Package ‘SharedObject’

October 17, 2020
Type Package

Title Sharing R objects across multiple R processes without memory
duplication

Version 1.2.2
Date 2019-6-10

Description This package is developed for facilitating parallel computing in R.
It is capable to create an R object in the shared memory space and share the data across multi-
ple R processes.
It avoids the overhead of memory dulplication and data transfer, which make sharing big data ob-
ject across many clusters possible.

License GPL-3

LinkingTo BH, Rcpp

Depends R (>=3.6.0)

Imports Rcpp, methods, stats, BiocGenerics

biocViews Infrastructure

BugReports https://github.com/Jiefei-Wang/SharedObject/issues
Suggests testthat, parallel, knitr, rmarkdown, BiocStyle

RoxygenNote 7.1.0

Roxygen list(markdown = TRUE)

VignetteBuilder knitr

SystemRequirements GNU make, C++11

Encoding UTF-8

Collate 'RcppExports.R' 'developer-APIS.R' 'pkgSetting. R’
'sharedObject-internal.R' 'sharedObject-constructor.R’
'utils.R' 'sharedObject-method.R’

git_url https://git.bioconductor.org/packages/SharedObject
git_branch RELEASE_3_11

git_last_commit e3cad4d

git_last commit_date 2020-05-06

Date/Publication 2020-10-16

Author Jiefei Wang [aut, cre]

Maintainer Jiefei Wang <jwang96@buffalo.edu>

1


https://github.com/Jiefei-Wang/SharedObject/issues

2 getLastIndex

R topics documented:

getLastindex . . . . . . .. L e 2
getSharedObjectProperty . . . . . . . . . . . 4
1saaltrep . . . . e e 5
is.shared . . . . L L 6
listSharedObject . . . . . . . . . . ... 7
pkgeonfig . . . ... 8
setSharedObjectOptions . . . . . . . . . . . .. e 8
share . . . . . L L e 9

Index 13

getlLastIndex Functions to manipulate shared memory
Description

These functions are for package developers only, they can allocate, open, close and destroy shared
memory without touching C++ code. Normal users should not use these functions unless dealing
with memory leaking

Usage

getlLastIndex()
allocateSharedMemory(size)
allocateNamedSharedMemory(name, size)
mapSharedMemory (x)
unmapSharedMemory (x)
freeSharedMemory (x)
hasSharedMemory (x)

getSharedMemorySize(x)

Arguments
size numeric(1), the size of the shared memory that you want to allocate
name character(1), a single name that names the shared memory
X integer(1) or character(1), an ID or a name that is used to find the shared mem-

ory. If x is a character with pure number, it will be treated as an ID.



getLastIndex 3

Details

Quick explanation
getLastIndex: the ID of the last created shared memory.

allocateSharedMemory: allocate a shared memory of a given size, the memory ID is returned by
the function

allocateNamedSharedMemory: allocate a shared memory of a given size, the memory can be found
by the name that is passed to the function.

mapSharedMemory: map the shared memory to the current process memory space
unmapSharedMemory: unmap the shared memory(without destroying it)

freeSharedMemory: destroy the shared memory. This function will only unmap the shared memory
on Windows.

hasSharedMemory: whether the memory exist?

getSharedMemorySize: get the actual size of the shared memory, it may be larger than the size you
required.

Details

Creating and using shared memory involves three steps: allocating, mapping, and destroying the
shared memory. There are two types of naming scheme that you can use to find the shared memory:
an integer ID or a character name. They are determined in the first creation step.

The shared memory can be created by allocateSharedMemory or allocateNamedSharedMemory.
The function allocateSharedMemory will return the ID of the shared memory. After creating the
shared memory, it can be mapped to the current process by mapSharedMemory. The return value
is an external pointer to the shared memory. Once the shared memory is no longer needed, it can
be destroyed by freeSharedMemory. There is no need to unmap the shared memory unless you
intentionally want to do so.

Value

getLastIndex: An interger ID served as a hint of the last created shared memory ID.
allocateSharedMemory: an integer ID that can be used to find the shared memory
allocateNamedSharedMemory: no return value

mapSharedMemory: An external pointer to the shared memory

unmapSharedMemory: Logical value indicating whether the operation is success.
freeSharedMemory: Logical value indicating whether the operation is success.
hasSharedMemory: Logical value indicating whether the shared memory exist

getSharedMemorySize: A numeric value

See Also

listSharedObject

Examples

size <- 10L

## unnamed shared memory

id <- allocateSharedMemory(size)
hasSharedMemory (id)

ptr <- mapSharedMemory(id)



4 getSharedObjectProperty

ptr
getSharedMemorySize(id)
freeSharedMemory(id)
hasSharedMemory (id)

## named shared memory

name <- "SharedObjectExample”

if ('hasSharedMemory(name)){
allocateNamedSharedMemory(name,size)
hasSharedMemory (name)
ptr <- mapSharedMemory(name)
ptr
getSharedMemorySize (name)
freeSharedMemory (name)
hasSharedMemory (name)

getSharedObjectProperty
Get/Set the properties of the shared object.

Description

Get/Set the properties of the shared object. The available properties are datald, length, totalSize,
dataType, ownData, copyOnWrite, sharedSubset, sharedCopy.

Usage
getSharedObjectProperty(x, property, ...)

## S4 method for signature 'ANY,characterOrNULLOrMissing'
getSharedObjectProperty(x, property, ...)

## S4 method for signature 'list,characterOrNULLOrMissing'
getSharedObjectProperty(x, property, ...)

setSharedObjectProperty(x, property, value, ...)

## S4 method for signature 'ANY,characterOrNULLOrMissing'
setSharedObjectProperty(x, property, value, ...)

## S4 method for signature 'list,characterOrNULLOrMissing'
setSharedObjectProperty(x, property, value, ...)

getCopyOnWrite(x)
getSharedSubset (x)
getSharedCopy (x)

setCopyOnWrite(x, value)



is.altrep 5

setSharedSubset(x, value)

setSharedCopy(x, value)

Arguments
X A shared object
property A character vector, the name of the property(s), if the argument is missing or the
value is NULL, it represents all properties.
Not used
value The new value of the property, if the length of value does not match the length
of the property, the argument value will be repeated to match the length.
Value

get: The property(s) of a shared object

set: No return value

Examples

x = share(1:20)

## Check the default values
getSharedObjectProperty(x, NULL)
getCopyOnWrite(x)
getSharedSubset (x)
getSharedCopy (x)

## Set the values
setCopyOnWrite(x, FALSE)
setSharedSubset(x, FALSE)
setSharedCopy(x, TRUE)

## Check the values again
getSharedObjectProperty(x, NULL)
getCopyOnWrite(x)
getSharedSubset (x)
getSharedCopy (x)

is.altrep Whether an object is an ALTREP object

Description

Whether an object is an ALTREP object

Usage

is.altrep(x)

Arguments

X an R object



6 is.shared

Value

A logical value

Examples

x <- share(runif(10))
is.altrep(x)

is.shared Test whether the object is a shared object

Description

Test whether the object is a shared object

Usage

is.shared(x, ...)

## S4 method for signature 'ANY'
is.shared(x, ...)

## S4 method for signature 'list'

is.shared(x, ...)
Arguments
X An R object

For generalization purpose only

Value

TRUE/FALSE indicating whether the object is a shared object. If the object is a list, the return value
is a vector of TRUE/FALSE corresponding to each element of the list.

Examples

x <- share(1:10)
is.shared(x)



listSharedObject 7

listSharedObject Get the shared object usage report

Description
Get the shared object usage report. The size is the real memory size that a system allocates for the
shared object, so it might be larger than the object size. The size unit is byte.

Usage
listSharedObject(end = NULL, start = NULL, includeCharId = FALSE)

Arguments
end the end value of the ID. The default is NULL. See details.
start the start value of the ID. The default is NULL. See details.

includeCharId Whether including the shared objects named by a character ID, it only works on
Unix-like systems. See ?allocateNamedSharedMemory for more information.
The default is FALSE.

Details

The parameter start and end specify the range of the ID. If not specified, all IDs will be listed.

On Ubuntu or many other Unix-like operating systems, the shared objects can be found in the folder
/dev/shm. The function can find all shared objects if the folder exists.

On Windows, since there is no easy way to find all shared objects. the function will guess the range
of the shared object IDs and search all IDs within the range. Therefore, if there are too many shared
objects(over 4 billions) ,the object id can be out of the searching range and the result may not be
complete. Furthermore, there will be no named shared object in the returned list.

Value

A data.frame object with shared object id and size

See Also
getLastIndex, allocateSharedMemory, allocateNamedSharedMemory, mapSharedMemory, unmapSharedMemory,
freeSharedMemory, hasSharedMemory, getSharedMemorySize

Examples

## Automatically determine the search range
listSharedObject()

## specify the search range
listSharedObject(start = 10, end = 20)

## Search from @ to 20
listSharedObject (20)



8 setSharedObjectOptions

pkgconfig Find path of the shared memory header file

Description

This function will return the path of the shared memory header or the flags that are used to compile
the package for the developers who want to use C++ level implementation of the SharedObject
package

Usage
pkgconfig(x)

Arguments

X Character, "PKG_LIBS" or "PKG_CPPFLAGS"

Value

path to the header or compiler flags

Examples

SharedObject: : :pkgconfig("PKG_LIBS")
SharedObject: : :pkgconfig("PKG_CPPFLAGS")

setSharedObjectOptions
Get or set the global options for the SharedObject package

Description

Get or set the global options for the SharedObject package

Usage
setSharedObjectOptions(...)

getSharedObjectOptions(...)

Arguments
setSharedObjectOptions: the options you want to set, it can be copyOnWrite,
sharedSubset and sharedCopy.
getSharedObjectOptions: A character vector. If empty, all options will be
returned.

Value

setSharedObjectOptions: No return value getSharedObjectOptions: A list of the package
options or a single value



share 9

Examples

getSharedObjectOptions()
setSharedObjectOptions(copyOnWrite = FALSE)
getSharedObjectOptions()
getSharedObjectOptions(”copyOnWrite")

share Create an R object in the shared memory

Description

This function will create an object in the shared memory for the function argument x and return a
shared object if the object can be shared. There is no duplication of the shared object when a shared
object is exported to the other processes. tryShare is equivalent to share with argument mustWork
= FALSE.

Usage

share(
X,
copyOnWrite = getSharedObjectOptions(”copyOnWrite"),
sharedSubset = getSharedObjectOptions(”sharedSubset”),
sharedCopy = getSharedObjectOptions(”sharedCopy"),
mustWork = getSharedObjectOptions("mustWork"),

)

## S4 method for signature 'ANY'

share(
X,
copyOnWrite = getSharedObjectOptions(”copyOnWrite"),
sharedSubset = getSharedObjectOptions(”sharedSubset”),
sharedCopy = getSharedObjectOptions(”sharedCopy"),
mustWork = getSharedObjectOptions("mustWork"”),

)

## S4 method for signature 'character'

share(
X,
copyOnWrite = getSharedObjectOptions("copyOnWrite"),
sharedSubset = getSharedObjectOptions(”sharedSubset”),
sharedCopy = getSharedObjectOptions("”sharedCopy"),
mustWork = getSharedObjectOptions("mustWork"),

)

## S4 method for signature 'vector'
share(



10 share

X,

copyOnWrite = getSharedObjectOptions(”copyOnWrite"),
sharedSubset = getSharedObjectOptions(”sharedSubset”),
sharedCopy = getSharedObjectOptions(”sharedCopy"),
mustWork = getSharedObjectOptions("mustWork"),

)

## S4 method for signature 'matrix'

share(
X,
copyOnWrite = getSharedObjectOptions(”copyOnWrite"),
sharedSubset = getSharedObjectOptions(”sharedSubset”),
sharedCopy = getSharedObjectOptions(”sharedCopy"),
mustWork = getSharedObjectOptions("mustWork"”),

)

## S4 method for signature 'list'

share(
X,
copyOnWrite = getSharedObjectOptions("copyOnWrite"),
sharedSubset = getSharedObjectOptions(”sharedSubset”),
sharedCopy = getSharedObjectOptions("”sharedCopy"),
mustWork = getSharedObjectOptions("mustWork"),

)
tryShare(x, ...)
Arguments
X An R object that you want to shared. The supported data types are raw, logical,

integer and real. The data structure can be vector, matrix and data. frame.
List is not supported but can be created manually.

copyOnWrite, sharedSubset, sharedCopy
The parameters controlling the behavior of the shared object, see details.

mustWork Whether to throw an error if x is not a sharable object.

Additional parameters that will be passed to the shared object.

Details

The function returns a shared object corresponding to the argument x if it is sharable. An error will
be given if the argument x is not sharable. specifying mustWork = FALSE will suppress the error.
This feature is useful when sharing a list object that consists of both sharable and non-sharable
objects. Alternatively, the tryShare function can be used and it is equivalent to the function share
with the argument mustWork = FALSE.

Supported types

The function supports sharing raw,logical ,integer, double data types. When the argument x is
an atomic object(e.g vector, matrix), the function will create an ALTREP object to replace it. When
x is a list, each column of x will be replaced by an ALTREP object. The function share is an S4
generic, Package developers can provide their own shared object by defining an S4 share function.



share 11

Behavior control

In the R level, the behaviors of an ALTREP object is exactly the same as an atomic object but the
data of an ALTREP object is allocated in the shared memory space. Therefore an ALTREP object
can be easily exported to the other R processes without dulplicating the data, which reduces the
memory usage and the overhead of data transmission.

The behavior of a shared object can be controlled through three parameters: copyOnWrite, sharedSubset
and sharedCopy.

copyOnWrite determines Whether a new R object need to be allocated when the shared object is
changed. The default value is TRUE, but can be altered by passing an argument copyOnWrite=FALSE
to the function.

Please note that the no-copy-on-write feature is not fully supported by R. When copyOnWrite is
FALSE, a shared object might not behaves as user expects. Please refer to the example code to see
the exceptions.

sharedSubset determines whether the subset of a shared object is still a shared object. The default
value is TRUE, and can be changed by passing sharedSubset=FALSE to the function

At the time this documentation is being written, The shared subset feature will cause an unnecessary
memory duplication in R studio. Therefore, for the performance consideration, it is better to turn
the feature off when using R studio.

sharedCopy determines whether the object is still a shared object after a duplication. If copyOnWrite
is FALSE, this feature is off since the duplication cannot be triggered. In current version (R 3.6), an
object will be duplicated four times for creating a shared object and lead to a serious performance
problem. Therefore, the default value is FALSE, user can alter it by passing sharedCopy=FALSE to
the function.

Value

A shared object

Examples

## For vector
X <= runif(10)
so <- share(x)
X
SO

## For matrix

x <- matrix(runif(10), 2, 5)
so <- share(x)

X

so

## For data frame

x <- as.data.frame(matrix(runif(10), 2, 5))
so <- share(x)

X

so

## export the object

library(parallel)

cl <- makeCluster(1)

clusterExport(cl, "so")

## check the exported object in the other process



12

share

clusterEvalQ(cl, so)

## close the connection
stopCluster(cl)

## Copy-on-write

## This is the default setting

X <- runif(10)

sol <- share(x, copyOnWrite = TRUE)

s02 <- sol

so2[1] <- 10

## sol is unchanged since copy-on-write feature is on.
sol

so2

## No-copy-on-write

sol <- share(x, copyOnWrite = FALSE)
s02 <- sol

so2[1] <- 10

#so1 is changed

sol

s02

## Flaw of no-copy-on-write

## The following code changes the value of sol, highly unexpected! Please use with caution!
-sol

sol

## The reason is that the minus function trys to dulplicate sol object,

## but the dulplicate function will return sol itself, so the value in sol also get changed.



Index

allocateNamedSharedMemory, 7
allocateNamedSharedMemory
(getLastIndex), 2
allocateSharedMemory, 7
allocateSharedMemory (getLastIndex), 2

freeSharedMemory, 7
freeSharedMemory (getlLastIndex), 2

getCopyOnWrite
(getSharedObjectProperty), 4
getLastIndex, 2,7
getSharedCopy
(getSharedObjectProperty), 4
getSharedMemorySize, 7
getSharedMemorySize (getLastIndex), 2
getSharedObjectOptions
(setSharedObjectOptions), 8
getSharedObjectProperty, 4

setSharedObjectOptions, 8
setSharedObjectProperty
(getSharedObjectProperty), 4
setSharedObjectProperty,ANY, characterOrNULLOrMissing-me
(getSharedObjectProperty), 4
setSharedObjectProperty,list,characterOrNULLOrMissing-r
(getSharedObjectProperty), 4
setSharedSubset
(getSharedObjectProperty), 4
share, 9
share, ANY-method (share), 9
share,character-method (share), 9
share,data. frame-method (share), 9
share,list-method (share), 9
share,matrix-method (share), 9
share,vector-method (share), 9

tryShare (share), 9

getSharedObjectProperty, ANY, characterOrNULLOrMiBapbkamedtedory, 7

(getSharedObjectProperty), 4

unmapSharedMemory (getLastIndex), 2

getSharedObjectProperty,list,characterOrNULLOrMissing-method

(getSharedObjectProperty), 4
getSharedSubset
(getSharedObjectProperty), 4

hasSharedMemory, 7
hasSharedMemory (getLastIndex), 2

is.altrep, 5
is.shared, 6
is.shared, ANY-method (is.shared), 6
is.shared,list-method (is.shared), 6

listSharedObject, 3,7

mapSharedMemory, 7
mapSharedMemory (getLastIndex), 2

pkgconfig, 8

setCopyOnWrite
(getSharedObjectProperty), 4

setSharedCopy
(getSharedObjectProperty), 4

13



	getLastIndex
	getSharedObjectProperty
	is.altrep
	is.shared
	listSharedObject
	pkgconfig
	setSharedObjectOptions
	share
	Index

