
Package ‘StructuralVariantAnnotation’
October 17, 2020

Type Package

Title Variant annotations for structural variants

Version 1.4.0

Date 2020-04-15

Description StructuralVariantAnnotation contains useful helper
functions for dealing with structural variants in VCF format.
The packages contains functions for parsing VCFs from a number
of popular callers as well as functions for dealing with
breakpoints involving two separate genomic loci encoded as
GRanges objects.

License GPL-3

Depends GenomicRanges, rtracklayer, VariantAnnotation, BiocGenerics, R
(>= 3.6.0)

Imports assertthat, Biostrings, stringr, dplyr, methods, rlang

Suggests BSgenome.Hsapiens.UCSC.hg19, ggplot2, devtools, testthat,
roxygen2, covr, knitr, plyranges, ggbio, biovizBase, circlize,
tictoc, GenomeInfoDb, IRanges, S4Vectors, SummarizedExperiment

RoxygenNote 7.1.0

Encoding UTF-8

VignetteBuilder knitr

biocViews DataImport, Sequencing, Annotation, Genetics,
VariantAnnotation

git_url https://git.bioconductor.org/packages/StructuralVariantAnnotation

git_branch RELEASE_3_11

git_last_commit 67e0325

git_last_commit_date 2020-04-27

Date/Publication 2020-10-16

Author Daniel Cameron [aut, cre] (<https://orcid.org/0000-0002-0951-7116>),
Ruining Dong [aut] (<https://orcid.org/0000-0003-1433-0484>)

Maintainer Daniel Cameron <daniel.l.cameron@gmail.com>

1

2 .constrict

R topics documented:
.constrict . 2
.isSymbolic . 3
.pairwiseLCPrefix . 3
.svLen . 4
.testfile . 4
.testrecord . 5
.toVcfBreakendNotationAlt . 5
.unXStringSet . 6
align_breakpoints . 6
breakendRanges . 7
breakpointgr2bedpe . 8
breakpointgr2pairs . 8
breakpointGRangesToVCF . 10
breakpointRanges . 10
calculateReferenceHomology . 12
countBreakpointOverlaps . 13
elementExtract . 14
extractBreakpointSequence . 14
extractReferenceSequence . 15
findBreakpointOverlaps . 15
findInsDupOverlaps . 17
isStructural . 17
isSymbolic . 18
partner . 19
simpleEventLength . 20
simpleEventType . 21
StructuralVariantAnnotation . 21
%na% . 22
%null% . 22

Index 23

.constrict constrict

Description

constrict

Usage

.constrict(gr, ref = NULL, position = "middle")

Arguments

gr GRanges object

ref reference

position only ’middle’ position is accepted.

.isSymbolic 3

Value

A constricted GRanges object.

.isSymbolic Determining whether the variant is a symbolic allele.

Description

Determining whether the variant is a symbolic allele.

Usage

.isSymbolic(r, a)

Arguments

r Reference vector.

a ALT vector.

Value

A logical list of which the length is the same with the input object.

.pairwiseLCPrefix vectorised pairwise longest common prefix Returns the length of the
longest common prefix for each string pair

Description

vectorised pairwise longest common prefix Returns the length of the longest common prefix for
each string pair

Usage

.pairwiseLCPrefix(s1, s2, ignore.case = FALSE)

Arguments

s1, s2 A pair of strings.

ignore.case Whether cases in the strings should be ignored.

Value

The length of the longest common prefix for each string pair.

4 .testfile

.svLen Returns the structural variant length of the first allele

Description

Returns the structural variant length of the first allele

Usage

.svLen(vcf)

Arguments

vcf VCF object

Value

Structural variant lengths of the first allele.

.testfile Testthat helper utility to locate files used for package tests

Description

Testthat helper utility to locate files used for package tests

Usage

.testfile(filename, location = "extdata")

Arguments

filename Name of the test file.

location Directory of the test file.

Value

Returns the file to be tested.

.testrecord 5

.testrecord Loading a VCF containing the given records

Description

Loading a VCF containing the given records

Usage

.testrecord(record)

Arguments

record string vector of record to write

Value

A VCF object.

.toVcfBreakendNotationAlt

Converts to breakend notation

Description

Converts to breakend notation

Usage

.toVcfBreakendNotationAlt(gr, insSeq = gr$insSeq, ref = gr$REF)

Arguments

gr GRanges object.

insSeq insert sequence of the GRanges.

ref reference sequence of the GRanges.

Value

breakendAlt or breakpointAlt depending on whether the variant is partnered.

6 align_breakpoints

.unXStringSet converts an XStringSet to a character

Description

converts an XStringSet to a character

Usage

.unXStringSet(x)

Arguments

x An XStringSet.

Value

A character.

align_breakpoints Adjusting the nominal position of a pair of partnered breakpoint.

Description

Adjusting the nominal position of a pair of partnered breakpoint.

Usage

align_breakpoints(
vcf,
align = c("centre"),
is_higher_breakend = names(vcf) < info(vcf)$PARID

)

Arguments

vcf A VCF object.

align The alignment type.
is_higher_breakend

Breakpoint ID ordering.

Value

A VCF object with adjusted nominal positions.

breakendRanges 7

breakendRanges Extracting unpartnered breakend structural variants as a GRanges

Description

Extracting unpartnered breakend structural variants as a GRanges

Usage

breakendRanges(x, ...)

S4 method for signature 'VCF'
breakendRanges(x, ...)

Arguments

x A VCF object.

... Parameters of .breakpointRanges(). See breakpointRanges for more details.

Details

The VCF standard supports single breakends where a breakend is not part of a novel adjacency and
lacks a mate. This function supports parsing single breakends to GRanges, where a dot symbol is
used in the ALT field to annotate the directional information. Single breakends provide insights to
situations when one side of the structural variant is not observed, due to e.g. low mappability, non-
reference contigs, complex multi-break operations, etc. See Section 5.4.9 of https://samtools.
github.io/hts-specs/VCFv4.3.pdf for details of single breakends.

Value

A GRanges object of SVs.

Methods (by class)

• VCF: Extracting unpartnered structural variants as GRanges.

Examples

vcf.file <- system.file("extdata", "gridss.vcf",
package = "StructuralVariantAnnotation")

vcf <- VariantAnnotation::readVcf(vcf.file, "hg19")
breakendRanges(vcf)
breakendRanges(vcf, nominalPosition=TRUE)

https://samtools.github.io/hts-specs/VCFv4.3.pdf
https://samtools.github.io/hts-specs/VCFv4.3.pdf

8 breakpointgr2pairs

breakpointgr2bedpe Converting breakpoint GRanges to BEDPE-like dataframe

Description

Converting breakpoint GRanges to BEDPE-like dataframe

Usage

breakpointgr2bedpe(gr)

Arguments

gr A GRanges object.

Details

breakpointgr2bedpe converts a breakpoint GRanges to a BEDPE-formatted dataframe. The
BEDPE format consists of two sets of genomic loci, optinal columns of name, score, strand1,
strand2 and any user-defined fields. See https://bedtools.readthedocs.io/en/latest/content/
general-usage.html for more details of BEDPE format.

Value

A BEDPE-formatted data frame.

Examples

#coverting a GRanges object to BEDPE-like dataframe
vcf.file <- system.file("extdata", "gridss.vcf", package = "StructuralVariantAnnotation")
vcf <- VariantAnnotation::readVcf(vcf.file, "hg19")
gr <- breakpointRanges(vcf)
breakpointgr2bedpe(gr)

breakpointgr2pairs Converts a breakpoint GRanges object to a Pairs object

Description

Converts a breakpoint GRanges object to a Pairs object

Converts a BEDPE Pairs containing pairs of GRanges loaded using to a breakpoint GRanges object.

https://bedtools.readthedocs.io/en/latest/content/general-usage.html
https://bedtools.readthedocs.io/en/latest/content/general-usage.html

breakpointgr2pairs 9

Usage

breakpointgr2pairs(
bpgr,
writeQualAsScore = TRUE,
writeName = TRUE,
bedpeName = NULL,
firstInPair = NULL

)

pairs2breakpointgr(
pairs,
placeholderName = "bedpe",
firstSuffix = "_1",
secondSuffix = "_2",
nameField = "name",
renameScoreToQUAL = TRUE

)

Arguments

bpgr breakpoint GRanges object
writeQualAsScore

write the breakpoint GRanges QUAL field as the score fields for compatibility
with BEDPE rtracklayer export

writeName write the breakpoint GRanges QUAL field as the score fields for compatibility
with BEDPE rtracklayer export

bedpeName function that returns the name to use for the breakpoint. Defaults to the sourceId,
name column, or row names (in that priority) of the first breakend of each pair.

firstInPair function that returns TRUE for breakends that are considered the first in the pair,
and FALSE for the second in pair breakend. By default, the first in the pair is
the breakend with the lower ordinal in the breakpoint GRanges object.

pairs a Pairs object consisting of two parallel genomic loci.
placeholderName

prefix to use to ensure each entry has a unique ID.
firstSuffix first in pair name suffix to ensure breakend name uniqueness
secondSuffix second in pair name suffix to ensure breakend name uniqueness
nameField Fallback field for row names if the Pairs object does not contain any names.

BEDPE files loaded using rtracklayer use the "name" field.
renameScoreToQUAL

renames the ’score’ column to ’QUAL’. Performing this rename results in a con-
sistent variant quality score column name for variant loaded from BEDPE and
VCF.

Details

Breakpoint-level column names will override breakend-level column names.

Value

Pairs GRanges object suitable for export to BEDPE by rtracklayer

Breakpoint GRanges object.

10 breakpointRanges

Examples

vcf.file <- system.file("extdata", "gridss.vcf", package = "StructuralVariantAnnotation")
bpgr <- breakpointRanges(VariantAnnotation::readVcf(vcf.file))
pairgr <- breakpointgr2pairs(bpgr)
rtracklayer::export(pairgr, con="example.bedpe")
bedpe.file <- system.file("extdata", "gridss.bedpe", package = "StructuralVariantAnnotation")
bedpe.pairs <- rtracklayer::import(bedpe.file)
bedpe.bpgr <- pairs2breakpointgr(bedpe.pairs)

breakpointGRangesToVCF

Converts the given breakpoint GRanges object to VCF format in
breakend notation.

Description

Converts the given breakpoint GRanges object to VCF format in breakend notation.

Usage

breakpointGRangesToVCF(gr, ...)

Arguments

gr breakpoint GRanges object. Can contain both breakpoint and single breakend
SV records.

... For cbind and rbind a list of VCF objects. For all other methods ... are additional
arguments passed to methods. See VCF class in VariantAnnotation for more
details.

Value

A VCF object.

breakpointRanges Extracting the structural variants as a GRanges.

Description

Extracting the structural variants as a GRanges.

.breakpointRanges() is an internal function for extracting structural variants as GRanges.

breakpointRanges 11

Usage

breakpointRanges(x, ...)

S4 method for signature 'VCF'
breakpointRanges(x, ...)

.breakpointRanges(
vcf,
nominalPosition = FALSE,
placeholderName = "svrecord",
suffix = "_bp",
info_columns = NULL,
unpartneredBreakends = FALSE,
inferMissingBreakends = FALSE

)

Arguments

x A VCF object

... Parameters of .breakpointRanges(). See below.

vcf A VCF object.
nominalPosition

Determines whether to call the variant at the nominal VCF position, or to call
the confidence interval (incorporating any homology present). Default value is
set to FALSE, where the interval is called based on the CIPOS tag. When set to
TRUE, the ranges field contains the nomimal variant position only.

placeholderName

Variant name prefix to assign to unnamed variants.

suffix The suffix to append to varaint names.

info_columns VCF INFO columns to include in the GRanges object.
unpartneredBreakends

Determining whether to report unpartnered breakends. Default is set to FALSE.
inferMissingBreakends

Infer missing breakend records from ALT field of records without matching part-
ners

Details

Structural variants are converted to breakend notation. Due to ambiguities in the VCF specifi-
cations, structural variants with multiple alt alleles are not supported. The CIPOS tag describes
the uncertainty interval of the around the postition of the breakend. See Section 5.4.8 of https:
//samtools.github.io/hts-specs/VCFv4.3.pdf for details of CIPOS. If HOMLEN or HOM-
SEQ is defined without CIPOS, it is assumed that the variant position is left aligned. A breakend on
the ’+’ strand indicates a break immediately after the given position, to the left of which is the DNA
segment involved in the breakpoint. The ’-’ strand indicates a break immediately before the given
position, rightwards of which is the DNA segment involved in the breakpoint. Unpaired variants
are removed at this stage.

Value

A GRanges object of SVs.

https://samtools.github.io/hts-specs/VCFv4.3.pdf
https://samtools.github.io/hts-specs/VCFv4.3.pdf

12 calculateReferenceHomology

Methods (by class)

• VCF: Extracting structural variants as GRanges.

Examples

vcf.file <- system.file("extdata", "vcf4.2.example.sv.vcf",
package = "StructuralVariantAnnotation")

vcf <- VariantAnnotation::readVcf(vcf.file, "hg19")
breakpointRanges(vcf)
breakpointRanges(vcf, nominalPosition=TRUE)

calculateReferenceHomology

Calculates the length of inexact homology between the breakpoint se-
quence and the reference

Description

Calculates the length of inexact homology between the breakpoint sequence and the reference

Usage

calculateReferenceHomology(
gr,
ref,
anchorLength = 300,
margin = 5,
match = 2,
mismatch = -6,
gapOpening = 5,
gapExtension = 3

)

Arguments

gr reakpoint GRanges

ref reference BSgenome

anchorLength Number of bases to consider for homology

margin Number of additional reference bases include. This allows for inexact homology
to be detected even in the presence of indels.

match see Biostrings::pairwiseAlignment

mismatch see Biostrings::pairwiseAlignment

gapOpening see Biostrings::pairwiseAlignment

gapExtension see Biostrings::pairwiseAlignment

Value

A dataframe containing the length of inexact homology between the breakpoint sequence and the
reference.

countBreakpointOverlaps 13

countBreakpointOverlaps

Counting overlapping breakpoints between two breakpoint sets

Description

Counting overlapping breakpoints between two breakpoint sets

Usage

countBreakpointOverlaps(
querygr,
subjectgr,
countOnlyBest = FALSE,
breakpointScoreColumn = "QUAL",
maxgap = -1L,
minoverlap = 0L,
ignore.strand = FALSE,
sizemargin = NULL,
restrictMarginToSizeMultiple = NULL

)

Arguments

querygr, subjectgr, maxgap, minoverlap, ignore.strand, sizemargin, restrictMarginToSizeMultiple

See findBreakpointOverlaps().

countOnlyBest Default value set to FALSE. When set to TRUE, the result count each subject
breakpoint as overlaping only the best overlapping query breakpoint. The best
breakpoint is considered to be the one with the highest QUAL score.

breakpointScoreColumn

Query column defining a score for determining which query breakpoint is con-
sidered the best when countOnlyBest=TRUE.

Details

countBreakpointOverlaps() returns the number of overlaps between breakpoint objects, based
on the output of findBreakpointOverlaps(). See GenomicRanges::countOverlaps-methods

Value

An integer vector containing the tabulated query overlap hits.

Examples

truth_vcf = VariantAnnotation::readVcf(system.file("extdata", "na12878_chr22_Sudmunt2015.vcf", package = "StructuralVariantAnnotation"))
crest_vcf = VariantAnnotation::readVcf(system.file("extdata", "na12878_chr22_crest.vcf", package = "StructuralVariantAnnotation"))
caller_bpgr = breakpointRanges(crest_vcf)
caller_bpgr$true_positive = countBreakpointOverlaps(caller_bpgr, breakpointRanges(truth_vcf),

maxgap=100, sizemargin=0.25, restrictMarginToSizeMultiple=0.5, countOnlyBest=TRUE)

14 extractBreakpointSequence

elementExtract Extracts the element of each element at the given position

Description

Extracts the element of each element at the given position

Usage

elementExtract(x, offset = 1)

Arguments

x list-like object

offset offset of list

Value

The element of each element at given positions.

extractBreakpointSequence

Extracts the breakpoint sequence.

Description

Extracts the breakpoint sequence.

Usage

extractBreakpointSequence(gr, ref, anchoredBases, remoteBases = anchoredBases)

Arguments

gr breakpoint GRanges

ref Reference BSgenome

anchoredBases Number of bases leading into breakpoint to extract

remoteBases Number of bases from other side of breakpoint to extract

Details

The sequence is the sequenced traversed from the reference anchor bases to the breakpoint. For
backward (-) breakpoints, this corresponds to the reverse compliment of the reference sequence
bases.

Value

Breakpoint sequence around the variant position.

extractReferenceSequence 15

extractReferenceSequence

Returns the reference sequence around the breakpoint position

Description

Returns the reference sequence around the breakpoint position

Usage

extractReferenceSequence(
gr,
ref,
anchoredBases,
followingBases = anchoredBases

)

Arguments

gr breakpoint GRanges

ref Reference BSgenome

anchoredBases Number of bases leading into breakpoint to extract

followingBases Number of reference bases past breakpoint to extract

Details

The sequence is the sequenced traversed from the reference anchor bases to the breakpoint. For
backward (-) breakpoints, this corresponds to the reverse compliment of the reference sequence
bases.

Value

Reference sequence around the breakpoint position.

findBreakpointOverlaps

Finding overlapping breakpoints between two breakpoint sets

Description

Finding overlapping breakpoints between two breakpoint sets

16 findBreakpointOverlaps

Usage

findBreakpointOverlaps(
query,
subject,
maxgap = -1L,
minoverlap = 0L,
ignore.strand = FALSE,
sizemargin = NULL,
restrictMarginToSizeMultiple = NULL

)

Arguments

query, subject Both of the input objects should be GRanges objects. Unlike findOverlaps(),
subject cannot be ommitted. Each breakpoint must be accompanied with a
partner breakend, which is also in the GRanges, with the partner’s id recorded
in the partner field. See GenomicRanges::findOverlaps-methods for details.

maxgap, minoverlap

Valid overlapping thresholds of a maximum gap and a minimum overlapping
positions between breakend intervals. Both should be scalar integers. max-
gap allows non-negative values, and minoverlap allows positive values. See
GenomicRanges::findOverlaps-methods for details.

ignore.strand Default value is FALSE. strand information is ignored when set to TRUE. See
GenomicRanges::findOverlaps-methods for details.

sizemargin Error margin in allowable size to prevent matching of events of different sizes,
e.g. a 200bp event matching a 1bp event when maxgap is set to 200.

restrictMarginToSizeMultiple

Size restriction multiplier on event size. The default value of 0.5 requires that
the breakpoint positions can be off by at maximum, half the event size. This
ensures that small deletion do actually overlap at least one base pair.

Details

findBreakpointOverlaps() is an efficient adaptation of findOverlaps-methods() for breakend
ranges. It searches for overlaps between breakpoint objects, and return a matrix including index of
overlapping ranges as well as error stats. All breakends must have their partner breakend included
in the partner field. A valid overlap requires that breakends on boths sides meets the overlapping
requirements.

See GenomicRanges::findOverlaps-methods for details of overlap calculation.

Value

A dataframe containing index and error stats of overlapping breakpoints.

Examples

#reading in VCF files
query.file <- system.file("extdata", "gridss-na12878.vcf", package = "StructuralVariantAnnotation")
subject.file <- system.file("extdata", "gridss.vcf", package = "StructuralVariantAnnotation")
query.vcf <- VariantAnnotation::readVcf(query.file, "hg19")
subject.vcf <- VariantAnnotation::readVcf(subject.file, "hg19")
#parsing vcfs to GRanges objects

findInsDupOverlaps 17

query.gr <- breakpointRanges(query.vcf)
subject.gr <- breakpointRanges(subject.vcf)
#find overlapping breakpoint intervals
findBreakpointOverlaps(query.gr, subject.gr)
findBreakpointOverlaps(query.gr, subject.gr, ignore.strand=TRUE)
findBreakpointOverlaps(query.gr, subject.gr, maxgap=100, sizemargin=0.5)

findInsDupOverlaps Finds duplication events that are reported as inserts. As sequence
alignment algorithms do no allow backtracking, long read-based vari-
ant callers will frequently report small duplication as insertion events.
Whilst both the duplication and insertion representations result in the
same sequence, this representational difference is problematic when
comparing variant call sets.

Description

WARNING: this method does not yet check that the inserted sequence actually matched the dupli-
cated sequence.

Usage

findInsDupOverlaps(query, subject, maxgap = -1L, maxsizedifference = 0L)

Arguments

query a breakpoint GRanges object

subject a breakpoint GRanges object

maxgap maximum distance between the insertion position and the duplication

maxsizedifference

maximum size difference between the duplication and insertion.

Value

Hits object containing the ordinals of the matching breakends in the query and subject

isStructural Determining whether the variant is a structural variant

Description

Determining whether the variant is a structural variant

18 isSymbolic

Usage

isStructural(x, ...)

S4 method for signature 'CollapsedVCF'
isStructural(x, ..., singleAltOnly = TRUE)

S4 method for signature 'ExpandedVCF'
isStructural(x, ...)

S4 method for signature 'VCF'
isStructural(x, ...)

Arguments

x A VCF object.

... Internal parameters.

singleAltOnly Whether only single ALT values are accepted. Default is set to TRUE.

Details

The function takes a VCF object as input, and returns a logical value for each row, determining
whether the variant is a structural variant.

Value

A logical list of which the length is the same with the input object.

Methods (by class)

• CollapsedVCF: Determining whether a CollapsedVCF object is a strucrual variant. Only
single ALT values are accepted.

• ExpandedVCF: Determining whether a ExpandedVCF object is a structural variant.

• VCF: Determining whether a VCF object is a structural variant.

Examples

vcf.file <- system.file("extdata", "gridss.vcf", package = "StructuralVariantAnnotation")
vcf <- VariantAnnotation::readVcf(vcf.file, "hg19")
isStructural(vcf)

isSymbolic Determining whether the variant is a symbolic allele.

Description

Determining whether the variant is a symbolic allele.

partner 19

Usage

isSymbolic(x, ...)

S4 method for signature 'CollapsedVCF'
isSymbolic(x, ..., singleAltOnly = TRUE)

S4 method for signature 'ExpandedVCF'
isSymbolic(x, ...)

Arguments

x A VCF object.

... Internal parameters.

singleAltOnly Whether only single ALT values are accepted. Default is set to TRUE.

Details

The function takes a VCF object as input, and returns a logical value for each row, determining
whether the variant is a symbolic allele.

Value

A logical list of which the length is the same with the input object.

Methods (by class)

• CollapsedVCF: Determining whether a CollapsedVCF object is a symbolic allele. Only single
ALT values are accepted.

• ExpandedVCF: Determining whether a ExpandedVCF object is a symbolic allele

Examples

vcf.file <- system.file("extdata", "gridss.vcf", package = "StructuralVariantAnnotation")
vcf <- VariantAnnotation::readVcf(vcf.file, "hg19")
isSymbolic(vcf)

partner GRanges representing the breakend coordinates of structural variants
#@export Partner breakend for each breakend.

Description

GRanges representing the breakend coordinates of structural variants #@export Partner breakend
for each breakend.

Usage

partner(gr, selfPartnerSingleBreakends = FALSE)

20 simpleEventLength

Arguments

gr GRanges object of SV breakends

selfPartnerSingleBreakends

treat single breakends as their own partner.

Details

All breakends must have their partner breakend included in the GRanges.

Value

A GRanges object in which each entry is the partner breakend of those in the input object.

Examples

#reading in a VCF file as \code{vcf}
vcf.file <- system.file("extdata", "gridss.vcf", package = "StructuralVariantAnnotation")
vcf <- VariantAnnotation::readVcf(vcf.file, "hg19")
#parsing \code{vcf} to GRanges object \code{gr}
gr <- breakpointRanges(vcf)
#output partner breakend of each breakend in \code{gr}
partner(gr)

simpleEventLength Length of event if interpreted as an isolated breakpoint.

Description

Length of event if interpreted as an isolated breakpoint.

Usage

simpleEventLength(gr)

Arguments

gr breakpoint GRanges object

Value

Length of the simplest explaination of this breakpoint/breakend.

simpleEventType 21

simpleEventType Type of simplest explaination of event. Possible types are: | Type |
Description | | BND | Single breakend | | CTX | Interchromosomal
translocation | | INV | Inversion. Note that both ++ and – break-
point will be classified as inversion regardless of whether the match-
ing breakpoint actually exists | | DUP | Tandem duplication | | INS |
Insertion | | DEL | Deletion |

Description

Type of simplest explaination of event. Possible types are: | Type | Description | | BND | Single
breakend | | CTX | Interchromosomal translocation | | INV | Inversion. Note that both ++ and –
breakpoint will be classified as inversion regardless of whether the matching breakpoint actually
exists | | DUP | Tandem duplication | | INS | Insertion | | DEL | Deletion |

Usage

simpleEventType(gr, insertionLengthThreshold = 0.5)

Arguments

gr breakpoint GRanges object
insertionLengthThreshold

portion of inserted bases compared to total event size to be classified as an in-
sertion. For example, a 5bp deletion with 5 inserted bases will be classified as
an INS event.

Value

Type of simplest explaination of event

StructuralVariantAnnotation

StructuralVariantAnnotation: a package for SV annotation

Description

StructuralVariantAnnotation contains useful helper functions for reading and interpreting structural
variants calls. The packages contains functions for parsing VCFs from a number of popular caller
as well as functions for dealing with breakpoints involving two separate genomic loci. The package
takes a ‘GRanges‘ based breakend-centric approach.

Details

* Parse VCF objects with the ‘breakpointRanges()‘ and ‘breakendRanges()‘functions. * Find break-
point overlaps with the ‘findBreakpointOverlaps()‘ and ‘countBreakpointOverlaps()‘ functions. *
Generate BEDPE files for circos plot with ‘breakpointgr2pairs()‘ function. * ...

For more details on the features of StructuralVariantAnnotation, read the vignette: ‘browseVi-
gnettes(package = "StructuralVariantAnnotation")‘

22 %null%

%na% Replaces the NA values in a with corresponding values in b

Description

Replaces the NA values in a with corresponding values in b

Usage

a %na% b

Arguments

a, b objects to be tested or coerced.

Value

The altered object.

%null% Uses b if a is NULL

Description

Uses b if a is NULL

Usage

a %null% b

Arguments

a, b objects to be tested or coerced.

Value

An un-null object.

Index

.breakpointRanges (breakpointRanges), 10

.constrict, 2

.isSymbolic, 3

.pairwiseLCPrefix, 3

.svLen, 4

.testfile, 4

.testrecord, 5

.toVcfBreakendNotationAlt, 5

.unXStringSet, 6
%na%, 22
%null%, 22

align_breakpoints, 6

breakendRanges, 7
breakendRanges,VCF-method

(breakendRanges), 7
breakpointgr2bedpe, 8
breakpointgr2pairs, 8
breakpointGRangesToVCF, 10
breakpointRanges, 10
breakpointRanges,VCF-method

(breakpointRanges), 10

calculateReferenceHomology, 12
countBreakpointOverlaps, 13

elementExtract, 14
extractBreakpointSequence, 14
extractReferenceSequence, 15

findBreakpointOverlaps, 15
findInsDupOverlaps, 17

isStructural, 17
isStructural,CollapsedVCF-method

(isStructural), 17
isStructural,ExpandedVCF-method

(isStructural), 17
isStructural,VCF-method (isStructural),

17
isSymbolic, 18
isSymbolic,CollapsedVCF-method

(isSymbolic), 18

isSymbolic,ExpandedVCF-method
(isSymbolic), 18

pairs2breakpointgr
(breakpointgr2pairs), 8

partner, 19

simpleEventLength, 20
simpleEventType, 21
StructuralVariantAnnotation, 21

23

	.constrict
	.isSymbolic
	.pairwiseLCPrefix
	.svLen
	.testfile
	.testrecord
	.toVcfBreakendNotationAlt
	.unXStringSet
	align_breakpoints
	breakendRanges
	breakpointgr2bedpe
	breakpointgr2pairs
	breakpointGRangesToVCF
	breakpointRanges
	calculateReferenceHomology
	countBreakpointOverlaps
	elementExtract
	extractBreakpointSequence
	extractReferenceSequence
	findBreakpointOverlaps
	findInsDupOverlaps
	isStructural
	isSymbolic
	partner
	simpleEventLength
	simpleEventType
	StructuralVariantAnnotation
	%na%
	%null%
	Index

