in ids are implicitly ignored and will not be considered during summation. This
may be useful for removing undesirable cells by setting their entries in ids to NA. Alternatively, we
can explicitly select the cells of interest with subset_col.

Setting average=TRUE will compute the average in each set rather than the sum. This is particu-
larly useful if x contains expression values that have already been normalized in some manner, as
computing the average avoids another round of normalization to account for differences in the size
of each set.

Note that, prior to version 1.16.0, sumCountsAcrossCells would return a raw matrix. This has
now been wrapped in a SummarizedExperiment for consistency and to include per-group statistics.

Value

For sumCountsAcrossCells, a SummarizedExperiment is returned with one column per level of
ids. Each entry of the assay contains the sum or average across all cells in a given group (column)
for a given feature (row). Columns are ordered by levels(ids) and the number of cells per level
is reported in the "ncells" column metadata. For DataFrame ids, each column corresponds to a
unique combination of levels (recorded in the colData).

For aggregateAcrossCells, a SummarizedExperiment of the same class as x is returned, con-
taining summed/averaged matrices generated by sumCountsAcrossCell on all assays specified in
use_exprs_values. Column metadata and other available metadata (e.g., reduced dimensions) are
also aggregated, see below.

Aggregation of additional metadata

The aggregateAcrossCells sums the assay values in x using sumCountsAcrossCells while also
aggregating metadata across cells in a sensible manner. This makes it useful for obtaining an ag-
gregated SummarizedExperiment during an analysis session; in contrast, sumCountsAcrossCells
is more lightweight and is better for use inside other functions.

Aggregation of the colData is controlled using functions in coldata_merge. This can either be:

• A function that takes a subset of entries for any given column metadata field and returns a
single value. This can be set to, e.g., sum or median for numeric covariates, or a function that
takes the most abundant level for categorical factors.

• A named list of such functions, where each function is applied to the column metadata field
after which it is named. Any field that does not have an entry in coldata_merge is “unspec-
ified” and handled as described below. A list element can also be set to FALSE, in which case
no aggregation is performed for the corresponding field.

• NULL, in which case all fields are considered to be unspecified.

• FALSE, in which case no aggregation of column metadata is performed.

96 sumCountsAcrossFeatures

For any unspecified field, we check if all cells of a group have the same value. If so, that value is
reported, otherwise a NA is reported for the offending group.

If x is a SingleCellExperiment, the assay values in the altExps are subjected to a similar summa-
tion/averaging across cells. This uses the same arguments that were used for the main experiment.
Values in the reducedDims are also averaged across cells (regardless of the value of average).

Users can tune the behavior of the function for these additional fields with use_altexps and
use_dimred. Note that if the alternative experiments themselves are SingleCellExperiments, any
further nested alternative experiment or reduced dimensions will always be aggregated regardless
of the value of use_altexps or use_dimred.

If ids is a DataFrame, the combination of levels corresponding to each column is also reported in
the column metadata. Otherwise, the level corresponding to each column is captured in the column
names.

Author(s)

Aaron Lun

See Also

numDetectedAcrossCells, which computes the number of expressing cells in each group.

Examples

example_sce <- mockSCE()
ids <- sample(LETTERS[1:5], ncol(example_sce), replace=TRUE)

out <- sumCountsAcrossCells(example_sce, ids)
head(out)
attr(out, "ncells")

batches <- sample(1:3, ncol(example_sce), replace=TRUE)
out2 <- sumCountsAcrossCells(example_sce,

DataFrame(label=ids, batch=batches))
head(out2)
attr(out2, "ids")

Using another column metadata merge strategy.
example_sce$stuff <- runif(ncol(example_sce))
example_merged <- aggregateAcrossCells(example_sce, ids,

coldata_merge=list(stuff=sum))

sumCountsAcrossFeatures

Sum counts across feature sets

Description

Sum together expression values (by default, counts) for each feature set in each cell.

sumCountsAcrossFeatures 97

Usage

sumCountsAcrossFeatures(x, ...)

S4 method for signature 'ANY'
sumCountsAcrossFeatures(
x,
ids,
subset_row = NULL,
subset_col = NULL,
average = FALSE,
BPPARAM = SerialParam()

)

S4 method for signature 'SummarizedExperiment'
sumCountsAcrossFeatures(x, ..., exprs_values = "counts")

aggregateAcrossFeatures(x, ids, ..., use_exprs_values = "counts")

Arguments

x For sumCountsAcrossFeatures, a numeric matrix of counts containing fea-
tures in rows and cells in columns. Alternatively, a SummarizedExperiment
object containing such a count matrix.

For aggregateAcrossFeatures, a SummarizedExperiment containing a count
matrix.

... For the sumCountsAcrossFeatures generic, further arguments to be passed to
specific methods.

For the SummarizedExperiment method, further arguments to be passed to the
ANY method.

For aggregateAcrossFeatures, further arguments to be passed to sumCountsAcrossFeatures.

ids A factor of length nrow(x), specifying the set to which each feature in x belongs.

Alternatively, a list of integer or character vectors, where each vector specifies
the indices or names of features in a set.

subset_row An integer, logical or character vector specifying the features to use. Defaults to
all features.

subset_col An integer, logical or character vector specifying the cells to use. Defaults to all
cells with non-NA entries of ids.

average Logical scalar indicating whether the average should be computed instead of the
sum.

BPPARAM A BiocParallelParam object specifying whether summation should be paral-
lelized.

exprs_values A string or integer scalar specifying the assay of x containing the matrix of
counts (or any other expression quantity that can be meaningfully summed).

use_exprs_values

A character or integer vector specifying the assay(s) of x containing count ma-
trices.

98 uniquifyFeatureNames

Details

This function provides a convenient method for aggregating counts across multiple rows for each
cell. Several possible applications are listed below:

• Using a list of genes in ids, we can obtain a summary expression value for all genes in one or
more gene sets. This allows the activity of various pathways to be compared across cells.

• Genes with multiple mapping locations in the reference will often manifest as multiple rows
with distinct Ensembl/Entrez IDs. These counts can be aggregated into a single feature by
setting the shared identifier (usually the gene symbol) as ids.

• It is theoretically possible to aggregate transcript-level counts to gene-level counts with this
function. However, it is often better to do so with dedicated functions (e.g., from the tximport
or tximeta packages) that account for differences in length across isoforms.

The behaviour of this function is equivalent to that of rowsum. However, this function can operate
on any matrix representation in object, and can do so in a parallelized manner for large matrices
without resorting to block processing.

If ids is a factor, any NA values are implicitly ignored and will not be considered or reported. This
may be useful, e.g., to remove undesirable feature sets by setting their entries in ids to NA.

Setting average=TRUE will compute the average in each set rather than the sum. This is particu-
larly useful if x contains expression values that have already been normalized in some manner, as
computing the average avoids another round of normalization to account for differences in the size
of each set.

Value

For sumCountsAcrossFeatures, a count matrix is returned with one row per level of ids. In each
cell, counts for all features in the same set are summed together. Rows are ordered according to
levels(ids).

For aggregateAcrossFeatures, a SummarizedExperiment of the same class as x is returned, con-
taining summed matrices generated by sumCountsAcrossFeatures on all assays in use_exprs_values.
Row metadata is retained for the first instance of a feature from each set in ids.

Author(s)

Aaron Lun

Examples

example_sce <- mockSCE()
ids <- sample(LETTERS, nrow(example_sce), replace=TRUE)
out <- sumCountsAcrossFeatures(example_sce, ids)
str(out)

uniquifyFeatureNames Make feature names unique

Description

Combine a user-interpretable feature name (e.g., gene symbol) with a standard identifier that is
guaranteed to be unique and valid (e.g., Ensembl) for use as row names.

updateSCESet 99

Usage

uniquifyFeatureNames(ID, names)

Arguments

ID A character vector of unique identifiers.

names A character vector of feature names.

Details

This function will attempt to use names if it is unique. If not, it will append the _ID to any non-
unique value of names. Missing names will be replaced entirely by ID.

The output is guaranteed to be unique, assuming that ID is also unique. This can be directly used as
the row names of a SingleCellExperiment object.

Value

A character vector of unique-ified feature names.

Author(s)

Aaron Lun

Examples

uniquifyFeatureNames(
ID=paste0("ENSG0000000", 1:5),
names=c("A", NA, "B", "C", "A")

)

updateSCESet Convert an SCESet object to a SingleCellExperiment object

Description

Convert an SCESet object produced with an older version of the package to a SingleCellExperiment
object compatible with the current version.

Usage

updateSCESet(object)

toSingleCellExperiment(object)

Arguments

object an SCESet object to be updated

Value

a SingleCellExperiment object

100 updateSCESet

Examples

Not run:
updateSCESet(example_sceset)

End(Not run)
Not run:
toSingleCellExperiment(example_sceset)

End(Not run)

Index

.assignIndicesToWorkers (scater-utils),
92

.bpNotSharedOrUp (scater-utils), 92

.splitColsByWorkers (scater-utils), 92

.splitRowsByWorkers (scater-utils), 92

.splitVectorByWorkers (scater-utils), 92

.subset2index (scater-utils), 92

addPerCellQC, 3, 59
addPerFeatureQC, 61
addPerFeatureQC (addPerCellQC), 3
aes, 34
aggregateAcrossCells

(sumCountsAcrossCells), 93
aggregateAcrossCells,SingleCellExperiment-method

(sumCountsAcrossCells), 93
aggregateAcrossCells,SummarizedExperiment-method

(sumCountsAcrossCells), 93
aggregateAcrossFeatures

(sumCountsAcrossFeatures), 96
altExp, 11, 15, 18, 21, 26, 29, 34, 41
altExps, 40, 46, 86, 94, 96
annotateBMFeatures, 4
AsIs, 62–64, 72, 75, 78, 80, 85, 87, 88, 91
assay, 86, 87

BiocNeighborParam, 24, 28
BiocParallelParam, 20, 24, 28, 38, 40, 49,

50, 54, 55, 88, 94, 97
BiocSingularParam, 19, 88
bootstraps, 5
bootstraps,SingleCellExperiment-method

(bootstraps), 5
bootstraps<- (bootstraps), 5
bootstraps<-,SingleCellExperiment,array-method

(bootstraps), 5
bsparam, 20

calculateAverage, 6
calculateAverage,ANY-method

(calculateAverage), 6
calculateAverage,SingleCellExperiment-method

(calculateAverage), 6

calculateAverage,SummarizedExperiment-method
(calculateAverage), 6

calculateCPM, 7, 12, 22
calculateCPM,ANY-method (calculateCPM),

7
calculateCPM,SingleCellExperiment-method

(calculateCPM), 7
calculateCPM,SummarizedExperiment-method

(calculateCPM), 7
calculateDiffusionMap, 9
calculateDiffusionMap,ANY-method

(calculateDiffusionMap), 9
calculateDiffusionMap,SingleCellExperiment-method

(calculateDiffusionMap), 9
calculateDiffusionMap,SummarizedExperiment-method

(calculateDiffusionMap), 9
calculateFPKM, 12, 22
calculateMDS, 13
calculateMDS,ANY-method (calculateMDS),

13
calculateMDS,SingleCellExperiment-method

(calculateMDS), 13
calculateMDS,SummarizedExperiment-method

(calculateMDS), 13
calculateNMF, 15
calculateNMF,ANY-method (calculateNMF),

15
calculateNMF,SingleCellExperiment-method

(calculateNMF), 15
calculateNMF,SummarizedExperiment-method

(calculateNMF), 15
calculatePCA, 18
calculatePCA,ANY-method (calculatePCA),

18
calculatePCA,SingleCellExperiment-method

(calculatePCA), 18
calculatePCA,SummarizedExperiment-method

(calculatePCA), 18
calculateQCMetrics (defunct), 30
calculateTPM, 21
calculateTPM,ANY-method (calculateTPM),

21
calculateTPM,SingleCellExperiment-method

101

102 INDEX

(calculateTPM), 21
calculateTPM,SummarizedExperiment-method

(calculateTPM), 21
calculateTSNE, 23
calculateTSNE,ANY-method

(calculateTSNE), 23
calculateTSNE,SingleCellExperiment-method

(calculateTSNE), 23
calculateTSNE,SummarizedExperiment-method

(calculateTSNE), 23
calculateUMAP, 26
calculateUMAP,ANY-method

(calculateUMAP), 26
calculateUMAP,SingleCellExperiment-method

(calculateUMAP), 26
calculateUMAP,SummarizedExperiment-method

(calculateUMAP), 26
centreSizeFactors (defunct), 30
cmdscale, 14, 15
colData, 3, 46, 54, 85, 93–95
colsum, 95
computeLibraryFactors

(librarySizeFactors), 37
computeMedianFactors

(medianSizeFactors), 44

DataFrame, 5, 32, 54, 57, 58, 60, 61, 81, 85,
87, 91, 94

defunct, 30
DelayedArray, 38
DelayedMatrix, 7, 49, 50
DiffusionMap, 9–11
downsampleMatrix, 51

exprs (norm_exprs), 52
exprs,SingleCellExperiment-method,

(norm_exprs), 52
exprs<-,SingleCellExperiment,ANY-method

(norm_exprs), 52

facet_wrap, 68, 80
findKNN, 24, 28
fpkm (norm_exprs), 52
fpkm,SingleCellExperiment-method

(norm_exprs), 52
fpkm<- (norm_exprs), 52
fpkm<-,SingleCellExperiment,ANY-method

(norm_exprs), 52

geom_boxplot, 77
getBM, 4
getBMFeatureAnnos (annotateBMFeatures),

4

getExplanatoryPCs, 31, 33, 65
getVarianceExplained, 31, 32, 66
getVarianceExplained,ANY-method

(getVarianceExplained), 32
getVarianceExplained,SummarizedExperiment-method

(getVarianceExplained), 32
ggcells, 33, 42
ggfeatures, 44
ggfeatures (ggcells), 33
ggplot, 33, 34, 42, 43, 47, 62, 64, 72, 79, 80,

84, 91

isOutlier, 35, 81, 89

librarySizeFactors, 7, 37, 45, 50
librarySizeFactors,ANY-method

(librarySizeFactors), 37
librarySizeFactors,SummarizedExperiment-method

(librarySizeFactors), 37
logNormCounts, 7, 30, 38, 39, 39, 45, 51
logNormCounts,SingleCellExperiment-method

(logNormCounts), 39
logNormCounts,SummarizedExperiment-method

(logNormCounts), 39

make.names, 42, 43
makePerCellDF, 35, 41, 86
makePerFeatureDF, 35, 43, 87
median, 95
medianSizeFactors, 44
medianSizeFactors,ANY-method

(medianSizeFactors), 44
medianSizeFactors,SummarizedExperiment-method

(medianSizeFactors), 44
mockSCE, 46
modelGeneVarWithSpikes, 51
multiBatchNorm, 51
multiplot, 47

nexprs, 48, 53–56
nexprs,ANY-method (nexprs), 48
nexprs,SummarizedExperiment-method

(nexprs), 48
nmf, 17, 18
norm_exprs, 52
norm_exprs,SingleCellExperiment-method

(norm_exprs), 52
norm_exprs<- (norm_exprs), 52
norm_exprs<-,SingleCellExperiment,ANY-method

(norm_exprs), 52
normalize,SingleCellExperiment-method

(defunct), 30
normalize_input, 24

INDEX 103

normalizeCounts, 8, 40, 41, 49, 51
normalizeCounts,ANY-method

(normalizeCounts), 49
normalizeCounts,SingleCellExperiment-method

(normalizeCounts), 49
normalizeCounts,SummarizedExperiment-method

(normalizeCounts), 49
numDetectedAcrossCells, 49, 53, 96
numDetectedAcrossCells,ANY-method

(numDetectedAcrossCells), 53
numDetectedAcrossCells,SummarizedExperiment-method

(numDetectedAcrossCells), 53
numDetectedAcrossFeatures, 49, 55
numDetectedAcrossFeatures,ANY-method

(numDetectedAcrossFeatures), 55
numDetectedAcrossFeatures,SummarizedExperiment-method

(numDetectedAcrossFeatures), 55

perCellQCMetrics, 3, 4, 30, 37, 56, 81
perCellQCMetrics,ANY-method

(perCellQCMetrics), 56
perCellQCMetrics,SingleCellExperiment-method

(perCellQCMetrics), 56
perCellQCMetrics,SummarizedExperiment-method

(perCellQCMetrics), 56
perFeatureQCMetrics, 3, 4, 30, 59
perFeatureQCMetrics,ANY-method

(perFeatureQCMetrics), 59
perFeatureQCMetrics,SummarizedExperiment-method

(perFeatureQCMetrics), 59
pheatmap, 70, 71
plotColData, 61, 86, 91
plotDiffusionMap, 11
plotDiffusionMap (Reduced dimension

plots), 83
plotDots, 63
plotExplanatoryPCs, 31, 65
plotExplanatoryVariables, 33, 66
plotExpression, 64, 67, 86, 91
plotHeatmap, 64, 69
plotHighestExprs, 71
plotMDS, 15
plotMDS (Reduced dimension plots), 83
plotNMF, 18
plotNMF (Reduced dimension plots), 83
plotPCA, 21, 75
plotPCA (Reduced dimension plots), 83
plotPCA,SingleCellExperiment-method

(Reduced dimension plots), 83
plotPCASCE (Reduced dimension plots), 83
plotPlatePosition, 72, 86, 91
plotReducedDim, 74, 84, 86, 91
plotRLE, 76

plotRLE,SingleCellExperiment-method
(plotRLE), 76

plotRowData, 78, 87, 91
plotScater, 79
plotTSNE, 26
plotTSNE (Reduced dimension plots), 83
plotUMAP, 29
plotUMAP (Reduced dimension plots), 83

quickPerCellQC, 37, 80

read.table, 83
readMM, 83
readSparseCounts, 82
Reduced dimension plots, 83
reducedDim, 10, 11, 14, 17, 21, 25, 28, 29
reducedDims, 10, 11, 14, 15, 17, 18, 20, 21,

24, 26, 28, 29, 84, 94, 96
retrieveCellInfo, 62, 63, 67, 68, 70, 72, 73,

75, 77, 79, 80, 85, 88, 91
retrieveFeatureInfo, 72, 78, 86, 91
rowData, 3, 5, 87
rowMeans, 44
rowsum, 98
rowSums, 7
Rtsne, 16, 24–26
Rtsne_neighbors, 25
runColDataPCA, 88
runDiffusionMap, 84
runDiffusionMap

(calculateDiffusionMap), 9
runMDS, 84
runMDS (calculateMDS), 13
runMultiUMAP, 89
runNMF, 84
runNMF (calculateNMF), 15
runPCA, 21, 31, 84, 89
runPCA (calculatePCA), 18
runPCA,SingleCellExperiment-method

(calculatePCA), 18
runTSNE, 84
runTSNE (calculateTSNE), 23
runUMAP, 84, 90
runUMAP (calculateUMAP), 26

sc_example_cell_info (mockSCE), 46
sc_example_counts (mockSCE), 46
scater-plot-args, 91
scater-utils, 92
SCESet, 92, 99
SCESet-class (SCESet), 92
set.seed, 10, 17, 20, 24, 28

104 INDEX

SingleCellExperiment, 4–22, 24–29, 31, 33,
34, 38–44, 46, 50, 52, 54, 56, 57, 62,
63, 79, 85–88, 94, 96, 99

sizeFactors, 7, 38, 40, 45, 50
stand_exprs (norm_exprs), 52
stand_exprs,SingleCellExperiment-method,

(norm_exprs), 52
stand_exprs<- (norm_exprs), 52
stand_exprs<-,SingleCellExperiment,ANY-method

(norm_exprs), 52
sum, 95
sumCountsAcrossCells, 54, 93
sumCountsAcrossCells,ANY-method

(sumCountsAcrossCells), 93
sumCountsAcrossCells,SummarizedExperiment-method

(sumCountsAcrossCells), 93
sumCountsAcrossFeatures, 96
sumCountsAcrossFeatures,ANY-method

(sumCountsAcrossFeatures), 96
sumCountsAcrossFeatures,SummarizedExperiment-method

(sumCountsAcrossFeatures), 96
SummarizedExperiment, 3, 6–9, 11–13, 15,

16, 18, 19, 21, 22, 24, 26, 27, 29, 32,
38, 40, 44, 48, 50, 53, 55, 57, 59, 60,
94, 95, 97

toSingleCellExperiment (updateSCESet),
99

umap, 27–29, 90
uniquifyFeatureNames, 98
updateSCESet, 99
useMart, 4

	addPerCellQC
	annotateBMFeatures
	bootstraps
	calculateAverage
	calculateCPM
	calculateDiffusionMap
	calculateFPKM
	calculateMDS
	calculateNMF
	calculatePCA
	calculateTPM
	calculateTSNE
	calculateUMAP
	defunct
	getExplanatoryPCs
	getVarianceExplained
	ggcells
	isOutlier
	librarySizeFactors
	logNormCounts
	makePerCellDF
	makePerFeatureDF
	medianSizeFactors
	mockSCE
	multiplot
	nexprs
	normalizeCounts
	norm_exprs
	numDetectedAcrossCells
	numDetectedAcrossFeatures
	perCellQCMetrics
	perFeatureQCMetrics
	plotColData
	plotDots
	plotExplanatoryPCs
	plotExplanatoryVariables
	plotExpression
	plotHeatmap
	plotHighestExprs
	plotPlatePosition
	plotReducedDim
	plotRLE
	plotRowData
	plotScater
	quickPerCellQC
	readSparseCounts
	Reduced dimension plots
	retrieveCellInfo
	retrieveFeatureInfo
	runColDataPCA
	runMultiUMAP
	scater-plot-args
	scater-utils
	SCESet
	sumCountsAcrossCells
	sumCountsAcrossFeatures
	uniquifyFeatureNames
	updateSCESet
	Index

