
Package ‘ORFik’
October 17, 2020

Type Package

Title Open Reading Frames in Genomics

Version 1.8.6

Encoding UTF-8

Description R package for analysis of transcript and translation features through
manipulation of sequence-, RiboSeq-, RNASeq-, TCPseq- and CAGE-data.
Focusing on 5' UTRs (leaders), it is generalized in the
sense that any transcript region can be analysed.
ORFik is extremely fast through use of C, data.table and GenomicRanges.
Package allows to reassign starts of the transcripts with the use of CAGE-Seq data,
automatic shifting of RiboSeq reads, finding of Open Reading Frames for
whole genomes and much more.

biocViews ImmunoOncology, Software, Sequencing, RiboSeq, RNASeq,
FunctionalGenomics, Coverage, Alignment, DataImport

License MIT + file LICENSE

LazyData TRUE

BugReports https://github.com/Roleren/ORFik/issues

URL https://github.com/Roleren/ORFik

Depends R (>= 3.6.0), IRanges (>= 2.17.1), GenomicRanges (>= 1.35.1),
GenomicAlignments (>= 1.19.0)

Imports S4Vectors (>= 0.21.3), GenomeInfoDb (>= 1.15.5),
GenomicFeatures (>= 1.31.10), AnnotationDbi (>= 1.45.0),
rtracklayer (>= 1.43.0), Rcpp (>= 1.0.0), data.table (>=
1.11.8), Biostrings (>= 2.51.1), biomartr, Rsamtools (>=
1.35.0), BiocGenerics (>= 0.29.1), BiocParallel (>= 1.19.0),
SummarizedExperiment (>= 1.14.0), DESeq2 (>= 1.24.0), ggplot2
(>= 2.2.1), gridExtra (>= 2.3), cowplot (>= 1.0.0), GGally (>=
1.4.0), methods (>= 3.6.0), R.utils, utils, stats, fst (>=
0.9.2), tools

RoxygenNote 7.1.1

Suggests testthat, rmarkdown, knitr, BiocStyle, BSgenome,
BSgenome.Hsapiens.UCSC.hg19

LinkingTo Rcpp

VignetteBuilder knitr

1

https://github.com/Roleren/ORFik/issues
https://github.com/Roleren/ORFik

2 R topics documented:

git_url https://git.bioconductor.org/packages/ORFik

git_branch RELEASE_3_11

git_last_commit 3b6321e

git_last_commit_date 2020-10-05

Date/Publication 2020-10-16

Author Haakon Tjeldnes [aut, cre, dtc],
Kornel Labun [aut, cph],
Katarzyna Chyzynska [ctb, dtc],
Yamila Torres Cleuren [ctb, ths],
Evind Valen [ths, fnd]

Maintainer Haakon Tjeldnes <hauken_heyken@hotmail.com>

R topics documented:
ORFik-package . 7
addCdsOnLeaderEnds . 8
addNewTSSOnLeaders . 8
allFeaturesHelper . 9
artificial.orfs . 10
assignAnnotations . 11
assignFirstExonsStartSite . 12
assignLastExonsStopSite . 12
assignTSSByCage . 13
asTX . 14
bamVarName . 15
bamVarNamePicker . 16
bedToGR . 17
cellLineNames . 18
changePointAnalysis . 18
checkRFP . 19
checkRNA . 19
codonSumsPerGroup . 20
collapse.by.scores . 21
collapseDuplicatedReads . 21
collapseDuplicatedReads,GAlignmentPairs-method . 22
collapseDuplicatedReads,GAlignments-method . 22
collapseDuplicatedReads,GRanges-method . 23
computeFeatures . 24
computeFeaturesCage . 25
conditionNames . 28
convertLibs . 28
convertToOneBasedRanges . 29
countOverlapsW . 31
countTable . 32
countTable_regions . 33
coverageByTranscriptW . 34
coverageGroupings . 34
coverageHeatMap . 35
coveragePerTiling . 36
coverageScorings . 38

R topics documented: 3

create.experiment . 39
defineIsoform . 41
defineTrailer . 41
detectRibosomeShifts . 42
disengagementScore . 45
distToCds . 46
distToTSS . 47
downstreamFromPerGroup . 48
downstreamN . 48
downstreamOfPerGroup . 49
entropy . 49
experiment-class . 51
export.bed12 . 52
export.bedo . 53
export.bedoc . 54
export.ofst . 54
export.ofst,GAlignmentPairs-method . 55
export.ofst,GAlignments-method . 56
export.ofst,GRanges-method . 58
export.wiggle . 59
extendLeaders . 60
extendsTSSexons . 61
extendTrailers . 61
filepath . 62
filterCage . 63
filterExtremePeakGenes . 64
filterTranscripts . 65
filterUORFs . 66
fimport . 66
findFa . 67
findFromPath . 68
findLibrariesInFolder . 68
findMapORFs . 69
findMaxPeaks . 70
findNewTSS . 71
findNGSPairs . 71
findORFs . 72
findORFsFasta . 73
findPeaksPerGene . 74
findUORFs . 75
firstEndPerGroup . 77
firstExonPerGroup . 78
firstStartPerGroup . 78
floss . 79
footprints.analysis . 81
fpkm . 81
fpkm_calc . 83
fractionLength . 83
fread.bed . 84
gcContent . 85
getGAlignments . 86
getGAlignmentsPairs . 86

4 R topics documented:

getGenomeAndAnnotation . 87
getGRanges . 89
getNGenesCoverage . 89
getWeights . 90
groupGRangesBy . 90
groupings . 91
gSort . 92
hasHits . 92
heatMapL . 93
heatMapRegion . 94
heatMap_single . 96
import.bedo . 97
import.bedoc . 98
import.ofst . 99
importGtfFromTxdb . 100
initiationScore . 100
insideOutsideORF . 101
install.fastp . 103
is.grl . 104
is.gr_or_grl . 104
is.ORF . 105
is.range . 105
isInFrame . 106
isOverlapping . 107
isPeriodic . 108
kozakHeatmap . 108
kozakSequenceScore . 110
lastExonEndPerGroup . 111
lastExonPerGroup . 112
lastExonStartPerGroup . 112
libNames . 113
libraryTypes . 113
list.experiments . 114
loadRegion . 115
loadRegions . 115
loadTranscriptType . 116
loadTxdb . 117
longestORFs . 118
mainNames . 118
makeExonRanks . 119
makeORFNames . 119
makeSummarizedExperimentFromBam . 120
mapToGRanges . 121
matchColors . 122
matchNaming . 122
matchSeqStyle . 123
metaWindow . 123
nrow,experiment-method . 125
numCodons . 125
numExonsPerGroup . 126
optimizeReads . 126
orfID . 127

R topics documented: 5

ORFik.template.experiment . 127
ORFikQC . 128
orfScore . 129
organism.df . 130
outputLibs . 131
pasteDir . 132
percentage_to_ratio . 133
plotHelper . 133
pmapFromTranscriptF . 134
pmapToTranscriptF . 135
prettyScoring . 136
pSitePlot . 136
QCplots . 137
QCreport . 138
QCstats . 139
QCstats.plot . 140
QC_count_tables . 141
rankOrder . 141
read.experiment . 142
readBam . 143
readWidths . 144
readWig . 145
reassignTSSbyCage . 146
reassignTxDbByCage . 147
reduceKeepAttr . 149
remakeTxdbExonIds . 150
remove.experiments . 151
remove.file_ext . 151
removeMetaCols . 152
removeORFsWithinCDS . 152
removeORFsWithSameStartAsCDS . 153
removeORFsWithSameStopAsCDS . 153
removeORFsWithStartInsideCDS . 154
removeTxdbExons . 154
removeTxdbTranscripts . 155
repNames . 155
restrictTSSByUpstreamLeader . 156
reverseMinusStrandPerGroup . 156
ribosomeReleaseScore . 157
ribosomeStallingScore . 158
rnaNormalize . 159
save.experiment . 160
savePlot . 160
scaledWindowPositions . 161
scoreSummarizedExperiment . 162
seqnamesPerGroup . 163
shiftFootprints . 163
shiftFootprintsByExperiment . 165
shiftPlots . 167
shifts.load . 168
show,experiment-method . 168
simpleLibs . 169

6 R topics documented:

sortPerGroup . 170
splitIn3Tx . 171
stageNames . 172
STAR.align.folder . 172
STAR.align.single . 174
STAR.index . 176
STAR.install . 178
STAR.multiQC . 179
STAR.remove.crashed.genome . 179
startCodons . 180
startDefinition . 181
startRegion . 181
startRegionCoverage . 182
startRegionString . 183
startSites . 184
stopCodons . 185
stopDefinition . 185
stopSites . 186
strandBool . 187
strandPerGroup . 187
subsetCoverage . 188
subsetToFrame . 189
tile1 . 189
tissueNames . 190
TOP.Motif.ecdf . 190
topMotif . 192
transcriptWindow . 193
transcriptWindow1 . 195
transcriptWindowPer . 196
translationalEff . 197
trim_detection . 198
txNames . 199
txNamesToGeneNames . 200
txSeqsFromFa . 201
uniqueGroups . 201
uniqueOrder . 202
unlistGrl . 203
uORFSearchSpace . 204
updateTxdbRanks . 205
updateTxdbStartSites . 206
upstreamFromPerGroup . 206
upstreamOfPerGroup . 207
validateExperiments . 207
validGRL . 208
validSeqlevels . 208
widthPerGroup . 209
windowCoveragePlot . 210
windowPerGroup . 211
windowPerReadLength . 212
windowPerTranscript . 214
xAxisScaler . 215
yAxisScaler . 215

ORFik-package 7

Index 216

ORFik-package ORFik for analysis of open reading frames.

Description

Main goals:

1. Finding Open Reading Frames (very fast) in the genome of interest or on the set of tran-
scripts/sequences.

2. Utilities for metaplots of RiboSeq coverage over gene START and STOP codons allowing to
spot the shift.

3. Shifting functions for the RiboSeq data.

4. Finding new Transcription Start Sites with the use of CageSeq data.

5. Various measurements of gene identity e.g. FLOSS, coverage, ORFscore, entropy that are
recreated based on many scientific publications.

6. Utility functions to extend GenomicRanges for faster grouping, splitting, tiling etc.

Author(s)

Maintainer: Haakon Tjeldnes <hauken_heyken@hotmail.com> [data contributor]

Authors:

• Kornel Labun <kornellabun@gmail.com> [copyright holder]

Other contributors:

• Katarzyna Chyzynska <katchyz@gmail.com> [contributor, data contributor]

• Yamila Torres Cleuren <yamilatorrescleuren@gmail.com> [contributor, thesis advisor]

• Evind Valen <eivind.valen@gmail.com> [thesis advisor, funder]

See Also

Useful links:

• https://github.com/Roleren/ORFik

• Report bugs at https://github.com/Roleren/ORFik/issues

https://github.com/Roleren/ORFik
https://github.com/Roleren/ORFik/issues

8 addNewTSSOnLeaders

addCdsOnLeaderEnds Extends leaders downstream

Description

When finding uORFs, often you want to allow them to end inside the cds.

Usage

addCdsOnLeaderEnds(fiveUTRs, cds, onlyFirstExon = FALSE)

Arguments

fiveUTRs The 5’ leader sequences as GRangesList

cds If you want to extend 5’ leaders downstream, to catch uorfs going into cds,
include it.

onlyFirstExon logical (F), include whole cds or only first exons.

Details

This is a simple way to do that

Value

a GRangesList of cds exons added to ends

See Also

Other uorfs: filterUORFs(), removeORFsWithSameStartAsCDS(), removeORFsWithSameStopAsCDS(),
removeORFsWithStartInsideCDS(), removeORFsWithinCDS(), uORFSearchSpace()

addNewTSSOnLeaders Add cage max peaks as new transcript start sites for each 5’ leader (*)
strands are not supported, since direction must be known.

Description

Add cage max peaks as new transcript start sites for each 5’ leader (*) strands are not supported,
since direction must be known.

Usage

addNewTSSOnLeaders(fiveUTRs, maxPeakPosition, removeUnused, cageMcol)

allFeaturesHelper 9

Arguments

fiveUTRs (GRangesList) The 5’ leaders or full transcript sequences
maxPeakPosition

The max peak for each 5’ leader found by cage

removeUnused logical (FALSE), if False: (standard is to set them to original annotation), If
TRUE: remove leaders that did not have any cage support.

cageMcol a logical (FALSE), if TRUE, add a meta column to the returned object with the
raw CAGE counts in support for new TSS.

Value

a GRanges object of first exons

allFeaturesHelper Calculate the features in computeFeatures

Description

Not used directly, calculates all features.

Usage

allFeaturesHelper(
grl,
RFP,
RNA,
tx,
fiveUTRs,
cds,
threeUTRs,
faFile,
riboStart,
riboStop,
sequenceFeatures,
grl.is.sorted,
weight.RFP = 1L,
weight.RNA = 1L,
st = NULL

)

Arguments

grl a GRangesList object with usually ORFs, but can also be either leaders, cds’,
3’ utrs, etc. This is the regions you want to score.

RFP RiboSeq reads as GAlignments , GRanges or GRangesList object

RNA RnaSeq reads as GAlignments , GRanges or GRangesList object

tx a GrangesList of transcripts, normally called from: exonsBy(Gtf, by = "tx",
use.names = T) only add this if you are not including Gtf file If you are using
CAGE, you do not need to reassign these to the cage peaks, it will do it for you.

10 artificial.orfs

fiveUTRs fiveUTRs as GRangesList, if you used cage-data to extend 5’ utrs, remember to
input CAGE assigned version and not original!

cds a GRangesList of coding sequences

threeUTRs a GrangesList of transcript 3’ utrs, normally called from: threeUTRsByTran-
script(Gtf, use.names = T)

faFile a path to fasta indexed genome, an open FaFile, a BSgenome, or path to ORFik
experiment with valid genome.

riboStart usually 26, the start of the floss interval, see ?floss

riboStop usually 34, the end of the floss interval

sequenceFeatures

a logical, default TRUE, include all sequence features, that is: Kozak, fraction-
Lengths, distORFCDS, isInFrame, isOverlapping and rankInTx

grl.is.sorted logical (F), a speed up if you know argument grl is sorted, set this to TRUE.

weight.RFP a vector (default: 1L). Can also be character name of column in RFP. As in trans-
lationalEff(weight = "score") for: GRanges("chr1", 1, "+", score = 5), would
mean score column tells that this alignment region was found 5 times.

weight.RNA Same as weightRFP but for RNA weights. (default: 1L)

st (NULL), if defined must be: st = startRegion(grl, tx, T, -3, 9)

Value

a data.table with features

artificial.orfs Create small artificial orfs from cds

Description

Usefull to see if short ORFs prediction is dependent on length.
Split cds first in two, a start part and stop part. Then say how large the two parts can be and merge
them together. It will sample a value in range give.
Parts will be forced to not overlap and can not extend outside original cds

Usage

artificial.orfs(
cds,
start5 = 1,
end5 = 4,
start3 = -4,
end3 = 0,
bin.if.few = TRUE

)

assignAnnotations 11

Arguments

cds a GRangesList of orfs, must have width %% 3 == 0 and length >= 6

start5 integer, default: 1 (start of orf)

end5 integer, default: 4 (max 4 codons from start codon)

start3 integer, default -4 (max 4 codons from stop codon)

end3 integer, default: 0 (end of orf)

bin.if.few logical, default TRUE, instead of per codon, do per 2, 3, 4 codons if you have
few samples compared to lengths wanted, If you have 4 cds’ and you want 7
different lengths, which is the standard, it will give you possible nt length: 6-12-
18-24 instead of original 6-9-12-15-18-21-24.
If you have more than 30x cds than lengths wanted this is skipped. (for default
arguments this is: 7*30 = 210 cds)

Details

If artificial cds length is not divisible by 2, like 3 codons, the second codon will always be from the
start region etc.
Also If there are many very short original cds, the distribution will be skewed towards more smaller
artificial cds.

Value

GRangesList of new ORFs (sorted: + strand increasing start, - strand decreasing start)

assignAnnotations Overlaps GRanges object with provided annotations.

Description

It will return same list of GRanges, but with metdata columns: trainscript_id - id of transcripts
that overlap with each ORF gene_id - id of gene that this transcript belongs to isoform - for coding
protein alignment in relation to cds on coresponding transcript, for non-coding transcripts alignment
in relation to the transcript.

Usage

assignAnnotations(ORFs, con)

Arguments

ORFs - GRanges or GRangesList object of your ORFs.

con - Path to gtf file with annotations.

Value

A GRanges object of your ORFs with metadata columns ’gene’, ’transcript’, isoform’ and ’biotype’.

12 assignLastExonsStopSite

assignFirstExonsStartSite

Reassign the start positions of the first exons per group in grl

Description

Per group in GRangesList, assign the most upstream site.

Usage

assignFirstExonsStartSite(grl, newStarts)

Arguments

grl a GRangesList object

newStarts an integer vector of same length as grl, with new start values (absolute coordi-
nates, not relative)

Details

make sure your grl is sorted, since start of "-" strand objects should be the max end in group, use
ORFik:::sortPerGroup(grl) to get sorted grl.

Value

the same GRangesList with new start sites

See Also

Other GRanges: assignLastExonsStopSite(), downstreamFromPerGroup(), downstreamOfPerGroup(),
upstreamFromPerGroup(), upstreamOfPerGroup()

assignLastExonsStopSite

Reassign the stop positions of the last exons per group

Description

Per group in GRangesList, assign the most upstream site.

Usage

assignLastExonsStopSite(grl, newStops)

Arguments

grl a GRangesList object

newStops an integer vector of same length as grl, with new start values (absolute coordi-
nates, not relative)

assignTSSByCage 13

Details

make sure your grl is sorted, since stop of "-" strand objects should be the min start in group, use
ORFik:::sortPerGroup(grl) to get sorted grl.

Value

the same GRangesList with new stop sites

See Also

Other GRanges: assignFirstExonsStartSite(), downstreamFromPerGroup(), downstreamOfPerGroup(),
upstreamFromPerGroup(), upstreamOfPerGroup()

assignTSSByCage Input a txdb and add a 5’ leader for each transcript, that does not have
one.

Description

For all cds in txdb, that does not have a 5’ leader: Start at 1 base upstream of cds and use CAGE,
to assign leader start. All these leaders will be 1 exon based, if you really want exon splicings, you
can use exon prediction tools, or run sequencing experiments.

Usage

assignTSSByCage(
txdb,
cage,
extension = 1000,
filterValue = 1,
restrictUpstreamToTx = FALSE,
removeUnused = FALSE,
preCleanup = TRUE

)

Arguments

txdb a TxDb file, a path to one of: (.gtf ,.gff, .gff2, .gff2, .db or .sqlite) or an ORFik
experiment

cage Either a filePath for the CageSeq file as .bed .bam or .wig, with possible com-
pressions (".gzip", ".gz", ".bgz"), or already loaded CageSeq peak data as GRanges
or GAlignment. NOTE: If it is a .bam file, it will add a score column by run-
ning: convertToOneBasedRanges(cage, method = "5prime", addScoreColumn =
TRUE) The score column is then number of replicates of read, if score column
is something else, like read length, set the score column to NULL first.

extension The maximum number of basses upstream of the TSS to search for CageSeq
peak.

filterValue The minimum number of reads on cage position, for it to be counted as possible
new tss. (represented in score column in CageSeq data) If you already filtered,
set it to 0.

14 asTX

restrictUpstreamToTx

a logical (FALSE). If TRUE: restrict leaders to not extend closer than 5 bases
from closest upstream leader, set this to TRUE.

removeUnused logical (FALSE), if False: (standard is to set them to original annotation), If
TRUE: remove leaders that did not have any cage support.

preCleanup logical (TRUE), if TRUE, remove all reads in region (-5:-1, 1:5) of all original
tss in leaders. This is to keep original TSS if it is only +/- 5 bases from the
original.

Details

Given a TxDb object, reassign the start site per transcript using max peaks from CageSeq data. A
max peak is defined as new TSS if it is within boundary of 5’ leader range, specified by ‘extension‘
in bp. A max peak must also be higher than minimum CageSeq peak cutoff specified in ‘filter-
Value‘. The new TSS will then be the positioned where the cage read (with highest read count in
the interval).

Value

a TxDb obect of reassigned transcripts

See Also

Other CAGE: reassignTSSbyCage(), reassignTxDbByCage()

Examples

txdbFile <- system.file("extdata", "hg19_knownGene_sample.sqlite",
package = "GenomicFeatures")

cagePath <- system.file("extdata", "cage-seq-heart.bed.bgz",
package = "ORFik")

Not run:
assignTSSByCage(txdbFile, cagePath)
Minimum 20 cage tags for new TSS
assignTSSByCage(txdbFile, cagePath, filterValue = 20)

End(Not run)

asTX Map genomic to transcript coordinates by reference

Description

Map range coordinates between features in the genome and transcriptome (reference) space.

bamVarName 15

Usage

asTX(
grl,
reference,
ignore.strand = FALSE,
x.is.sorted = TRUE,
tx.is.sorted = TRUE

)

Arguments

grl a GRangesList of ranges within the reference, grl must have column called
names that gives grouping for result

reference a GrangesList of ranges that include and are bigger or equal to grl ig. cds is grl
and gene can be reference

ignore.strand When ignore.strand is TRUE, strand is ignored in overlaps operations (i.e., all
strands are considered "+") and the strand in the output is ’*’.
When ignore.strand is FALSE (default) strand in the output is taken from the
transcripts argument. When transcripts is a GRangesList, all inner list elements
of a common list element must have the same strand or an error is thrown.
Mapped position is computed by counting from the transcription start site (TSS)
and is not affected by the value of ignore.strand.

x.is.sorted if x is a GRangesList object, are "-" strand groups pre-sorted in decreasing order
within group, default: TRUE

tx.is.sorted if transcripts is a GRangesList object, are "-" strand groups pre-sorted in de-
creasing order within group, default: TRUE

Details

Similar to GenomicFeatures’ pmapToTranscripts, but in this version the grl ranges are compared to
reference ranges with same name, not by index. And it has a security fix.

Value

a GRangesList in transcript coordinates

See Also

Other ExtendGenomicRanges: coveragePerTiling(), extendLeaders(), extendTrailers(),
reduceKeepAttr(), tile1(), txSeqsFromFa(), windowPerGroup()

bamVarName Get library variable names from ORFik experiment

Description

What will each sample be called given the columns of the experiment?

16 bamVarNamePicker

Usage

bamVarName(
df,
skip.replicate = length(unique(df$rep)) == 1,
skip.condition = length(unique(df$condition)) == 1,
skip.stage = length(unique(df$stage)) == 1,
skip.fraction = length(unique(df$fraction)) == 1,
skip.experiment = !df@expInVarName,
skip.libtype = FALSE

)

Arguments

df an ORFik experiment

skip.replicate a logical (FALSE), don’t include replicate in variable name.

skip.condition a logical (FALSE), don’t include condition in variable name.

skip.stage a logical (FALSE), don’t include stage in variable name.

skip.fraction a logical (FALSE), don’t include fraction
skip.experiment

a logical (FALSE), don’t include experiment

skip.libtype a logical (FALSE), don’t include libtype

Value

variable names of libraries (character vector)

See Also

Other ORFik_experiment: ORFik.template.experiment(), create.experiment(), experiment-class,
filepath(), libraryTypes(), organism.df(), outputLibs(), read.experiment(), save.experiment(),
validateExperiments()

Examples

df <- ORFik.template.experiment()
bamVarName(df)

without libtype
bamVarName(df, skip.libtype = TRUE)
Without experiment name
bamVarName(df, skip.experiment = TRUE)

bamVarNamePicker Get variable name per filepath in experiment

Description

Get variable name per filepath in experiment

bedToGR 17

Usage

bamVarNamePicker(
df,
skip.replicate = FALSE,
skip.condition = FALSE,
skip.stage = FALSE,
skip.fraction = FALSE,
skip.experiment = FALSE,
skip.libtype = FALSE

)

Arguments

df an ORFik experiment

skip.replicate a logical (FALSE), don’t include replicate in variable name.

skip.condition a logical (FALSE), don’t include condition in variable name.

skip.stage a logical (FALSE), don’t include stage in variable name.

skip.fraction a logical (FALSE), don’t include fraction
skip.experiment

a logical (FALSE), don’t include experiment

skip.libtype a logical (FALSE), don’t include libtype

Value

variable name of library (character vector)

bedToGR Converts bed style data.frame to Granges

Description

For info on columns, see: https://www.ensembl.org/info/website/upload/bed.html

Usage

bedToGR(x, skip.name = TRUE)

Arguments

x A data.frame from imported bed-file, to convert to GRanges

skip.name default (TRUE), skip name column (column 4)

Value

a GRanges object from bed

See Also

Other utils: convertToOneBasedRanges(), export.bed12(), export.wiggle(), fimport(), findFa(),
fread.bed(), optimizeReads(), readBam(), readWig()

18 changePointAnalysis

cellLineNames Get cell-line name variants

Description

Used to standardize nomeclature for experiments.
Example: THP-1 is main naming, but a variant is THP1 THP1 will then be renamed to THP-1

Usage

cellLineNames()

Value

a data.table with 2 columns, the main name, and all name variants of the main name in second
column as a list.

See Also

Other experiment_naming: conditionNames(), libNames(), mainNames(), repNames(), stageNames(),
tissueNames()

changePointAnalysis Get the offset for specific RiboSeq read width

Description

Creates sliding windows of transcript normalized counts per position and check which window has
most in upstream window vs downstream window. Pick the position with highest absolute value
maximum of the window difference. Checks windows with split sites between positions -17 to -7,
where 0 is TIS. Normally you expect the shift around -12.

Usage

changePointAnalysis(
x,
feature = "start",
max.pos = 40L,
interval = seq.int(14L, 24L)

)

Arguments

x a vector with count per position to analyse, assumes the zero position (TIS) is in
the middle + 1 (position 0). Default it is size 60, from -30 to 29 in p-shifting

feature (character) either "start" or "stop"

max.pos integer, default 40L, subset x to go from index 1 to max.pos, if tail is not relevant.

interval integer vector , default seq.int(14L, 24L). Seperation points for upstream and
downstream windows. That is (+/- 5 from -12) position.

checkRFP 19

Details

Transcript normalized means per CDS TIS region, count reads per position, divide that number per
position by the total of that transcript, then sum up these numbers per position for all transcripts.

Value

a single numeric offset, -12 would mean p-site is 12 bases upstream

See Also

Other pshifting: detectRibosomeShifts(), shiftFootprintsByExperiment(), shiftFootprints()

checkRFP Helper Function to check valid RFP input

Description

Helper Function to check valid RFP input

Usage

checkRFP(class)

Arguments

class, the given class of RFP object

Value

NULL, stop if invalid object

See Also

Other validity: checkRNA(), is.ORF(), is.gr_or_grl(), is.grl(), is.range(), validGRL(),
validSeqlevels()

checkRNA Helper Function to check valid RNA input

Description

Helper Function to check valid RNA input

Usage

checkRNA(class)

Arguments

class, the given class of RNA object

20 codonSumsPerGroup

Value

NULL, stop if unvalid object

See Also

Other validity: checkRFP(), is.ORF(), is.gr_or_grl(), is.grl(), is.range(), validGRL(),
validSeqlevels()

codonSumsPerGroup Get read hits per codon

Description

Helper for entropy function, normally not used directly Seperate each group into tuples (abstract
codons) Gives sum for each tuple within each group

Usage

codonSumsPerGroup(grl, reads, weight = "score", is.sorted = FALSE)

Arguments

grl GRangesList or GRanges of your ranges

reads GRanges object of your reads.

weight (default: ’score’), if defined a character name of valid meta column in subject.
GRanges("chr1", 1, "+", score = 5), would mean score column tells that this
alignment region was found 5 times. ORFik .bedo files, contains a score column
like this. As do CAGEr CAGE files and many other package formats. You can
also assign a score column manually.

is.sorted logical (FALSE), is grl sorted. That is + strand groups in increasing ranges
(1,2,3), and - strand groups in decreasing ranges (3,2,1)

Details

Example: counts c(1,0,0,1), with reg_len = 2, gives c(1,0) and c(0,1), these are summed and re-
turned as data.table 10 bases, will give 3 codons, 1 base codons does not exist.

Value

a data.table with codon sums

collapse.by.scores 21

collapse.by.scores Merge reads by sum of existing scores

Description

If you have multiple reads a same location but different read lengths, specified in meta column
"size", it will sum up the scores (number of replicates) for all reads at that position

Usage

collapse.by.scores(x)

Arguments

x a GRanges object

Value

merged GRanges object

Examples

gr_s1 <- rep(GRanges("chr1", 1:10,"+"), 2)
gr_s2 <- GRanges("chr1", 1:12,"+")
gr2 <- GRanges("chr1", 21:40,"+")
gr <- c(gr_s1, gr_s2, gr2)
res <- convertToOneBasedRanges(gr,

addScoreColumn = TRUE, addSizeColumn = TRUE)
ORFik:::collapse.by.scores(res)

collapseDuplicatedReads

Collapse duplicated reads

Description

For every GRanges, GAlignments read, with the same: seqname, start, (cigar) / width and strand,
collapse and give a new meta column called "score", which contains the number of duplicates of
that read. If score column already exists, will return input object!

Usage

collapseDuplicatedReads(x, ...)

Arguments

x a GRanges, GAlignments or GAlignmentPairs object

... alternative arguments. addScoreColumn = TRUE, if FALSE, only collapse and
not add score column.

22 collapseDuplicatedReads,GAlignments-method

Value

a GRanges, GAlignments or GAlignmentPairs object, same as input

Examples

gr <- rep(GRanges("chr1", 1:10,"+"), 2)
collapseDuplicatedReads(gr)

collapseDuplicatedReads,GAlignmentPairs-method

Collapse duplicated reads

Description

For every GRanges, GAlignments read, with the same: seqname, start, (cigar) / width and strand,
collapse and give a new meta column called "score", which contains the number of duplicates of
that read. If score column already exists, will return input object!

Usage

S4 method for signature 'GAlignmentPairs'
collapseDuplicatedReads(x, addScoreColumn = TRUE)

Arguments

x a GRanges, GAlignments or GAlignmentPairs object

addScoreColumn = TRUE, if FALSE, only collapse and not add score column.

Value

a GRanges, GAlignments or GAlignmentPairs object, same as input

Examples

gr <- rep(GRanges("chr1", 1:10,"+"), 2)
collapseDuplicatedReads(gr)

collapseDuplicatedReads,GAlignments-method

Collapse duplicated reads

Description

For every GRanges, GAlignments read, with the same: seqname, start, (cigar) / width and strand,
collapse and give a new meta column called "score", which contains the number of duplicates of
that read. If score column already exists, will return input object!

Usage

S4 method for signature 'GAlignments'
collapseDuplicatedReads(x, addScoreColumn = TRUE)

collapseDuplicatedReads,GRanges-method 23

Arguments

x a GRanges, GAlignments or GAlignmentPairs object

addScoreColumn = TRUE, if FALSE, only collapse and not add score column.

Value

a GRanges, GAlignments or GAlignmentPairs object, same as input

Examples

gr <- rep(GRanges("chr1", 1:10,"+"), 2)
collapseDuplicatedReads(gr)

collapseDuplicatedReads,GRanges-method

Collapse duplicated reads

Description

For every GRanges, GAlignments read, with the same: seqname, start, (cigar) / width and strand,
collapse and give a new meta column called "score", which contains the number of duplicates of
that read. If score column already exists, will return input object!

Usage

S4 method for signature 'GRanges'
collapseDuplicatedReads(
x,
addScoreColumn = TRUE,
addSizeColumn = FALSE,
reuse.score.column = TRUE

)

Arguments

x a GRanges, GAlignments or GAlignmentPairs object

addScoreColumn = TRUE, if FALSE, only collapse and not keep score column.

addSizeColumn logical (FALSE), if TRUE, add a size column that for each read, that gives orig-
inal width of read. Useful if you need original read lengths. This takes care of
soft clips etc. If collapsing reads, each unique range will be grouped also by
size.

reuse.score.column

logical (TRUE), if addScoreColumn is TRUE, and a score column exists, will
sum up the scores to create a new score. If FALSE, will skip old score column
and create new according to number of replicated reads after conversion. If
addScoreColumn is FALSE, this argument is ignored.

Value

a GRanges, GAlignments or GAlignmentPairs object, same as input

24 computeFeatures

Examples

gr <- rep(GRanges("chr1", 1:10,"+"), 2)
collapseDuplicatedReads(gr)

computeFeatures Get all possible features in ORFik

Description

If you want to get all the features easily, you can use this function. Each feature have a link to an
article describing its creation and idea behind it. Look at the functions in the feature family to see
all of them.

Usage

computeFeatures(
grl,
RFP,
RNA = NULL,
Gtf,
faFile = NULL,
riboStart = 26,
riboStop = 34,
sequenceFeatures = TRUE,
grl.is.sorted = FALSE,
weight.RFP = 1L,
weight.RNA = 1L

)

Arguments

grl a GRangesList object with usually ORFs, but can also be either leaders, cds’,
3’ utrs, etc. This is the regions you want to score.

RFP RiboSeq reads as GAlignments , GRanges or GRangesList object

RNA RnaSeq reads as GAlignments , GRanges or GRangesList object

Gtf a TxDb object of a gtf file or path to gtf, gff .sqlite etc.

faFile a path to fasta indexed genome, an open FaFile, a BSgenome, or path to ORFik
experiment with valid genome.

riboStart usually 26, the start of the floss interval, see ?floss

riboStop usually 34, the end of the floss interval
sequenceFeatures

a logical, default TRUE, include all sequence features, that is: Kozak, fraction-
Lengths, distORFCDS, isInFrame, isOverlapping and rankInTx

grl.is.sorted logical (F), a speed up if you know argument grl is sorted, set this to TRUE.

weight.RFP a vector (default: 1L). Can also be character name of column in RFP. As in trans-
lationalEff(weight = "score") for: GRanges("chr1", 1, "+", score = 5), would
mean score column tells that this alignment region was found 5 times.

weight.RNA Same as weightRFP but for RNA weights. (default: 1L)

computeFeaturesCage 25

Details

If you used CageSeq to reannotate your leaders, your txDB object must contain the reassigned
leaders. Use [reassignTxDbByCage()] to get the txdb.

As a note the library is reduced to only reads overlapping ’tx’, so the library size in fpkm calculation
is done on this subset. This will help remove rRNA and other contaminants.
Also if you have only unique reads with a weight column, explaining the number of duplicated
reads, set weights to make calculations correct. See getWeights

Value

a data.table with scores, each column is one score type, name of columns are the names of the
scores, i.g [floss()] or [fpkm()]

See Also

Other features: computeFeaturesCage(), countOverlapsW(), disengagementScore(), distToCds(),
distToTSS(), entropy(), floss(), fpkm_calc(), fpkm(), fractionLength(), initiationScore(),
insideOutsideORF(), isInFrame(), isOverlapping(), kozakSequenceScore(), orfScore(),
rankOrder(), ribosomeReleaseScore(), ribosomeStallingScore(), startRegionCoverage(),
startRegion(), subsetCoverage(), translationalEff()

Examples

Here we make an example from scratch
Usually the ORFs are found in orfik, which makes names for you etc.
gtf <- system.file("extdata", "annotations.gtf",
package = "ORFik") ## location of the gtf file
suppressWarnings(txdb <-

GenomicFeatures::makeTxDbFromGFF(gtf, format = "gtf"))
use cds' as ORFs for this example
ORFs <- GenomicFeatures::cdsBy(txdb, by = "tx", use.names = TRUE)
ORFs <- makeORFNames(ORFs) # need ORF names
make Ribo-seq data,
RFP <- unlistGrl(firstExonPerGroup(ORFs))
suppressWarnings(computeFeatures(ORFs, RFP, Gtf = txdb))
For more details see vignettes.

computeFeaturesCage Get all possible features in ORFik

Description

If you have a txdb with correctly reassigned transcripts, use: [computeFeatures()]

Usage

computeFeaturesCage(
grl,
RFP,
RNA = NULL,
Gtf = NULL,

26 computeFeaturesCage

tx = NULL,
fiveUTRs = NULL,
cds = NULL,
threeUTRs = NULL,
faFile = NULL,
riboStart = 26,
riboStop = 34,
sequenceFeatures = TRUE,
grl.is.sorted = FALSE,
weight.RFP = 1L,
weight.RNA = 1L

)

Arguments

grl a GRangesList object with usually ORFs, but can also be either leaders, cds’,
3’ utrs, etc. This is the regions you want to score.

RFP RiboSeq reads as GAlignments , GRanges or GRangesList object

RNA RnaSeq reads as GAlignments , GRanges or GRangesList object

Gtf a TxDb object of a gtf file or path to gtf, gff .sqlite etc.

tx a GrangesList of transcripts, normally called from: exonsBy(Gtf, by = "tx",
use.names = T) only add this if you are not including Gtf file If you are using
CAGE, you do not need to reassign these to the cage peaks, it will do it for you.

fiveUTRs fiveUTRs as GRangesList, if you used cage-data to extend 5’ utrs, remember to
input CAGE assigned version and not original!

cds a GRangesList of coding sequences

threeUTRs a GrangesList of transcript 3’ utrs, normally called from: threeUTRsByTran-
script(Gtf, use.names = T)

faFile a path to fasta indexed genome, an open FaFile, a BSgenome, or path to ORFik
experiment with valid genome.

riboStart usually 26, the start of the floss interval, see ?floss

riboStop usually 34, the end of the floss interval
sequenceFeatures

a logical, default TRUE, include all sequence features, that is: Kozak, fraction-
Lengths, distORFCDS, isInFrame, isOverlapping and rankInTx

grl.is.sorted logical (F), a speed up if you know argument grl is sorted, set this to TRUE.

weight.RFP a vector (default: 1L). Can also be character name of column in RFP. As in trans-
lationalEff(weight = "score") for: GRanges("chr1", 1, "+", score = 5), would
mean score column tells that this alignment region was found 5 times.

weight.RNA Same as weightRFP but for RNA weights. (default: 1L)

Details

A specialized version if you don’t have a correct txdb, for example with CAGE reassigned leaders
while txdb is not updated. It is 2x faster for tested data. The point of this function is to give you the
ability to input transcript etc directly into the function, and not load them from txdb. Each feature
have a link to an article describing feature, try ?floss

computeFeaturesCage 27

Value

a data.table with scores, each column is one score type, name of columns are the names of the
scores, i.g [floss()] or [fpkm()]

See Also

Other features: computeFeatures(), countOverlapsW(), disengagementScore(), distToCds(),
distToTSS(), entropy(), floss(), fpkm_calc(), fpkm(), fractionLength(), initiationScore(),
insideOutsideORF(), isInFrame(), isOverlapping(), kozakSequenceScore(), orfScore(),
rankOrder(), ribosomeReleaseScore(), ribosomeStallingScore(), startRegionCoverage(),
startRegion(), subsetCoverage(), translationalEff()

Examples

a small example without cage-seq data:
we will find ORFs in the 5' utrs
and then calculate features on them
Not run:
if (requireNamespace("BSgenome.Hsapiens.UCSC.hg19")) {
library(GenomicFeatures)
Get the gtf txdb file
txdbFile <- system.file("extdata", "hg19_knownGene_sample.sqlite",
package = "GenomicFeatures")
txdb <- loadDb(txdbFile)

Extract sequences of fiveUTRs.
fiveUTRs <- fiveUTRsByTranscript(txdb, use.names = TRUE)[1:10]
faFile <- BSgenome.Hsapiens.UCSC.hg19::Hsapiens
need to suppress warning because of bug in GenomicFeatures, will
be fixed soon.
tx_seqs <- suppressWarnings(extractTranscriptSeqs(faFile, fiveUTRs))

Find all ORFs on those transcripts and get their genomic coordinates
fiveUTR_ORFs <- findMapORFs(fiveUTRs, tx_seqs)
unlistedORFs <- unlistGrl(fiveUTR_ORFs)
group GRanges by ORFs instead of Transcripts
fiveUTR_ORFs <- groupGRangesBy(unlistedORFs, unlistedORFs$names)

make some toy ribo seq and rna seq data
starts <- unlistGrl(ORFik:::firstExonPerGroup(fiveUTR_ORFs))
RFP <- promoters(starts, upstream = 0, downstream = 1)
score(RFP) <- rep(29, length(RFP)) # the original read widths

set RNA seq to duplicate transcripts
RNA <- unlistGrl(exonsBy(txdb, by = "tx", use.names = TRUE))

computeFeaturesCage(grl = fiveUTR_ORFs, RFP = RFP,
RNA = RNA, Gtf = txdb, faFile = faFile)

}
See vignettes for more examples

End(Not run)

28 convertLibs

conditionNames Get condition name variants

Description

Used to standardize nomeclature for experiments.
Example: WT is main naming, but a variant is control control will then be renamed to WT

Usage

conditionNames()

Value

a data.table with 2 columns, the main name, and all name variants of the main name in second
column as a list.

See Also

Other experiment_naming: cellLineNames(), libNames(), mainNames(), repNames(), stageNames(),
tissueNames()

convertLibs Converted format of NGS libraries

Description

Export as either .ofst, .bedo or .bedoc files.
Export files as .bedo files: It is a bed file with 2 score columns. Gives a massive speedup when cigar
string and bam flags are not needed.
Export files as .bedoc files: If cigar is needed, gives you replicates and cigar, so a fast way to load
a GAlignment object, other bam flags are lost. If type is bedoc addSizeColumn and method will be
ignored.

Usage

convertLibs(
df,
out.dir = dirname(df$filepath[1]),
addScoreColumn = TRUE,
addSizeColumn = TRUE,
must.overlap = NULL,
method = "None",
type = "ofst"

)

convertToOneBasedRanges 29

Arguments

df an ORFik experiment

out.dir optional output directory, default: dirname(df$filepath[1]), if it is NULL, it will
just reassign R objects to simplified libraries.

addScoreColumn logical, default TRUE, if FALSE will not add replicate numbers as score col-
umn, see ORFik::convertToOneBasedRanges.

addSizeColumn logical, default TRUE, if FALSE will not add size (width) as size column, see
ORFik::convertToOneBasedRanges. Does not apply for .ofst or .bedoc.

must.overlap default (NULL), else a GRanges / GRangesList object, so only reads that over-
lap (must.overlap) are kept. This is useful when you only need the reads over
transcript annotation or subset etc.

method character, default "None", the method to reduce ranges, for more info see convertToOneBasedRanges

type a character of format, default "ofst". Alternatives: "ofst", "wig","bedo" or "bedoc".
Which format you want. Will make a folder within out.dir with this name con-
taining the files.

Details

See export.bedo and export.bedoc for information on file formats

Value

NULL (saves files to disc or R .GlobalEnv)

Examples

df <- ORFik.template.experiment()
#convertLibs(df)
Keep only 5' ends of reads
#convertLibs(df, method = "5prime")

convertToOneBasedRanges

Convert a GRanges Object to 1 width reads

Description

There are 5 ways of doing this
1. Take 5’ ends, reduce away rest (5prime)
2. Take 3’ ends, reduce away rest (3prime)
3. Tile to 1-mers and include all (tileAll)
4. Take middle point per GRanges (middle)
5. Get original with metacolumns (None)
You can also do multiple at a time, then output is GRangesList, where each list group is the operation
(5prime is [1], 3prime is [2] etc)
Many other ways to do this have their own functions, like startSites and stopSites etc. To retain
information on original width, set addSizeColumn to TRUE. To compress data, 1 GRanges object
per unique read, set addScoreColumn to TRUE. This will give you a score column with how many
duplicated reads there were in the specified region.

30 convertToOneBasedRanges

Usage

convertToOneBasedRanges(
gr,
method = "5prime",
addScoreColumn = FALSE,
addSizeColumn = FALSE,
after.softclips = TRUE,
along.reference = FALSE,
reuse.score.column = TRUE

)

Arguments

gr GRanges, GAlignment or GAlignmentPairs object to reduce.
method the method to reduce ranges, see info. (5prime defualt)
addScoreColumn logical (FALSE), if TRUE, add a score column that sums up the hits per unique

range. This will make each read unique, so that each read is 1 time, and score
column gives the number of collapsed hits. A useful compression. If add-
SizeColumn is FALSE, it will not differentiate between reads with same start
and stop, but different length. If addSizeColumn is FALSE, it will remove it.
Collapses after conversion.

addSizeColumn logical (FALSE), if TRUE, add a size column that for each read, that gives orig-
inal width of read. Useful if you need original read lengths. This takes care of
soft clips etc. If collapsing reads, each unique range will be grouped also by
size.

after.softclips

logical (TRUE), include softclips in width. Does not apply if along.reference is
TRUE.

along.reference

logical (FALSE), example: The cigar "26MI2" is by default width 28, but if
along.reference is TRUE, it will be 26. The length of the read along the refer-
ence. Also "1D20M" will be 21 if by along.reference is TRUE. Intronic regions
(cigar: N) will be removed. So: "1M200N19M" is 20, not 220.

reuse.score.column

logical (TRUE), if addScoreColumn is TRUE, and a score column exists, will
sum up the scores to create a new score. If FALSE, will skip old score column
and create new according to number of replicated reads after conversion. If
addScoreColumn is FALSE, this argument is ignored.

Details

NOTE: For special case of GAlignmentPairs, 5prime will only use left (first) 5’ end and read and
3prime will use only right (last) 3’ end of read in pair. tileAll and middle can possibly find poinst
that are not in the reads since: lets say pair is 1-5 and 10-15, middle is 7, which is not in the read.

Value

Converted GRanges object

See Also

Other utils: bedToGR(), export.bed12(), export.wiggle(), fimport(), findFa(), fread.bed(),
optimizeReads(), readBam(), readWig()

countOverlapsW 31

Examples

gr <- GRanges("chr1", 1:10,"+")
5 prime ends
convertToOneBasedRanges(gr)
is equal to convertToOneBasedRanges(gr, method = "5prime")
3 prime ends
convertToOneBasedRanges(gr, method = "3prime")
With lengths
convertToOneBasedRanges(gr, addSizeColumn = TRUE)
With score (# of replicates)
gr <- rep(gr, 2)
convertToOneBasedRanges(gr, addSizeColumn = TRUE, addScoreColumn = TRUE)

countOverlapsW CountOverlaps with weights

Description

Similar to countOverlaps, but takes an optional weight column. This is usually the score column

Usage

countOverlapsW(query, subject, weight = NULL, ...)

Arguments

query IRanges, IRangesList, GRanges, GRangesList object. Usually transcript a tran-
script region.

subject GRanges, GRangesList, GAlignment, usually reads.

weight (default: NULL), if defined either numeric or character name of valid meta col-
umn in subject. If weight is single numeric, it is used for all. A normall weight
is the score column given as weight = "score". GRanges("chr1", 1, "+", score =
5), would mean score column tells that this alignment region was found 5 times.

... additional arguments passed to countOverlaps/findOverlaps

Value

a named vector of number of overlaps to subject weigthed by ’weight’ column.

See Also

Other features: computeFeaturesCage(), computeFeatures(), disengagementScore(), distToCds(),
distToTSS(), entropy(), floss(), fpkm_calc(), fpkm(), fractionLength(), initiationScore(),
insideOutsideORF(), isInFrame(), isOverlapping(), kozakSequenceScore(), orfScore(),
rankOrder(), ribosomeReleaseScore(), ribosomeStallingScore(), startRegionCoverage(),
startRegion(), subsetCoverage(), translationalEff()

32 countTable

Examples

gr1 <- GRanges(seqnames="chr1",
ranges=IRanges(start = c(4, 9, 10, 30),

end = c(4, 15, 20, 31)),
strand="+")

gr2 <- GRanges(seqnames="chr1",
ranges=IRanges(start = c(1, 4, 15, 25),

end = c(2, 4, 20, 26)),
strand=c("+"),
score=c(10, 20, 15, 5))

countOverlaps(gr1, gr2)
countOverlapsW(gr1, gr2, weight = "score")

countTable Extract count table directly from experiment

Description

Used to quickly load read count tables to R.
If df is experiment: Extracts by getting /QC_STATS directory, and searching for region Requires
ORFikQC to have been run on experiment!

Usage

countTable(df, region = "mrna", type = "count", collapse = FALSE)

Arguments

df an ORFik experiment or path to folder with countTable, use path if not same
folder as experiment libraries.

region a character vector (default: "mrna"), make raw count matrices of whole mrnas
or one of (leaders, cds, trailers).

type default: "count" (raw counts matrix), "summarized" (SummarizedExperiment
object), "deseq" (Deseq2 experiment, design will be all valid non-unique columns
except replicates, change by using DESeq2::design, normalization alternatives
are: "fpkm", "log2fpkm" or "log10fpkm"

collapse a logical/character (default FALSE), if TRUE all samples within the group SAM-
PLE will be collapsed to one. If "all", all groups will be merged into 1 col-
umn called merged_all. Collapse is defined as rowSum(elements_per_group) /
ncol(elements_per_group)

Details

If df is path to folder: Loads the the file in that directory with the regex region.rds, where region is
what is defined by argument.

Value

a data.table of columns as counts per library, column name is name of library. Rownames must be
unique for now. Might change.

countTable_regions 33

Examples

Make experiment
ORFik.template.experiment()
Make QC report to get counts ++
ORFikQC(df)

Get count Table of mrnas
countTable(df, "mrna")
Get count Table of cds
countTable(df, "cds")
Get count Table of mrnas as fpkm values
countTable(df, "mrna", type = "count")
Get count Table of mrnas with collapsed replicates
countTable(df, "mrna", collapse = TRUE)
Get count Table of mrnas as summarizedExperiment
countTable(df, "mrna", type = "summarized")
Get count Table of mrnas as DESeq2 object,
for differential expression analysis
countTable(df, "mrna", type = "deseq")

countTable_regions Make a list of count matrices from experiment

Description

Make a list of count matrices from experiment

Usage

countTable_regions(
df,
out.dir = dirname(df$filepath[1]),
longestPerGene = TRUE,
geneOrTxNames = "tx",
regions = c("mrna", "leaders", "cds", "trailers"),
type = "count",
weight = "score",
BPPARAM = bpparam()

)

Arguments

df an ORFik experiment

out.dir optional output directory, default: dirname(df$filepath[1]). Will make a
folder called "QC_STATS" with all results in this directory.

longestPerGene a logical (default TRUE), if FALSE all transcript isoforms per gene.

geneOrTxNames a character vector (default "tx"), should row names keep trancript names ("tx")
or change to gene names ("gene")

regions a character vector, default: c("mrna", "leaders", "cds", "trailers"), make raw
count matrices of whole regions specified.

type default: "count" (raw counts matrix), alternative is "fpkm", "log2fpkm" or "log10fpkm"

34 coverageGroupings

weight numeric or character, a column to score overlaps by. Default "score", will check
for a metacolumn called "score" in libraries. If not found, will not use weights.

BPPARAM how many cores/threads to use? default: bpparam()

Value

a list of data.table, 1 data.table per region. The regions will be the names the list elements.

coverageByTranscriptW coverageByTranscript with weights

Description

Extends the function with weights, see coverageByTranscript for original function.

Usage

coverageByTranscriptW(x, transcripts, ignore.strand = FALSE, weight = 1L)

Arguments

x reads (GRanges, GAlignments)

transcripts GRangesList

ignore.strand a logical (default: FALSE)

weight a vector (default: 1L), if single number applies for all, else it must be the string
name of a defined meta column in "x", that gives number of times a read was
found. GRanges("chr1", 1, "+", score = 5), would mean score column tells that
this alignment was found 5 times.

Value

Integer Rle of coverage, 1 per transcript

coverageGroupings Get grouping for a coverage table in ORFik

Description

Either of two groupings: GF: Gene, fraction FGF: Fraction, position, feature It finds which of these
exists, and auto groups

Usage

coverageGroupings(logicals, grouping = "GF")

Arguments

logicals size 2 logical vector, the is.null checks for each column,

grouping which grouping to perform, default "GF" Gene & Fraction grouping. Alternative
"FGF", Fraction & position & feature.

coverageHeatMap 35

Details

Normally not used directly!

Value

a quote of the grouping to pass to data.table

coverageHeatMap Create a heatmap of coverage

Description

Rows: Position in region Columns: Read length Index intensity: (color) coverage scoring per index.

Usage

coverageHeatMap(
coverage,
output = NULL,
scoring = "zscore",
legendPos = "right",
addFracPlot = FALSE,
xlab = "Position relative to start site",
ylab = "Protected fragment length",
colors = "default",
title = NULL

)

Arguments

coverage a data.table, e.g. output of scaledWindowCoverage

output character string (NULL), if set, saves the plot as pdf or png to path given. If no
format is given, is save as pdf.

scoring character vector, default "zscore", Which scoring did you use to create? either
of zscore, transcriptNormalized, sum, mean, median, .. see ?coverageScorings
for info and more alternatives.

legendPos a character, Default "right". Where should the fill legend be ? ("top", "bottom",
"right", "left")

addFracPlot Add margin histogram plot on top of heatmap with fractions per positions

xlab the x-axis label, default "Position relative to start site"

ylab the y-axis label, default "Protected fragment length"

colors character vector, default: "default", this gives you: c("white", "yellow2", "yel-
low3", "lightblue", "blue", "navy"), do "high" for more high contrasts, or specify
your own colors.

title a character, default NULL (no title), what is the top title of plot?

36 coveragePerTiling

Details

Coverage rows in heat map is fraction, usually fractions is divided into unique read lengths (standard
Illumina is 76 unique widths, with some minimum cutoff like 15.) Coverage column in heat map is
score, default zscore of counts. These are the relative positions you are plotting to. Like +/- relative
to TIS or TSS.

Colors: Remember if you want to change anything like colors, just return the ggplot object, and
reassign like: obj + scale_color_brewer() etc. Standard colors are: 0 reads in whole readlength:
gray few reads in position: white medium reads in position: yellow many reads in position: dark
blue

Value

a ggplot object of the coverage plot, NULL if output is set, then the plot will only be saved to
location.

See Also

Other heatmaps: heatMapL(), heatMapRegion(), heatMap_single()

Other coveragePlot: pSitePlot(), savePlot(), windowCoveragePlot()

Examples

An ORF
grl <- GRangesList(tx1 = GRanges("1", IRanges(1, 6), "+"))
Ribo-seq reads
range <- IRanges(c(rep(1, 3), 2, 3, rep(4, 2), 5, 6), width = 1)
reads <- GRanges("1", range, "+")
reads$size <- c(rep(28, 5), rep(29, 4)) # read size
coverage <- windowPerReadLength(grl, reads = reads, upstream = 0,

downstream = 5)

coverageHeatMap(coverage)

With top sum bar
coverageHeatMap(coverage, addFracPlot = TRUE)
See vignette for more examples

coveragePerTiling Get coverage per group

Description

It tiles each GRangesList group to width 1, and finds hits per position. A range from 1:5 will split
into c(1,2,3,4,5) and count hits on each.

coveragePerTiling 37

Usage

coveragePerTiling(
grl,
reads,
is.sorted = FALSE,
keep.names = TRUE,
as.data.table = FALSE,
withFrames = FALSE,
weight = "score"

)

Arguments

grl a GRangesList of 5’ utrs, CDS, transcripts, etc.

reads a GAlignments or GRanges object of RiboSeq, RnaSeq etc. Weigths for scoring
is default the ’score’ column in ’reads’

is.sorted logical (FALSE), is grl sorted. That is + strand groups in increasing ranges
(1,2,3), and - strand groups in decreasing ranges (3,2,1)

keep.names logical (TRUE), keep names or not.

as.data.table a logical (FALSE), return as data.table with 2 columns, position and count.

withFrames a logical (FALSE), only available if as.data.table is TRUE, return the ORF
frame, 1,2,3, where position 1 is 1, 2 is 2 and 4 is 1 etc.

weight (default: ’score’), if defined a character name of valid meta column in subject.
GRanges("chr1", 1, "+", score = 5), would mean score column tells that this
alignment region was found 5 times. ORFik .bedo files, contains a score column
like this. As do CAGEr CAGE files and many other package formats. You can
also assign a score column manually.

Details

This is a safer speedup of coverageByTranscript from GenomicFeatures. It also gives the possibility
to return as data.table, for faster computations. NOTE: If reads contains a $score column, it will
presume that this is the number of replicates per reads, weights for the coverage() function. So
delete the score column or set weight to something else if this is not wanted.

Value

a RleList, one integer-Rle per group with # of hits per position. Or data.table if as.data.table is
TRUE.

See Also

Other ExtendGenomicRanges: asTX(), extendLeaders(), extendTrailers(), reduceKeepAttr(),
tile1(), txSeqsFromFa(), windowPerGroup()

Examples

ORF <- GRanges(seqnames = "1",
ranges = IRanges(start = c(1, 10, 20),

end = c(5, 15, 25)),
strand = "+")

grl <- GRangesList(tx1_1 = ORF)

38 coverageScorings

RFP <- GRanges("1", IRanges(25, 25), "+")
coveragePerTiling(grl, RFP, is.sorted = TRUE)
now as data.table with frames
coveragePerTiling(grl, RFP, is.sorted = TRUE, as.data.table = TRUE,

withFrames = TRUE)

coverageScorings Add a coverage scoring scheme

Description

Different scorings and groupings of a coverage representation.

Usage

coverageScorings(coverage, scoring = "zscore")

Arguments

coverage a data.table containing at least columns (count, position), it is possible to have
additionals: (genes, fraction, feature)

scoring a character, one of (zscore, transcriptNormalized, mean, median, sum, log2sum,
log10sum, sumLength, meanPos and frameSum, periodic, NULL). More info in
docs.

Details

Usually output of metaWindow or scaledWindowCoverage is input in this function.

Content of coverage data.table: It must contain the count and position columns.

genes column: If you have multiple windows, the genes column must define which gene/transcript
grouping the different counts belong to. If there is only a meta window or only 1 gene/transcript,
then this column is not needed.

fraction column: If you have coverage of i.e RNA-seq and Ribo-seq, or TCP -seq of large and small
subunite, divide into fractions. Like factor(RNA, RFP)

feature column: If gene group is subdivided into parts, like gene is transcripts, and feature column
can be c(leader, cds, trailer) etc.

Given a data.table coverage of counts, add a scoring scheme. per: the grouping given, if genes is
defined, group by per gene in scoring. Scorings: 1. zscore (count-windowMean)/windowSD per) 2.
transcriptNormalized (sum(count / sum of counts per)) 3. mean (mean(count per)) 4. median (me-
dian(count per)) 5. sum (count per) 6. log2sum (count per) 7. log10sum (count per) 8. sumLength
(count per) / number of windows 9. meanPos (mean per position per gene) used in scaledWindow-
Positions 10. sumPos (sum per position per gene) used in scaledWindowPositions 11. frameSum
(sum per frame per gene) used in ORFScore 12. fracPos (fraction of counts per position per gene)
13. periodic (Fourier transform periodicity of meta coverage per fraction) 14. NULL (return input
directly)

Value

a data.table with new scores (size dependent on score used)

create.experiment 39

See Also

Other coverage: metaWindow(), scaledWindowPositions(), windowPerReadLength()

Examples

dt <- data.table::data.table(count = c(4, 1, 1, 4, 2, 3),
position = c(1, 2, 3, 4, 5, 6))

coverageScorings(dt, scoring = "zscore")

with grouping gene
dt$genes <- c(rep("tx1", 3), rep("tx2", 3))
coverageScorings(dt, scoring = "zscore")

create.experiment Create a template for new ORFik experiment

Description

Create information on runs / samples from an experiment as a single R object. By using files in a
folder / folders. It will try to make an experiment table with information per sample. There will
be several columns you can fill in, most of there it will try to auto-detect. Like if it is RNA-seq or
Ribo-seq, Wild type or mutant etc. You will have to fill in the details that were not autodetected.
Easiest way to fill in the blanks are in a csv editor like libre Office or excel. Remember that each
row (sample) must have a unique combination of values. An extra column called "reverse" is made
if there are paired data, like +/- strand wig files.

Usage

create.experiment(
dir,
exper,
saveDir = "~/Bio_data/ORFik_experiments/",
txdb = "",
fa = "",
organism = "",
pairedEndBam = FALSE,
viewTemplate = TRUE,
types = c("bam", "bed", "wig")

)

Arguments

dir Which directory / directories to create experiment from

exper Short name of experiment, max 5 characters long

saveDir Directory to save experiment csv file, default: "~/Bio_data/ORFik_experiments/"
Set to NULL if you don’t want to save it to disc.

txdb A path to gff/gtf file used for libraries

fa A path to fasta genome/sequences used for libraries, remember the file must
have a fasta index too.

40 create.experiment

organism character, default: "" (no organism set), scientific name of organism. Homo
sapiens, Danio rerio, Rattus norvegicus etc.

pairedEndBam logical FALSE, else TRUE, or a logical list of TRUE/FALSE per library you see
will be included (run first without and check what order the files will come in)
1 paired end file, then two single will be c(T, F, F)

viewTemplate run View() on template when finished, default (TRUE)

types Default (bam, bed, wig), which types of libraries to allow

Value

a data.frame, NOTE: this is not a ORFik experiment, only a template for it!

See Also

Other ORFik_experiment: ORFik.template.experiment(), bamVarName(), experiment-class,
filepath(), libraryTypes(), organism.df(), outputLibs(), read.experiment(), save.experiment(),
validateExperiments()

Examples

1. Pick directory
dir <- system.file("extdata", "", package = "ORFik")
2. Pick an experiment name
exper <- "ORFik"
3. Pick .gff/.gtf location
txdb <- system.file("extdata", "annotations.gtf", package = "ORFik")
4. Pick fasta genome of organism
fa <- system.file("extdata", "genome.fasta", package = "ORFik")
5. Set organism (optional)
org <- "Homo sapiens"

Create temple not saved on disc yet:
template <- create.experiment(dir = dir, exper, txdb = txdb,

saveDir = NULL,
fa = fa, organism = org,
viewTemplate = FALSE)

Now fix non-unique rows: either is libre office, microsoft excel, or in R
template$X5[6] <- "heart"
read experiment (if you set correctly)
df <- read.experiment(template)
Save with: save.experiment(df, file = "path/to/save/experiment.csv")

Create and save experiment directly:
Default location: "~/Bio_data/ORFik_experiments/"
#template <- create.experiment(dir = dir, exper, txdb = txdb,
fa = fa, organism = org,
viewTemplate = FALSE)
Custom location
#template <- create.experiment(dir = dir, exper, txdb = txdb,
saveDir = "~/MY/CUSTOME/LOCATION",
fa = fa, organism = org,
viewTemplate = FALSE)

defineIsoform 41

defineIsoform Overlaps GRanges object with provided annotations.

Description

Overlaps GRanges object with provided annotations.

Usage

defineIsoform(
rel_orf,
tran,
isoform_names = c("perfect_match", "elong_START_match", "trunc_START_match",
"elong_STOP_match", "trunc_STOP_match", "overlap_inside", "overlap_both",
"overlap_upstream", "overlap_downstream", "upstream", "downstram", "none")

)

Arguments

rel_orf - GRanges object of your ORF.

tran - GRanges object of annotation (transcript or cds) that overlapped in some way
rel_orf.

isoform_names - A vector of strings that will be used instead of these defaults: ’perfect_match’
- start and stop matches the tran object strand wise ’elong_START_match’ -
rel_orf is extension from the STOP side of the tran ’trunc_START_match’ -
rel_orf is truncation from the STOP side of the tran ’elong_STOP_match’ -
rel_orf is extension from the START side of the tran ’trunc_STOP_match’ -
rel_orf is truncation from the START side of the tran ’overlap_inside’ - rel_orf
is inside tran object ’overlap_both’ - rel_orf contains tran object inside ’over-
lap_upstream’ - rel_orf is overlaping upstream part of the tran ’overlap_downstream’
- rel_orf is overlaping downstream part of the tran ’upstream’ - rel_orf is up-
stream towards the tran ’downstream’ - rel_orf is downstream towards the tran
’none’ - when none of the above options is true

Value

A string object of defined isoform towards transcript.

defineTrailer Defines trailers for ORF.

Description

Creates GRanges object as a trailer for ORFranges representing ORF, maintaining restrictions of
transcriptRanges. Assumes that ORFranges is on the transcriptRanges, strands and seqlevels are in
agreement. When lengthOFtrailer is smaller than space left on the transcript than all available space
is returned as trailer.

42 detectRibosomeShifts

Usage

defineTrailer(ORFranges, transcriptRanges, lengthOftrailer = 200)

Arguments

ORFranges GRanges object of your Open Reading Frame.
transcriptRanges

GRanges object of transtript.
lengthOftrailer

Numeric. Default is 10.

Details

It assumes that ORFranges and transcriptRanges are not sorted when on minus strand. Should be
like: (200, 600) (50, 100)

Value

A GRanges object of trailer.

See Also

Other ORFHelpers: longestORFs(), mapToGRanges(), orfID(), startCodons(), startSites(),
stopCodons(), stopSites(), txNames(), uniqueGroups(), uniqueOrder()

Examples

ORFranges <- GRanges(seqnames = Rle(rep("1", 3)),
ranges = IRanges(start = c(1, 10, 20),

end = c(5, 15, 25)),
strand = "+")

transcriptRanges <- GRanges(seqnames = Rle(rep("1", 5)),
ranges = IRanges(start = c(1, 10, 20, 30, 40),

end = c(5, 15, 25, 35, 45)),
strand = "+")

defineTrailer(ORFranges, transcriptRanges)

detectRibosomeShifts Detect ribosome shifts

Description

Utilizes periodicity measurement (Fourier transform), and change point analysis to detect ribosomal
footprint shifts for each of the ribosomal read lengths. Returns subset of read lengths and their shifts
for which top covered transcripts follow periodicity measure. Each shift value assumes 5’ anchoring
of the reads, so that output offsets values will shift 5’ anchored footprints to be on the p-site of the
ribosome. The E-site will be shift + 3 and A site will be shift - 3. So update to these, if you rather
want those.

detectRibosomeShifts 43

Usage

detectRibosomeShifts(
footprints,
txdb,
start = TRUE,
stop = FALSE,
top_tx = 10L,
minFiveUTR = 30L,
minCDS = 150L,
minThreeUTR = 30L,
firstN = 150L,
tx = NULL,
min_reads = 1000,
accepted.lengths = 26:34,
heatmap = FALSE,
must.be.periodic = TRUE

)

Arguments

footprints GAlignments object of RiboSeq reads - footprints, can also be path to the .bam
/.ofst file. If GAlignment object has a meta column called "score", this will be
used as replicate numbering for that read. So be careful if you have custom files
with score columns, with another meaning.

txdb a TxDb file, a path to one of: (.gtf ,.gff, .gff2, .gff2, .db or .sqlite) or an ORFik
experiment

start (logical) Whether to include predictions based on the start codons. Default
TRUE.

stop (logical) Whether to include predictions based on the stop codons. Default
FASLE. Only use if there exists 3’ UTRs for the annotation. If peridicity around
stop codon is stronger than at the start codon, use stop instead of start region for
p-shifting.

top_tx (integer), default 10. Specify which reads transcripts to use for estimation of the
shifts. By default we take top 10 top covered transcripts as they represent less
noisy dataset. This is only applicable when there are more than 1000 transcripts.

minFiveUTR (integer) minimum bp for 5’ UTR during filtering for the transcripts. Set to
NULL if no 5’ UTRs exists for annotation.

minCDS (integer) minimum bp for CDS during filtering for the transcripts

minThreeUTR (integer) minimum bp for 3’ UTR during filtering for the transcripts. Set to
NULL if no 3’ UTRs exists for annotation.

firstN (integer) Represents how many bases of the transcripts downstream of start
codons to use for initial estimation of the periodicity.

tx a GRangesList, if you do not have 5’ UTRs in annotation, send your own ver-
sion. Example: extendLeaders(tx, 30) Where 30 bases will be new "leaders".
Since each original transcript was either only CDS or non-coding (filtered out).

min_reads default (1000), how many reads must a read-length have to be considered for
periodicity.

accepted.lengths

accepted readlengths, default 26:34, usually ribo-seq is strongest between 27:32.

44 detectRibosomeShifts

heatmap a logical or character string, default FALSE. If TRUE, will plot heatmap of raw
reads before p-shifting to console, to see if shifts given make sense. You can
also set a filepath to save the file there.

must.be.periodic

logical TRUE, if FALSE will not filter on periodic read lengths. (The Fourier
transform filter will be skipped).

Details

Check out vignette for the examples of plotting RiboSeq metaplots over start and stop codons, so
that you can verify visually whether this function detects correct shifts.

For how the Fourier transform works, see: isPeriodic
For how the changepoint analysis works, see: changePointAnalysis

NOTE: It will remove softclips from valid width, the CIGAR 3S30M is qwidth 33, but will remove
3S so final read width is 30 in ORFik. This is standard for ribo-seq.

Value

a data.table with lengths of footprints and their predicted coresponding offsets

References

https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-018-4912-6

See Also

Other pshifting: changePointAnalysis(), shiftFootprintsByExperiment(), shiftFootprints()

Examples

Basic run
#detectRibosomeShifts(footprints, txdb)
Full example
Not run:
Transcriptome annotation ->
gtf_file <- system.file("extdata", "annotations.gtf", package = "ORFik")
The ribo seq file, usually .bam file ->
riboSeq_file <- system.file("extdata", "ribo-seq.bam", package = "ORFik")
footprints <- GenomicAlignments::readGAlignments(

riboSeq_file, param = ScanBamParam(flag = scanBamFlag(
isDuplicate = FALSE, isSecondaryAlignment = FALSE)))

detectRibosomeShifts(footprints, gtf_file, stop = TRUE)

Without 5' Annotation
library(GenomicFeatures)

txdb <- loadTxdb(gtf_file)
tx <- exonsBy(txdb, by = "tx", use.names = TRUE)
tx <- extendLeaders(tx, 30)
Now run function, without 5' and 3' UTRs
detectRibosomeShifts(footprints, txdb, start = TRUE, minFiveUTR = NULL,

minCDS = 150L, minThreeUTR = NULL, firstN = 150L,
tx = tx)

disengagementScore 45

End(Not run)

disengagementScore Disengagement score (DS)

Description

Disengagement score is defined as

(RPFs over ORF)/(RPFs downstream to transcript end)

A pseudo-count of one is added to both the ORF and downstream sums.

Usage

disengagementScore(
grl,
RFP,
GtfOrTx,
RFP.sorted = FALSE,
weight = 1L,
overlapGrl = NULL

)

Arguments

grl a GRangesList object with usually either leaders, cds’, 3’ utrs or ORFs.

RFP RiboSeq reads as GAlignments, GRanges or GRangesList object

GtfOrTx If it is TxDb object transcripts will be extracted using exonsBy(Gtf,by = "tx",use.names
= TRUE). Else it must be GRangesList

RFP.sorted logical (FALSE), an optimizer, have you ran this line: RFP <-sort(RFP[countOverlaps(RFP,tx,type
= "within") > 0]) Normally not touched, for internal optimization purposes.

weight a vector (default: 1L, if 1L it is identical to countOverlaps()), if single number
(!= 1), it applies for all, if more than one must be equal size of ’reads’. else it
must be the string name of a defined meta column in subject "reads", that gives
number of times a read was found. GRanges("chr1", 1, "+", score = 5), would
mean "score" column tells that this alignment region was found 5 times.

overlapGrl an integer, (default: NULL), if defined must be countOverlaps(grl, RFP), added
for speed if you already have it

Value

a named vector of numeric values of scores

References

doi: 10.1242/dev.098344

46 distToCds

See Also

Other features: computeFeaturesCage(), computeFeatures(), countOverlapsW(), distToCds(),
distToTSS(), entropy(), floss(), fpkm_calc(), fpkm(), fractionLength(), initiationScore(),
insideOutsideORF(), isInFrame(), isOverlapping(), kozakSequenceScore(), orfScore(),
rankOrder(), ribosomeReleaseScore(), ribosomeStallingScore(), startRegionCoverage(),
startRegion(), subsetCoverage(), translationalEff()

Examples

ORF <- GRanges(seqnames = "1",
ranges = IRanges(start = c(1, 10, 20), end = c(5, 15, 25)),
strand = "+")

grl <- GRangesList(tx1_1 = ORF)
tx <- GRangesList(tx1 = GRanges("1", IRanges(1, 50), "+"))
RFP <- GRanges("1", IRanges(c(1,10,20,30,40), width = 3), "+")
disengagementScore(grl, RFP, tx)

distToCds Get distances between ORF ends and starts of their transcripts cds.

Description

Will calculate distance between each ORF end and begining of the corresponding cds (main ORF).
Matching is done by transcript names. This is applicable practically to the upstream (fiveUTRs)
ORFs only. The cds start site, will be presumed to be on + 1 of end of fiveUTRs.

Usage

distToCds(ORFs, fiveUTRs, cds = NULL)

Arguments

ORFs orfs as GRangesList, names of orfs must be transcript names

fiveUTRs fiveUTRs as GRangesList, remember to use CAGE version of 5’ if you did
CAGE reassignment!

cds cds’ as GRangesList, only add if you have ORFs going into CDS.

Value

an integer vector, +1 means one base upstream of cds, -1 means 2nd base in cds, 0 means orf stops
at cds start.

References

doi: 10.1074/jbc.R116.733899

distToTSS 47

See Also

Other features: computeFeaturesCage(), computeFeatures(), countOverlapsW(), disengagementScore(),
distToTSS(), entropy(), floss(), fpkm_calc(), fpkm(), fractionLength(), initiationScore(),
insideOutsideORF(), isInFrame(), isOverlapping(), kozakSequenceScore(), orfScore(),
rankOrder(), ribosomeReleaseScore(), ribosomeStallingScore(), startRegionCoverage(),
startRegion(), subsetCoverage(), translationalEff()

Examples

grl <- GRangesList(tx1_1 = GRanges("1", IRanges(1, 10), "+"))
fiveUTRs <- GRangesList(tx1 = GRanges("1", IRanges(1, 20), "+"))
distToCds(grl, fiveUTRs)

distToTSS Get distances between ORF Start and TSS of its transcript

Description

Matching is done by transcript names. This is applicable practically to any region in Transcript If
ORF is not within specified search space in tx, this function will crash.

Usage

distToTSS(ORFs, tx)

Arguments

ORFs orfs as GRangesList, names of orfs must be txname_[rank]
tx transcripts as GRangesList.

Value

an integer vector, 1 means on TSS, 2 means second base of Tx.

References

doi: 10.1074/jbc.R116.733899

See Also

Other features: computeFeaturesCage(), computeFeatures(), countOverlapsW(), disengagementScore(),
distToCds(), entropy(), floss(), fpkm_calc(), fpkm(), fractionLength(), initiationScore(),
insideOutsideORF(), isInFrame(), isOverlapping(), kozakSequenceScore(), orfScore(),
rankOrder(), ribosomeReleaseScore(), ribosomeStallingScore(), startRegionCoverage(),
startRegion(), subsetCoverage(), translationalEff()

Examples

grl <- GRangesList(tx1_1 = GRanges("1", IRanges(5, 10), "+"))
tx <- GRangesList(tx1 = GRanges("1", IRanges(2, 20), "+"))
distToTSS(grl, tx)

48 downstreamN

downstreamFromPerGroup

Get rest of objects downstream (inclusive)

Description

Per group get the part downstream of position. downstreamFromPerGroup(tx, startSites(threeUTRs,
asGR = TRUE)) will return the 3’ utrs per transcript as GRangesList, usually used for interesting
parts of the transcripts.

Usage

downstreamFromPerGroup(tx, downstreamFrom)

Arguments

tx a GRangesList, usually of Transcripts to be changed
downstreamFrom a vector of integers, for each group in tx, where is the new start point of first

valid exon.

Details

If you don’t want to include the points given in the region, use downstreamOfPerGroup

Value

a GRangesList of downstream part

See Also

Other GRanges: assignFirstExonsStartSite(), assignLastExonsStopSite(), downstreamOfPerGroup(),
upstreamFromPerGroup(), upstreamOfPerGroup()

downstreamN Restrict GRangesList

Description

Will restrict GRangesList to ‘N‘ bp downstream from the first base.

Usage

downstreamN(grl, firstN = 150L)

Arguments

grl (GRangesList)
firstN (integer) Allow only this many bp downstream, maximum.

Value

a GRangesList of reads restricted to firstN and tiled by 1

downstreamOfPerGroup 49

downstreamOfPerGroup Get rest of objects downstream (exclusive)

Description

Per group get the part downstream of position. downstreamOfPerGroup(tx, stopSites(cds, asGR =
TRUE)) will return the 3’ utrs per transcript as GRangesList, usually used for interesting parts of
the transcripts.

Usage

downstreamOfPerGroup(tx, downstreamOf)

Arguments

tx a GRangesList, usually of Transcripts to be changed

downstreamOf a vector of integers, for each group in tx, where is the new start point of first
valid exon. Can also be a GRangesList, then stopsites will be used.

Details

If you want to include the points given in the region, use downstreamFromPerGroup

Value

a GRangesList of downstream part

See Also

Other GRanges: assignFirstExonsStartSite(), assignLastExonsStopSite(), downstreamFromPerGroup(),
upstreamFromPerGroup(), upstreamOfPerGroup()

entropy Percentage of maximum entropy

Description

Calculates entropy of the ‘reads‘ coverage over each ‘grl‘ group. The entropy value per group is a
real number in the interval (0:1), where 0 indicates no variance in reads over group. For example
c(0,0,0,0) has 0 entropy, since no reads overlap.

Usage

entropy(grl, reads, weight = 1L, is.sorted = FALSE, overlapGrl = NULL)

50 entropy

Arguments

grl a GRangesList object can be either transcripts, 5’ utrs, cds’, 3’ utrs or ORFs as
a special case (uORFs, potential new cds’ etc). If regions are not spliced you
can send a GRanges object.

reads a GAlignments, GRanges or GRangesList object, usually of RiboSeq, RnaSeq,
CageSeq, etc.

weight a vector (default: 1L, if 1L it is identical to countOverlaps()), if single number
(!= 1), it applies for all, if more than one must be equal size of ’reads’. else it
must be the string name of a defined meta column in subject "reads", that gives
number of times a read was found. GRanges("chr1", 1, "+", score = 5), would
mean "score" column tells that this alignment region was found 5 times.

is.sorted logical (FALSE), is grl sorted. That is + strand groups in increasing ranges
(1,2,3), and - strand groups in decreasing ranges (3,2,1)

overlapGrl an integer, (default: NULL), if defined must be countOverlaps(grl, RFP), added
for speed if you already have it

Value

A numeric vector containing one entropy value per element in ‘grl‘

See Also

Other features: computeFeaturesCage(), computeFeatures(), countOverlapsW(), disengagementScore(),
distToCds(), distToTSS(), floss(), fpkm_calc(), fpkm(), fractionLength(), initiationScore(),
insideOutsideORF(), isInFrame(), isOverlapping(), kozakSequenceScore(), orfScore(),
rankOrder(), ribosomeReleaseScore(), ribosomeStallingScore(), startRegionCoverage(),
startRegion(), subsetCoverage(), translationalEff()

Examples

a toy example with ribo-seq p-shifted reads
ORF <- GRanges("1", ranges = IRanges(start = c(1, 12, 22),

end = c(10, 20, 32)),
strand = "+",
names = rep("tx1_1", 3))

names(ORF) <- rep("tx1", 3)
grl <- GRangesList(tx1_1 = ORF)
reads <- GRanges("1", IRanges(c(25, 35), c(25, 35)), "+")
grl must have same names as cds + _1 etc, so that they can be matched.
entropy(grl, reads)
or on cds
cdsORF <- GRanges("1", IRanges(35, 44), "+", names = "tx1")
names(cdsORF) <- "tx1"
cds <- GRangesList(tx1 = cdsORF)
entropy(cds, reads)

experiment-class 51

experiment-class experiment class definition

Description

It is an object to massivly simplify your coding, by having a table of all libraries of an experiment.
That contains filepaths and info for each library in the experiment. It also tries to guess grouping /
types / pairs by the file names.
Act as a way of extension of SummarizedExperiment by allowing more ease to find not only counts,
but rather information about libraries, and annotation, so that more tasks are possible. Like coverage
per position in some transcript etc.
Constructor:
Simplest way to make is to call:
create.experiment(dir)
On some folder with NGS libraries (usually bam files) and see what you get. Some of the fields
might be needed to fill in manually. Each resulting row must be unique (not including filepath, they
are always unique), that means if it has replicates then that must be said explicit. And all filepaths
must be unique and have files with size > 0. Syntax (columns):
libtype (library type): rna-seq, ribo-seq, CAGE etc.
rep (replicate): 1,2,3 etc
condition: WT (wild-type), control, target, mzdicer, starved etc.
fraction: 18, 19 (fractinations), or other ways to split library.
filepath: Full filepath to file

Details

Special rules:
Supported:
Single/paired end bam, bed, wig, ofst + compressions of these
Paired forward / reverse wig files, must have same name except _forward / _reverse in name
Paired end bam, set pairedEndBam = c(T, T, T, F). For 3 paired end libraries, then one single end.
Naming: Will try to guess naming for tissues / stages, replicates etc. If it finds more than one hit for
one file, it will not guess. Always check that it guessed correctly.

See Also

Other ORFik_experiment: ORFik.template.experiment(), bamVarName(), create.experiment(),
filepath(), libraryTypes(), organism.df(), outputLibs(), read.experiment(), save.experiment(),
validateExperiments()

Examples

To see an internal ORFik example
df <- ORFik.template.experiment()
See libraries in experiment
df
See organism of experiment
organism.df(df)
See file paths in experiment
filepath(df, "default")
Output objects in R, to .GlobalEnv
#outputLibs(df)

52 export.bed12

This is how to make it:
Not run:
library(ORFik)

1. Update path to experiment data directory (bam, bed, wig files etc)
exp_dir = "/data/processed_data/RNA-seq/Lee_zebrafish_2013/aligned/"

2. Set a 5 character name for experiment, (Lee et al 2013 -> Lee13, etc)
exper_name = "Lee13"

3. Create a template experiment (gtf and fasta genome)
temp <- create.experiment(exp_dir, exper_name, saveDir = NULL,
txdb = "/data/references/Zv9_zebrafish/Danio_rerio.Zv9.79.gtf",
fa = "/data/references/Zv9_zebrafish/Danio_rerio.Zv9.fa",
organism = "Homo sapiens")

4. Make sure each row(sample) is unique and correct
You will get a view open now, check the data.frame that it is correct:
library type (RNA-seq, Ribo-seq), stage, rep, condition, fraction.
Let say it did not figure out it is RNA-seq, then we do:"

temp[5:6, 1] <- "RNA" # [row 5 and 6, col 1] are library types

You can also do this in your spread sheet program (excel, libre office)
Now save new version, if you did not use spread sheet.
saveName <- paste0("/data/processed_data/experiment_tables_for_R/",
exper_name,".csv")

save.experiment(temp, saveName)

5. Load experiment, this will validate that you actually made it correct
df <- read.experiment(saveName)

Set experiment name not to be assigned in R variable names
df@expInVarName <- FALSE
df

End(Not run)

export.bed12 Export as bed12 format

Description

bed format for multiple exons per group, as transcripts. Can be use as alternative as a sparse .gff
format for ORFs. Can be direct input for ucsc browser or IGV

Usage

export.bed12(grl, file, rgb = 0)

Arguments

grl A GRangesList

export.bedo 53

file a character path to valid output file name

rgb integer vector, default (0), either single integer or vector of same size as grl to
specify groups. It is adviced to not use more than 8 different groups

Details

If grl has no names, groups will be named 1,2,3,4..

Value

NULL (File is saved as .bed)

See Also

Other utils: bedToGR(), convertToOneBasedRanges(), export.wiggle(), fimport(), findFa(),
fread.bed(), optimizeReads(), readBam(), readWig()

Examples

grl <- GRangesList(GRanges("1", c(1,3,5), "+"))
export.bed12(grl, "output/path/orfs.bed")

export.bedo Store GRanges object as .bedo

Description

.bedo is .bed ORFik, an optimized bed format for coverage reads with read lengths .bedo is a text
based format with columns (6 maximum):
1. chromosome
2. start
3. end
4. strand
5. ref width (cigar # M’s, match/mismatch total)
6. duplicates of that read

Usage

export.bedo(object, out)

Arguments

object a GRanges object

out a character, location on disc (full path)

Details

Positions are 1-based, not 0-based as .bed. End will be removed if all ends equals all starts. Import
with import.bedo

54 export.ofst

Value

NULL, object saved to disc

export.bedoc Store GAlignments object as .bedoc

Description

A much faster way to store, load and use bam files.
.bedoc is .bed ORFik, an optimized bed format for coverage reads with cigar and replicate number.
.bedoc is a text based format with columns (5 maximum):
1. chromosome
2. cigar: (cigar # M’s, match/mismatch total)
3. start (left most position)
4. strand (+, -, *)
5. score: duplicates of that read

Usage

export.bedoc(object, out)

Arguments

object a GAlignments object

out a character, location on disc (full path)

Details

Positions are 1-based, not 0-based as .bed. Import with import.bedoc

Value

NULL, object saved to disc

export.ofst Store GRanges / GAlignments object as .ofst

Description

A much faster way to store, load and use bam files.
.ofst is ORFik fast serialized object, an optimized format for coverage reads with cigar and replicate
number. It uses the fst format as back-end: fst-package.
A .ofst ribo seq file can compress the information in a bam file from 5GB down to a few MB. This
new files has super fast reading time, only a few seconds, instead of minutes. It also has random
index access possibility of the file.
.ofst is represented as a data.frane format with minimum 4 columns:
1. chromosome
2. start (left most position)

export.ofst,GAlignmentPairs-method 55

3. strand (+, -, *)
4. width (not added if cigar exists)
5. cigar (not needed if width exists): (cigar # M’s, match/mismatch total)
5. score: duplicates of that read
6. size: qwidth according to reference of read

If file is from GAlignmentPairs, it will contain a cigar1, cigar2 instead of cigar and start1 and
start2 instead of start

Usage

export.ofst(x, ...)

Arguments

x a GRanges, GAlignments or GAlignmentPairs object

... additional arguments for write_fst

Details

Other columns can be named whatever you want and added to meta columns. Positions are 1-based,
not 0-based as .bed. Import with import.ofst

Value

NULL, object saved to disc

Examples

GRanges
gr <- GRanges("1:1-3:-")
export.ofst(gr, file = "path.ofst")
GAlignment
Make input data.frame
df <- data.frame(seqnames = "1", cigar = "3M", start = 1L, strand = "+")
ga <- ORFik:::getGAlignments(df)
export.ofst(ga, file = "path.ofst")

export.ofst,GAlignmentPairs-method

Store GRanges / GAlignments object as .ofst

Description

A much faster way to store, load and use bam files.
.ofst is ORFik fast serialized object, an optimized format for coverage reads with cigar and replicate
number. It uses the fst format as back-end: fst-package.
A .ofst ribo seq file can compress the information in a bam file from 5GB down to a few MB. This
new files has super fast reading time, only a few seconds, instead of minutes. It also has random
index access possibility of the file.
.ofst is represented as a data.frane format with minimum 4 columns:
1. chromosome

56 export.ofst,GAlignments-method

2. start (left most position)
3. strand (+, -, *)
4. width (not added if cigar exists)
5. cigar (not needed if width exists): (cigar # M’s, match/mismatch total)
5. score: duplicates of that read
6. size: qwidth according to reference of read

If file is from GAlignmentPairs, it will contain a cigar1, cigar2 instead of cigar and start1 and
start2 instead of start

Usage

S4 method for signature 'GAlignmentPairs'
export.ofst(x, file, ...)

Arguments

x a GRanges, GAlignments or GAlignmentPairs object

file a character, location on disc (full path)

... additional arguments for write_fst

Details

Other columns can be named whatever you want and added to meta columns. Positions are 1-based,
not 0-based as .bed. Import with import.ofst

Value

NULL, object saved to disc

Examples

GRanges
gr <- GRanges("1:1-3:-")
export.ofst(gr, file = "path.ofst")
GAlignment
Make input data.frame
df <- data.frame(seqnames = "1", cigar = "3M", start = 1L, strand = "+")
ga <- ORFik:::getGAlignments(df)
export.ofst(ga, file = "path.ofst")

export.ofst,GAlignments-method

Store GRanges / GAlignments object as .ofst

export.ofst,GAlignments-method 57

Description

A much faster way to store, load and use bam files.
.ofst is ORFik fast serialized object, an optimized format for coverage reads with cigar and replicate
number. It uses the fst format as back-end: fst-package.
A .ofst ribo seq file can compress the information in a bam file from 5GB down to a few MB. This
new files has super fast reading time, only a few seconds, instead of minutes. It also has random
index access possibility of the file.
.ofst is represented as a data.frane format with minimum 4 columns:
1. chromosome
2. start (left most position)
3. strand (+, -, *)
4. width (not added if cigar exists)
5. cigar (not needed if width exists): (cigar # M’s, match/mismatch total)
5. score: duplicates of that read
6. size: qwidth according to reference of read

If file is from GAlignmentPairs, it will contain a cigar1, cigar2 instead of cigar and start1 and
start2 instead of start

Usage

S4 method for signature 'GAlignments'
export.ofst(x, file, ...)

Arguments

x a GRanges, GAlignments or GAlignmentPairs object

file a character, location on disc (full path)

... additional arguments for write_fst

Details

Other columns can be named whatever you want and added to meta columns. Positions are 1-based,
not 0-based as .bed. Import with import.ofst

Value

NULL, object saved to disc

Examples

GRanges
gr <- GRanges("1:1-3:-")
export.ofst(gr, file = "path.ofst")
GAlignment
Make input data.frame
df <- data.frame(seqnames = "1", cigar = "3M", start = 1L, strand = "+")
ga <- ORFik:::getGAlignments(df)
export.ofst(ga, file = "path.ofst")

58 export.ofst,GRanges-method

export.ofst,GRanges-method

Store GRanges / GAlignments object as .ofst

Description

A much faster way to store, load and use bam files.
.ofst is ORFik fast serialized object, an optimized format for coverage reads with cigar and replicate
number. It uses the fst format as back-end: fst-package.
A .ofst ribo seq file can compress the information in a bam file from 5GB down to a few MB. This
new files has super fast reading time, only a few seconds, instead of minutes. It also has random
index access possibility of the file.
.ofst is represented as a data.frane format with minimum 4 columns:
1. chromosome
2. start (left most position)
3. strand (+, -, *)
4. width (not added if cigar exists)
5. cigar (not needed if width exists): (cigar # M’s, match/mismatch total)
5. score: duplicates of that read
6. size: qwidth according to reference of read

If file is from GAlignmentPairs, it will contain a cigar1, cigar2 instead of cigar and start1 and
start2 instead of start

Usage

S4 method for signature 'GRanges'
export.ofst(x, file, ...)

Arguments

x a GRanges, GAlignments or GAlignmentPairs object

file a character, location on disc (full path)

... additional arguments for write_fst

Details

Other columns can be named whatever you want and added to meta columns. Positions are 1-based,
not 0-based as .bed. Import with import.ofst

Value

NULL, object saved to disc

Examples

GRanges
gr <- GRanges("1:1-3:-")
export.ofst(gr, file = "path.ofst")
GAlignment
Make input data.frame

export.wiggle 59

df <- data.frame(seqnames = "1", cigar = "3M", start = 1L, strand = "+")
ga <- ORFik:::getGAlignments(df)
export.ofst(ga, file = "path.ofst")

export.wiggle Export as wiggle format

Description

Will create 2 files, 1 for + strand (*_forward.wig) and 1 for - strand (*_reverse.wig). If all files are
* stranded, will output 1 file. Can be direct input for ucsc browser or IGV

Usage

export.wiggle(x, file)

Arguments

x A GRangesList, GAlignment GAlignmentPairs with score column. Will be con-
verted to 5’ end position of original range. If score column does not exist, will
group ranges and give replicates as score column.

file a character path to valid output file name

Value

invisible(NULL) (File is saved as 2 .wig files)

References

https://genome.ucsc.edu/goldenPath/help/wiggle.html

See Also

Other utils: bedToGR(), convertToOneBasedRanges(), export.bed12(), fimport(), findFa(),
fread.bed(), optimizeReads(), readBam(), readWig()

Examples

x <- c(GRanges("1", c(1,3,5), "-"), GRanges("1", c(1,3,5), "+"))
export.wiggle(x, "output/path/rna.wig")

60 extendLeaders

extendLeaders Extend the leaders transcription start sites.

Description

Will extend the leaders or transcripts upstream (5’ end) by extension. Remember the extension is
general not relative, that means splicing will not be taken into account. Requires the grl to be
sorted beforehand, use sortPerGroup to get sorted grl.

Usage

extendLeaders(grl, extension = 1000L, cds = NULL)

Arguments

grl usually a GRangesList of 5’ utrs or transcripts. Can be used for any extension
of groups.

extension an integer, how much to extend upstream (5’ end). Eiter single value that will
apply for all, or same as length of grl which will give 1 update value per grl
object. Or a GRangesList where start / stops by strand are the positions to use
as new starts.

cds a GRangesList of coding sequences, If you want to extend 5’ leaders down-
stream, to catch upstream ORFs going into cds, include it. It will add first cds
exon to grl matched by names. Do not add for transcripts, as they are already
included.

Value

an extended GRangeslist

See Also

Other ExtendGenomicRanges: asTX(), coveragePerTiling(), extendTrailers(), reduceKeepAttr(),
tile1(), txSeqsFromFa(), windowPerGroup()

Examples

library(GenomicFeatures)
samplefile <- system.file("extdata", "hg19_knownGene_sample.sqlite",

package = "GenomicFeatures")
txdb <- loadDb(samplefile)
fiveUTRs <- fiveUTRsByTranscript(txdb) # <- extract only 5' leaders
tx <- exonsBy(txdb, by = "tx", use.names = TRUE)
cds <- cdsBy(txdb,"tx",use.names = TRUE)
now try(extend upstream 1000, downstream 1st cds exons):
extendLeaders(fiveUTRs, extension = 1000, cds)

when extending transcripts, don't include cds' of course,
since they are already there
extendLeaders(tx, extension = 1000)

extendsTSSexons 61

extendsTSSexons Extend first exon of each transcript with length specified

Description

Extend first exon of each transcript with length specified

Usage

extendsTSSexons(fiveUTRs, extension = 1000)

Arguments

fiveUTRs The 5’ leader sequences as GRangesList

extension The number of basses to extend transcripts upstream

Value

GRangesList object of fiveUTRs

extendTrailers Extend the Trailers transcription stop sites

Description

Will extend the trailers or transcripts downstream (3’ end) by extension. Remember the extension
is general not relative, that means splicing will not be taken into account. Requires the grl to be
sorted beforehand, use sortPerGroup to get sorted grl.

Usage

extendTrailers(grl, extension = 1000L)

Arguments

grl usually a GRangesList of 3’ utrs or transcripts. Can be used for any extension
of groups.

extension an integer, how much to extend downstream (3’ end). Eiter single value that
will apply for all, or same as length of grl which will give 1 update value per grl
object. Or a GRangesList where start / stops sites by strand are the positions to
use as new starts.

Value

an extended GRangeslist

See Also

Other ExtendGenomicRanges: asTX(), coveragePerTiling(), extendLeaders(), reduceKeepAttr(),
tile1(), txSeqsFromFa(), windowPerGroup()

62 filepath

Examples

library(GenomicFeatures)
samplefile <- system.file("extdata", "hg19_knownGene_sample.sqlite",

package = "GenomicFeatures")
txdb <- loadDb(samplefile)
threeUTRs <- threeUTRsByTranscript(txdb) # <- extract only 5' leaders
tx <- exonsBy(txdb, by = "tx", use.names = TRUE)
now try(extend downstream 1000):
extendTrailers(threeUTRs, extension = 1000)
Or on transcripts
extendTrailers(tx, extension = 1000)

filepath Get filepaths to ORFik experiment

Description

If other type than "default" is given and that type is not found, it will return you default filepaths
without warning.

Usage

filepath(df, type, basename = FALSE)

Arguments

df an ORFik experiment

type a character(default: "default"), load files in experiment or some precomputed
variant, either "bedo", "bedoc", "ofst or "pshifted". These are made with OR-
Fik:::simpleLibs(), shiftFootprintsByExperiment()..

basename logical, default (FALSE). Get relative paths instead of full. Only use for inspec-
tion!

Details

For pshifted libraries, it will load ".bedo" prioritized over ".bed", if there exists both file types for
the same file.

Value

a character vector of paths, or a list of character with 2 paths per, if paired libraries exists

See Also

Other ORFik_experiment: ORFik.template.experiment(), bamVarName(), create.experiment(),
experiment-class, libraryTypes(), organism.df(), outputLibs(), read.experiment(), save.experiment(),
validateExperiments()

filterCage 63

Examples

df <- ORFik.template.experiment()
filepath(df, "default")
If you have bedo files, see simpleLibs():
filepath(df, "bedo")
If you have pshifted files, see shiftFootprintsByExperiment():
filepath(df, "pshifted")

filterCage Filter peak of cage-data by value

Description

Filter peak of cage-data by value

Usage

filterCage(cage, filterValue = 1, fiveUTRs = NULL, preCleanup = TRUE)

Arguments

cage Either a filePath for the CageSeq file as .bed .bam or .wig, with possible com-
pressions (".gzip", ".gz", ".bgz"), or already loaded CageSeq peak data as GRanges
or GAlignment. NOTE: If it is a .bam file, it will add a score column by run-
ning: convertToOneBasedRanges(cage, method = "5prime", addScoreColumn =
TRUE) The score column is then number of replicates of read, if score column
is something else, like read length, set the score column to NULL first.

filterValue The minimum number of reads on cage position, for it to be counted as possible
new tss. (represented in score column in CageSeq data) If you already filtered,
set it to 0.

fiveUTRs a GRangesList (NULL), if added will filter out cage reads by these following
rules: all reads in region (-5:-1, 1:5) for each tss will be removed, removes
noise.

preCleanup logical (TRUE), if TRUE, remove all reads in region (-5:-1, 1:5) of all original
tss in leaders. This is to keep original TSS if it is only +/- 5 bases from the
original.

Value

the filtered Granges object

64 filterExtremePeakGenes

filterExtremePeakGenes

Filter out transcript by a median filter

Description

For removing very extreme peaks in coverage plots, use high quantiles, like 99. Used to make your
plots look better, by removing extreme peaks.

Usage

filterExtremePeakGenes(
tx,
reads,
upstream = NULL,
downstream = NULL,
multiplier = "0.99",
min_cutoff = "0.999",
pre_filter_minimum = 0,
average = "median"

)

Arguments

tx a GRangesList

reads a GAlignments or GRanges

upstream numeric or NULL, default NULL. if you want window of tx, instead of whole,
specify how much upstream from start of tx, 10 is include 10 bases before start

downstream numeric or NULL, default NULL. if you want window of tx, instead of whole,
specify how much downstream from start of tx, 10 is go 10 bases into tx from
start.

multiplier a character or numeric, default "0.99", either a quantile if input is string[0-1],
like "0.99", or numeric value if input is numeric. How much bigger than median
/ mean counts per gene, must a value be to be defined as extreme ?

min_cutoff a character or numeric, default "0.999", either a quantile if input is string[0-1],
like "0.999", or numeric value if input is numeric. Lowest allowed value

pre_filter_minimum

numeric, default 0. If value is x, will remove all positions in all genes with
coverage < x, before median filter is applied. Set to 1 to remove all 0 positions.

average character, default "median". Alternative: "mean". How to scale the multiplier
argument, from median or mean of gene coverage.

Value

GRangesList (filtered)

filterTranscripts 65

filterTranscripts Filter transcripts by lengths

Description

Filter transcripts to those who have leaders, CDS, trailers of some lengths, you can also pick the
longest per gene.

Usage

filterTranscripts(
txdb,
minFiveUTR = 30L,
minCDS = 150L,
minThreeUTR = 30L,
longestPerGene = TRUE,
stopOnEmpty = TRUE,
by = "tx"

)

Arguments

txdb a TxDb file or a path to one of: (.gtf ,.gff, .gff2, .gff2, .db or .sqlite), if it is a
GRangesList, it will return it self.

minFiveUTR (integer) minimum bp for 5’ UTR during filtering for the transcripts. Set to
NULL if no 5’ UTRs exists for annotation.

minCDS (integer) minimum bp for CDS during filtering for the transcripts

minThreeUTR (integer) minimum bp for 3’ UTR during filtering for the transcripts. Set to
NULL if no 3’ UTRs exists for annotation.

longestPerGene logical (TRUE), return only longest valid transcript per gene.

stopOnEmpty logical TRUE, stop if no valid transcripts are found ?

by a character, default "tx" Either "tx" or "gene". What names to output region by,
the transcript name "tx" or gene names "gene"

Details

If a transcript does not have a trailer, then the length is 0, so they will be filtered out if you set
minThreeUTR to 1. So only transcripts with leaders, cds and trailers will be returned. You can set
the integer to 0, that will return all within that group.

If your annotation does not have leaders or trailers, set them to NULL, since 0 does mean there
must exist a column called utr3_len etc. Genes with gene_id = NA will be be removed.

Value

a character vector of valid transcript names

66 fimport

Examples

gtf_file <- system.file("extdata", "annotations.gtf", package = "ORFik")
txdb <- GenomicFeatures::makeTxDbFromGFF(gtf_file)
txNames <- filterTranscripts(txdb, minFiveUTR = 1, minCDS = 30,

minThreeUTR = 1)
loadRegion(txdb, "mrna")[txNames]
loadRegion(txdb, "5utr")[txNames]

filterUORFs Remove uORFs that are false CDS hits

Description

This is a strong filtering, so that even if the cds is on another transcript , the uORF is filtered out,
this is because there is no way of knowing by current ribo-seq, rna-seq experiments.

Usage

filterUORFs(uorfs, cds)

Arguments

uorfs (GRangesList), the uORFs to filter

cds (GRangesList), the coding sequences (main ORFs on transcripts), to filter against.

Value

(GRangesList) of filtered uORFs

See Also

Other uorfs: addCdsOnLeaderEnds(), removeORFsWithSameStartAsCDS(), removeORFsWithSameStopAsCDS(),
removeORFsWithStartInsideCDS(), removeORFsWithinCDS(), uORFSearchSpace()

fimport Load any type of sequencing reads

Description

Wraps around rtracklayer::import and tries to speed up loading with the use of data.table. Supports
gzip, gz, bgz compression formats. Also safer chromosome naming with the argument chrStyle

Usage

fimport(path, chrStyle = NULL)

findFa 67

Arguments

path a character path to file (1 or 2 files), or data.table with 2 colums(forward&reverse)
or a GRanges/Galignment/GAlignmentPairs object etc. If it is ranged object it
will presume to be already loaded, so will return the object as it is, updating the
seqlevelsStyle if given.

chrStyle a GRanges object, TxDb, FaFile, or a seqlevelsStyle (Default: NULL) to
get seqlevelsStyle from. Is chromosome 1 called chr1 or 1, is mitocondrial
chromosome called MT or chrM etc. Will use 1st seqlevel-style if more are
present. Like: c("NCBI", "UCSC") -> pick "NCBI"

Details

NOTE: For wig you can send in 2 files, so that it automaticly merges forward and reverse stranded
objects. You can also just send 1 wig file, it will then have "*" as strand.

Value

a GAlignments/GRanges object, depending on input.

See Also

Other utils: bedToGR(), convertToOneBasedRanges(), export.bed12(), export.wiggle(), findFa(),
fread.bed(), optimizeReads(), readBam(), readWig()

Examples

bam_file <- system.file("extdata", "ribo-seq.bam", package = "ORFik")
fimport(bam_file)
Certain chromosome naming
fimport(bam_file, "NCBI")

findFa Convenience wrapper for Rsamtools FaFile

Description

Get fasta file object, to find sequences in file.
Will load and import file if necessarry.

Usage

findFa(faFile)

Arguments

faFile FaFile, BSgenome, fasta/index file path or an ORFik experiment. This file is
usually used to find the transcript sequences from some GRangesList.

Value

a FaFile or BSgenome

68 findLibrariesInFolder

See Also

Other utils: bedToGR(), convertToOneBasedRanges(), export.bed12(), export.wiggle(), fimport(),
fread.bed(), optimizeReads(), readBam(), readWig()

Examples

Some fasta genome with existing fasta index in same folder
path <- system.file("extdata", "genome.fasta", package = "ORFik")
findFa(path)

findFromPath Find all candidate library types filenames

Description

From the given experiment

Usage

findFromPath(filepaths, candidates)

Arguments

filepaths path to all files

candidates a data.table with 2 columns, Possible names to search for, see experiment_naming
family for candidates.

Value

a candidate library types (character vector)

findLibrariesInFolder Get all library files in folder/folders of given types

Description

Will try to guess paired / unpaired wig, bed, bam files.

Usage

findLibrariesInFolder(dir, types, pairedEndBam = FALSE)

Arguments

dir Which directory / directories to create experiment from

types Default (bam, bed, wig), which types of libraries to allow

pairedEndBam logical FALSE, else TRUE, or a logical list of TRUE/FALSE per library you see
will be included (run first without and check what order the files will come in)
1 paired end file, then two single will be c(T, F, F)

findMapORFs 69

Details

Set pairedEndBam if you have paired end reads as a single bam file.

Value

(data.table) All files found from types parameter. With 2 extra column (logical), is it wig pairs, and
paired bam files.

findMapORFs Find ORFs and immediately map them to their genomic positions.

Description

Finds ORFs on the sequences of interest, but returns relative positions to the positions of ‘grl‘
argument. For example, ‘grl‘ can be exons of known transcripts (with genomic coordinates), and
‘seq‘ sequences of those transcripts, in that case, this function will return genomic coordinates of
ORFs found on transcript sequences.

Usage

findMapORFs(
grl,
seqs,
startCodon = startDefinition(1),
stopCodon = stopDefinition(1),
longestORF = TRUE,
minimumLength = 0,
groupByTx = TRUE

)

Arguments

grl (GRangesList) of sequences to search for ORFs, probably in genomic coordi-
nates

seqs (DNAStringSet or character vector) - DNA/RNA sequences to search for Open
Reading Frames. Can be both uppercase or lowercase. Easiest call to get
seqs if you want only regions from a fasta/fasta index pair is: seqs = OR-
Fik:::txSeqsFromFa(grl, faFile), where grl is a GRanges/List of search regions
and faFile is a FaFile.

startCodon (character vector) Possible START codons to search for. Check startDefinition
for helper function.

stopCodon (character vector) Possible STOP codons to search for. Check stopDefinition
for helper function.

longestORF (logical) Default TRUE. Keep only the longest ORF per unique (seqname, strand,
stopcodon) combination, you can also use function longestORFs after creation
of ORFs for same result.

minimumLength (integer) Default is 0. Which is START + STOP = 6 bp. Minimum length
of ORF, without counting 3bps for START and STOP codons. For example
minimumLength = 8 will result in size of ORFs to be at least START + 8*3 (bp)
+ STOP = 30 bases. Use this param to restrict search.

70 findMaxPeaks

groupByTx logical (default: TRUE), should output GRangesList be grouped by orfs per
transcript (TRUE) or by exons per ORF (FALSE)?

Details

This function assumes that ‘seq‘ is in widths relative to ‘grl‘, and that their orders match. 1st seq is
1st grl object, etc.

See vignette for real life example.

Value

A GRangesList of ORFs.

See Also

Other findORFs: findORFsFasta(), findORFs(), findUORFs(), startDefinition(), stopDefinition()

Examples

This sequence has ORFs at 1-9 and 4-9
seqs <- c("ATGATGTAA") # the dna sequence
findORFs(seqs)
lets assume that this sequence comes from two exons as follows
gr <- GRanges(seqnames = rep("1", 2), # chromosome 1

ranges = IRanges(start = c(21, 10), end = c(23, 15)),
strand = rep("-", 2), names = rep("tx1", 2))

grl <- GRangesList(tx1 = gr)
findMapORFs(grl, seqs) # ORFs are properly mapped to its genomic coordinates

grl <- c(grl, grl)
names(grl) <- c("tx1", "tx2")
findMapORFs(grl, c(seqs, seqs))

findMaxPeaks Find max peak for each transcript, returns as data.table, without
names, but with index

Description

Find max peak for each transcript, returns as data.table, without names, but with index

Usage

findMaxPeaks(cageOverlaps, filteredCage)

Arguments

cageOverlaps The cageOverlaps between cage and extended 5’ leaders
filteredCage The filtered raw cage-data used to reassign 5’ leaders

Value

a data.table of max peaks

findNewTSS 71

findNewTSS Finds max peaks per trancsript from reads in the cagefile

Description

Finds max peaks per trancsript from reads in the cagefile

Usage

findNewTSS(fiveUTRs, cageData, extension, restrictUpstreamToTx)

Arguments

fiveUTRs The 5’ leader sequences as GRangesList

cageData The CAGE as GRanges object

extension The number of basses to extends transcripts upstream.
restrictUpstreamToTx

a logical (FALSE), if you want to restrict leaders to not extend closer than 5
bases from closest upstream leader, set this to TRUE.

Value

a Hits object

findNGSPairs Find pair of forward and reverse strand wig / bed files and paired end
bam files split in two

Description

Find pair of forward and reverse strand wig / bed files and paired end bam files split in two

Usage

findNGSPairs(
paths,
f = c("forward", "fwd"),
r = c("reverse", "rev"),
format = "wig"

)

Arguments

paths a character path at least one .wig / .bed file

f Default (c("forward", "fwd") a character vector for forward direction regex.

r Default (c("reverse", "rev") a character vector for reverse direction regex.

format default "wig", for bed do "bed". Also searches compressions of these variants.

72 findORFs

Value

if not all are paired, return original list, if they are all paired, return a data.table with matches as 2
columns

findORFs Find Open Reading Frames.

Description

Find all Open Reading Frames (ORFs) on the input sequences in ONLY 5’- 3’ direction (+), but
within all three possible reading frames. For each sequence of the input vector IRanges with START
and STOP positions (inclusive) will be returned as IRangesList. Returned coordinates are relative
to the input sequences.

Usage

findORFs(
seqs,
startCodon = startDefinition(1),
stopCodon = stopDefinition(1),
longestORF = TRUE,
minimumLength = 0

)

Arguments

seqs (DNAStringSet or character vector) - DNA/RNA sequences to search for Open
Reading Frames. Can be both uppercase or lowercase. Easiest call to get
seqs if you want only regions from a fasta/fasta index pair is: seqs = OR-
Fik:::txSeqsFromFa(grl, faFile), where grl is a GRanges/List of search regions
and faFile is a FaFile.

startCodon (character vector) Possible START codons to search for. Check startDefinition
for helper function.

stopCodon (character vector) Possible STOP codons to search for. Check stopDefinition
for helper function.

longestORF (logical) Default TRUE. Keep only the longest ORF per unique (seqname, strand,
stopcodon) combination, you can also use function longestORFs after creation
of ORFs for same result.

minimumLength (integer) Default is 0. Which is START + STOP = 6 bp. Minimum length
of ORF, without counting 3bps for START and STOP codons. For example
minimumLength = 8 will result in size of ORFs to be at least START + 8*3 (bp)
+ STOP = 30 bases. Use this param to restrict search.

Details

If you want antisence strand too, do: #positive strands pos <-findORFs(seqs) #negative
strands (DNAStringSet only if character) neg <-findORFs(reverseComplement(DNAStringSet(seqs)))
relist(c(GRanges(pos,strand = "+"),GRanges(neg,strand = "-")),skeleton = merge(pos,neg))

findORFsFasta 73

Value

(IRangesList) of ORFs locations by START and STOP sites grouped by input seqeunces. In a list
of sequences, only the indices of the sequences that had ORFs will be returned, e.g. 3 sequences
where only 1 and 3 has ORFs, will return size 2 IRangesList with names c("1", "3"). If there are a
total of 0 ORFs, an empty IRangesList will be returned.

See Also

Other findORFs: findMapORFs(), findORFsFasta(), findUORFs(), startDefinition(), stopDefinition()

Examples

findORFs("ATGTAA")
findORFs("ATGTTAA") # not in frame anymore

findORFs("ATGATGTAA") # two ORFs
findORFs("ATGATGTAA", longestORF = TRUE) # only longest of two above

findORFs(c("ATGTAA", "ATGATGTAA"))

findORFsFasta Finds Open Reading Frames in fasta files.

Description

Should be used for procaryote genomes or transcript sequences as fasta. Makes no sence for eu-
karyote whole genomes, since it contains splicing. Searches through each fasta header and reports
all ORFs found for BOTH sense (+) and antisense strand (-) in all frames. Name of the header will
be used as seqnames of reported ORFs. Each fasta header is treated separately, and name of the
sequence will be used as seqname in returned GRanges object. This supports circluar genomes.

Usage

findORFsFasta(
filePath,
startCodon = startDefinition(1),
stopCodon = stopDefinition(1),
longestORF = TRUE,
minimumLength = 0,
is.circular = FALSE

)

Arguments

filePath (character) Path to the fasta file. Can be both uppercase or lowercase.

startCodon (character vector) Possible START codons to search for. Check startDefinition
for helper function.

stopCodon (character vector) Possible STOP codons to search for. Check stopDefinition
for helper function.

74 findPeaksPerGene

longestORF (logical) Default TRUE. Keep only the longest ORF per unique (seqname, strand,
stopcodon) combination, you can also use function longestORFs after creation
of ORFs for same result.

minimumLength (integer) Default is 0. Which is START + STOP = 6 bp. Minimum length
of ORF, without counting 3bps for START and STOP codons. For example
minimumLength = 8 will result in size of ORFs to be at least START + 8*3 (bp)
+ STOP = 30 bases. Use this param to restrict search.

is.circular (logical) Whether the genome in filePath is circular. Prokaryotic genomes are
usually circular. Be carefull if you want to extract sequences, remember that
seqlengths must be set, else it does not know what last base in sequence is before
loop ends!

Details

Remember if you have a fasta file of transcripts (transcript coordinates), delete all negative stranded
ORFs afterwards by: orfs <- orfs[strandBool(orfs)] # negative strand orfs make no sense then.
Seqnames are created from header by format: >name info, so name must be first after "biggern
than" and space between name and info.

Value

(GRanges) object of ORFs mapped from fasta file. Positions are relative to the fasta file.

See Also

Other findORFs: findMapORFs(), findORFs(), findUORFs(), startDefinition(), stopDefinition()

Examples

location of the example fasta file
example_genome <- system.file("extdata", "genome.fasta", package = "ORFik")
findORFsFasta(example_genome)

findPeaksPerGene Find peaks per gene

Description

For finding the peaks (stall sites) per gene, with some default filters. A peak is basically a position
of very high coverage compared to its surrounding area, as measured using zscore.

Usage

findPeaksPerGene(
tx,
reads,
top_tx = 0.5,
min_reads_per_tx = 20,
min_reads_per_peak = 10,
type = "max"

)

findUORFs 75

Arguments

tx a GRangesList

reads a GAlignments or GRanges, must be 1 width reads like p-shifts, or other reads
that is single positioned.

top_tx numeric, default 0.50 (only use 50% top transcripts by read counts).
min_reads_per_tx

numeric, default 20. Gene must have at least 20 reads, applied before type filter.
min_reads_per_peak

numeric, default 10. Peak must have at least 10 reads.

type character, default "max". Get only max peak per gene. Alternatives: "all", all
peaks passing the input filter will be returned. "median", only peaks that is
higher than the median of all peaks. "maxmedian": get first "max", then median
of those.

Details

For more details see reference, which uses a slightly different method by zscore of a sliding window
instead of over the whole tx.

Value

a data.table of gene_id, position, counts of the peak, zscore and standard deviation of the peak
compared to rest of gene area.

References

doi: 10.1261/rna.065235.117

Examples

df <- ORFik.template.experiment()
cds <- loadRegion(df, "cds")
Load ribo seq from ORFik
rfp <- fimport(df[3,]$filepath)
All transcripts passing filter
findPeaksPerGene(cds, rfp, top_tx = 0)
Top 50% of genes
findPeaksPerGene(cds, rfp)

findUORFs Find upstream ORFs from transcript annotation

Description

Procedure: 1. Create a new search space starting with the 5’ UTRs. 2. Redefine TSS with CAGE
if wanted. 3. Add the whole of CDS to search space to allow uORFs going into cds. 4. find ORFs
on that search space. 5. Filter out wrongly found uORFs, if CDS is included. The CDS, alternative
CDS, uORFs starting within the CDS etc.

76 findUORFs

Usage

findUORFs(
fiveUTRs,
fa,
startCodon = startDefinition(1),
stopCodon = stopDefinition(1),
longestORF = TRUE,
minimumLength = 0,
cds = NULL,
cage = NULL,
extension = 1000,
filterValue = 1,
restrictUpstreamToTx = FALSE,
removeUnused = FALSE

)

Arguments

fiveUTRs (GRangesList) The 5’ leaders or full transcript sequences
fa a FaFile. With fasta sequences corresponding to fiveUTR annotation. Usually

loaded from the genome of an organism with fa = ORFik:::findFa("path/to/fasta/genome")
startCodon (character vector) Possible START codons to search for. Check startDefinition

for helper function.
stopCodon (character vector) Possible STOP codons to search for. Check stopDefinition

for helper function.
longestORF (logical) Default TRUE. Keep only the longest ORF per unique (seqname, strand,

stopcodon) combination, you can also use function longestORFs after creation
of ORFs for same result.

minimumLength (integer) Default is 0. Which is START + STOP = 6 bp. Minimum length
of ORF, without counting 3bps for START and STOP codons. For example
minimumLength = 8 will result in size of ORFs to be at least START + 8*3 (bp)
+ STOP = 30 bases. Use this param to restrict search.

cds (GRangesList) CDS of relative fiveUTRs, applicable only if you want to extend
5’ leaders downstream of CDS’s, to allow upstream ORFs that can overlap into
CDS’s.

cage Either a filePath for the CageSeq file as .bed .bam or .wig, with possible com-
pressions (".gzip", ".gz", ".bgz"), or already loaded CageSeq peak data as GRanges
or GAlignment. NOTE: If it is a .bam file, it will add a score column by run-
ning: convertToOneBasedRanges(cage, method = "5prime", addScoreColumn =
TRUE) The score column is then number of replicates of read, if score column
is something else, like read length, set the score column to NULL first.

extension The maximum number of basses upstream of the TSS to search for CageSeq
peak.

filterValue The minimum number of reads on cage position, for it to be counted as possible
new tss. (represented in score column in CageSeq data) If you already filtered,
set it to 0.

restrictUpstreamToTx

a logical (FALSE). If TRUE: restrict leaders to not extend closer than 5 bases
from closest upstream leader, set this to TRUE.

removeUnused logical (FALSE), if False: (standard is to set them to original annotation), If
TRUE: remove leaders that did not have any cage support.

firstEndPerGroup 77

Details

From default a filtering process is done to remove "fake" uORFs, but only if cds is included, since
uORFs that stop on the stop codon on the CDS is not a uORF, but an alternative cds by definition,
etc.

Value

A GRangesList of uORFs, 1 granges list element per uORF.

See Also

Other findORFs: findMapORFs(), findORFsFasta(), findORFs(), startDefinition(), stopDefinition()

Examples

Load annotation
txdbFile <- system.file("extdata", "hg19_knownGene_sample.sqlite",

package = "GenomicFeatures")
Not run:
txdb <- loadTxdb(txdbFile)
fiveUTRs <- loadRegion(txdb, "leaders")
cds <- loadRegion(txdb, "cds")
if (requireNamespace("BSgenome.Hsapiens.UCSC.hg19")) {

Normally you would not use a BSgenome, but some custom fasta-
annotation you have for your species
findUORFs(fiveUTRs, BSgenome.Hsapiens.UCSC.hg19::Hsapiens, "ATG",

cds = cds)
}

End(Not run)

firstEndPerGroup Get first end per granges group

Description

grl must be sorted, call ORFik:::sortPerGroup if needed

Usage

firstEndPerGroup(grl, keep.names = TRUE)

Arguments

grl a GRangesList

keep.names a boolean, keep names or not, default: (TRUE)

Value

a Rle(keep.names = T), or integer vector(F)

78 firstStartPerGroup

Examples

gr_plus <- GRanges(seqnames = c("chr1", "chr1"),
ranges = IRanges(c(7, 14), width = 3),
strand = c("+", "+"))

gr_minus <- GRanges(seqnames = c("chr2", "chr2"),
ranges = IRanges(c(4, 1), c(9, 3)),
strand = c("-", "-"))

grl <- GRangesList(tx1 = gr_plus, tx2 = gr_minus)
firstEndPerGroup(grl)

firstExonPerGroup Get first exon per GRangesList group

Description

grl must be sorted, call ORFik:::sortPerGroup if needed

Usage

firstExonPerGroup(grl)

Arguments

grl a GRangesList

Value

a GRangesList of the first exon per group

Examples

gr_plus <- GRanges(seqnames = c("chr1", "chr1"),
ranges = IRanges(c(7, 14), width = 3),
strand = c("+", "+"))

gr_minus <- GRanges(seqnames = c("chr2", "chr2"),
ranges = IRanges(c(4, 1), c(9, 3)),
strand = c("-", "-"))

grl <- GRangesList(tx1 = gr_plus, tx2 = gr_minus)
firstExonPerGroup(grl)

firstStartPerGroup Get first start per granges group

Description

grl must be sorted, call ORFik:::sortPerGroup if needed

Usage

firstStartPerGroup(grl, keep.names = TRUE)

floss 79

Arguments

grl a GRangesList

keep.names a boolean, keep names or not, default: (TRUE)

Value

a Rle(keep.names = TRUE), or integer vector(FALSE)

Examples

gr_plus <- GRanges(seqnames = c("chr1", "chr1"),
ranges = IRanges(c(7, 14), width = 3),
strand = c("+", "+"))

gr_minus <- GRanges(seqnames = c("chr2", "chr2"),
ranges = IRanges(c(4, 1), c(9, 3)),
strand = c("-", "-"))

grl <- GRangesList(tx1 = gr_plus, tx2 = gr_minus)
firstStartPerGroup(grl)

floss Fragment Length Organization Similarity Score

Description

This feature is usually calcualted only for RiboSeq reads. For reads of width between ‘start‘ and
‘end‘, sum the fraction of RiboSeq reads (per read widths) that overlap ORFs and normalize by
CDS read width fractions. So if all read length are width 34 in ORFs and CDS, value is 1. If width
is 33 in ORFs and 34 in CDS, value is 0. If width is 33 in ORFs and 50/50 (33 and 34) in CDS,
values will be 0.5 (for 33).

Usage

floss(grl, RFP, cds, start = 26, end = 34, weight = 1L)

Arguments

grl a GRangesList object can be either transcripts, 5’ utrs, cds’, 3’ utrs or ORFs as
a special case (uORFs, potential new cds’ etc). If regions are not spliced you
can send a GRanges object.

RFP ribosomal footprints, given as GAlignments or GRanges object, must be already
shifted and resized to the p-site. Requires a $size column with original read
lengths.

cds a GRangesList of coding sequences, cds has to have names as grl so that they
can be matched

start usually 26, the start of the floss interval (inclusive)

end usually 34, the end of the floss interval (inclusive)

weight a vector (default: 1L, if 1L it is identical to countOverlaps()), if single number
(!= 1), it applies for all, if more than one must be equal size of ’reads’. else it
must be the string name of a defined meta column in subject "reads", that gives
number of times a read was found. GRanges("chr1", 1, "+", score = 5), would
mean "score" column tells that this alignment region was found 5 times.

80 floss

Details

Pseudo explanation of the function:

SUM[start to stop]((grl[start:end][name]/grl) / (cds[start:end][name]/cds))

Where ’name’ is transcript names.
Please read more in the article.

Value

a vector of FLOSS of length same as grl, 0 means no RFP reads in range, 1 is perfect match.

References

doi: 10.1016/j.celrep.2014.07.045

See Also

Other features: computeFeaturesCage(), computeFeatures(), countOverlapsW(), disengagementScore(),
distToCds(), distToTSS(), entropy(), fpkm_calc(), fpkm(), fractionLength(), initiationScore(),
insideOutsideORF(), isInFrame(), isOverlapping(), kozakSequenceScore(), orfScore(),
rankOrder(), ribosomeReleaseScore(), ribosomeStallingScore(), startRegionCoverage(),
startRegion(), subsetCoverage(), translationalEff()

Examples

ORF1 <- GRanges(seqnames = "1",
ranges = IRanges(start = c(1, 12, 22),
end = c(10, 20, 32)),
strand = "+")

grl <- GRangesList(tx1_1 = ORF1)
RFP is 1 width position based GRanges
RFP <- GRanges("1", IRanges(c(1, 25, 35, 38), width = 1), "+")
RFP$size <- c(28, 28, 28, 29) # original width in size col
cds <- GRangesList(tx1 = GRanges("1", IRanges(35, 44), "+"))
grl must have same names as cds + _1 etc, so that they can be matched.
floss(grl, RFP, cds)
or change ribosome start/stop, more strict
floss(grl, RFP, cds, 28, 28)

With repeated alignments in score column
ORF2 <- GRanges(seqnames = "1",

ranges = IRanges(start = c(12, 22, 36),
end = c(20, 32, 38)),
strand = "+")

grl <- GRangesList(tx1_1 = ORF1, tx1_2 = ORF2)
score(RFP) <- c(5, 10, 5, 10)
floss(grl, RFP, cds, weight = "score")

footprints.analysis 81

footprints.analysis Pre shifting plot analysis

Description

For internal use only!

Usage

footprints.analysis(rw, heatmap, region = "start of CDS")

Arguments

rw a data.table of position, score and fraction (read length) of either TIS or TES
(translation end site, around 3’ UTR)

heatmap a logical or character string, default FALSE. If TRUE, will plot heatmap of raw
reads before p-shifting to console, to see if shifts given make sense. You can
also set a filepath to save the file there.

region a character string, default "start of CDS"

Value

invisible(NULL)

fpkm Create normalizations of overlapping read counts.

Description

FPKM is short for "Fragments Per Kilobase of transcript per Million fragments in library". When
calculating RiboSeq data FPKM over ORFs, use ORFs as ‘grl‘. When calculating RNASeq data
FPKM, use full transcripts as ‘grl‘. It is equal to RPKM given that you do not have paired end reads.

Usage

fpkm(grl, reads, pseudoCount = 0, librarySize = "full", weight = 1L)

Arguments

grl a GRangesList object can be either transcripts, 5’ utrs, cds’, 3’ utrs or ORFs as
a special case (uORFs, potential new cds’ etc). If regions are not spliced you
can send a GRanges object.

reads a GAlignments, GRanges or GRangesList object, usually of RiboSeq, RnaSeq,
CageSeq, etc.

pseudoCount an integer, by default is 0, set it to 1 if you want to avoid NA and inf values.

82 fpkm

librarySize either numeric value or character vector. Default ("full"), number of alignments
in library (reads). If you just have a subset, you can give the value by library-
Size = length(wholeLib), if you want lib size to be only number of reads over-
lapping grl, do: librarySize = "overlapping" sum(countOverlaps(reads, grl) >
0), if reads[1] has 3 hits in grl, and reads[2] has 2 hits, librarySize will be 2,
not 5. You can also get the inverse overlap, if you want lib size to be total
number of overlaps, do: librarySize = "DESeq" This is standard fpkm way of
DESeq2::fpkm(robust = FALSE) sum(countOverlaps(grl, reads)) if grl[1] has 3
reads and grl[2] has 2 reads, librarySize is 5, not 2.

weight a vector (default: 1L, if 1L it is identical to countOverlaps()), if single number
(!= 1), it applies for all, if more than one must be equal size of ’reads’. else it
must be the string name of a defined meta column in subject "reads", that gives
number of times a read was found. GRanges("chr1", 1, "+", score = 5), would
mean "score" column tells that this alignment region was found 5 times.

Details

Note also that you must consider if you will use the whole read library or just the reads overlapping
‘grl‘ for library size. A normal question here is, does it make sense to include rRNA in library size
? If you only want overlapping grl, do: librarySize = "overlapping"

Value

a numeric vector with the fpkm values

References

doi: 10.1038/nbt.1621

See Also

Other features: computeFeaturesCage(), computeFeatures(), countOverlapsW(), disengagementScore(),
distToCds(), distToTSS(), entropy(), floss(), fpkm_calc(), fractionLength(), initiationScore(),
insideOutsideORF(), isInFrame(), isOverlapping(), kozakSequenceScore(), orfScore(),
rankOrder(), ribosomeReleaseScore(), ribosomeStallingScore(), startRegionCoverage(),
startRegion(), subsetCoverage(), translationalEff()

Examples

ORF <- GRanges(seqnames = "1",
ranges = IRanges(start = c(1, 10, 20),
end = c(5, 15, 25)),
strand = "+")

grl <- GRangesList(tx1_1 = ORF)
RFP <- GRanges("1", IRanges(25, 25),"+")
fpkm(grl, RFP)

With weights (10 reads at position 25)
RFP <- GRanges("1", IRanges(25, 25),"+", score = 10)
fpkm(grl, RFP, weight = "score")

fpkm_calc 83

fpkm_calc Create normalizations of read counts

Description

A helper for [fpkm()] Normally use function [fpkm()], if you want unusual normalization , you can
use this. Short for: Fragments per kilobase of transcript per million fragments Normally used in
Translations efficiency calculations

Usage

fpkm_calc(counts, lengthSize, librarySize)

Arguments

counts a list, # of read hits per group

lengthSize a list of lengths per group

librarySize a numeric of size 1, the # of reads in library

Value

a numeric vector

References

doi: 10.1038/nbt.1621

See Also

Other features: computeFeaturesCage(), computeFeatures(), countOverlapsW(), disengagementScore(),
distToCds(), distToTSS(), entropy(), floss(), fpkm(), fractionLength(), initiationScore(),
insideOutsideORF(), isInFrame(), isOverlapping(), kozakSequenceScore(), orfScore(),
rankOrder(), ribosomeReleaseScore(), ribosomeStallingScore(), startRegionCoverage(),
startRegion(), subsetCoverage(), translationalEff()

fractionLength Fraction Length

Description

Fraction Length is defined as

(widths of grl)/tx_len

so that each group in the grl is divided by the corresponding transcript.

Usage

fractionLength(grl, tx_len)

84 fread.bed

Arguments

grl a GRangesList object with usually either leaders, cds’, 3’ utrs or ORFs. ORFs
are a special case, see argument tx_len

tx_len the transcript lengths of the transcripts, a named (tx names) vector of integers.
If you have the transcripts as GRangesList, call ‘ORFik:::widthPerGroup(tx,
TRUE)‘.
If you used CageSeq to reannotate leaders, then the tss for the the leaders have
changed, therefore the tx lengths have changed. To account for that call: ‘tx_len
<- widthPerGroup(extendLeaders(tx, cageFiveUTRs))‘ and calculate fraction
length using ‘fractionLength(grl, tx_len)‘.

Value

a numeric vector of ratios

References

doi: 10.1242/dev.098343

See Also

Other features: computeFeaturesCage(), computeFeatures(), countOverlapsW(), disengagementScore(),
distToCds(), distToTSS(), entropy(), floss(), fpkm_calc(), fpkm(), initiationScore(),
insideOutsideORF(), isInFrame(), isOverlapping(), kozakSequenceScore(), orfScore(),
rankOrder(), ribosomeReleaseScore(), ribosomeStallingScore(), startRegionCoverage(),
startRegion(), subsetCoverage(), translationalEff()

Examples

ORF <- GRanges(seqnames = "1",
ranges = IRanges(start = c(1, 10, 20), end = c(5, 15, 25)),
strand = "+")

grl <- GRangesList(tx1_1 = ORF)
grl must have same names as cds + _1 etc, so that they can be matched.
tx <- GRangesList(tx1 = GRanges("1", IRanges(1, 50), "+"))
fractionLength(grl, ORFik:::widthPerGroup(tx, keep.names = TRUE))

fread.bed Load bed file as GRanges

Description

Wraps around import and tries to speed up loading with the use of data.table. Supports gzip, gz,
bgz and bed formats. Also safer chromosome naming with the argument chrStyle

Usage

fread.bed(filePath, chrStyle = NULL)

gcContent 85

Arguments

filePath The location of the bed file

chrStyle a GRanges object, TxDb, FaFile, or a seqlevelsStyle (Default: NULL) to
get seqlevelsStyle from. Is chromosome 1 called chr1 or 1, is mitocondrial
chromosome called MT or chrM etc. Will use 1st seqlevel-style if more are
present. Like: c("NCBI", "UCSC") -> pick "NCBI"

Value

a GRanges object

See Also

Other utils: bedToGR(), convertToOneBasedRanges(), export.bed12(), export.wiggle(), fimport(),
findFa(), optimizeReads(), readBam(), readWig()

Examples

path to example CageSeq data from hg19 heart sample
cageData <- system.file("extdata", "cage-seq-heart.bed.bgz",

package = "ORFik")
fread.bed(cageData)

gcContent Get GC content

Description

0.5 means 50

Usage

gcContent(seqs, fa = NULL)

Arguments

seqs a character vector of sequences, or ranges as GRangesList

fa fasta index file .fai file, either path to it, or the loaded FaFile, default (NULL),
only set if you give ranges as GRangesList

Value

a numeric vector of gc content scores

86 getGAlignmentsPairs

Examples

Here we make an example from scratch
seqName <- "Chromosome"
ORF1 <- GRanges(seqnames = seqName,

ranges = IRanges(c(1007, 1096), width = 60),
strand = c("+", "+"))

ORF2 <- GRanges(seqnames = seqName,
ranges = IRanges(c(400, 100), width = 30),
strand = c("-", "-"))

ORFs <- GRangesList(tx1 = ORF1, tx2 = ORF2)
get path to FaFile for sequences
faFile <- system.file("extdata", "genome.fasta", package = "ORFik")
gcContent(ORFs, faFile)

getGAlignments Internal GAlignments loader from fst data.frame

Description

Internal GAlignments loader from fst data.frame

Usage

getGAlignments(df)

Arguments

df a data.frame with columns minimum 4 columns: seqnames, start ("pos" in final
GA object), strand and width.
Additional columns will be assigned as meta columns

Value

GAlignments object

getGAlignmentsPairs Internal GAlignmentPairs loader from fst data.frame

Description

Internal GAlignmentPairs loader from fst data.frame

Usage

getGAlignmentsPairs(df)

Arguments

df a data.frame with columns minimum 6 columns: seqnames, start1/start2 (inte-
gers), cigar1/cigar2 and strand
Additional columns will be assigned as meta columns

getGenomeAndAnnotation 87

Value

GAlignmentPairs object

getGenomeAndAnnotation

Download genome (fasta), annotation (GTF) and contaminants

Description

Will create a R transcript database (TxDb object) from the annotation.
It will also index the genome for you
If you misspelled something or crashed, delete wrong files and run again.
Do remake = TRUE, to do it all over again.

Usage

getGenomeAndAnnotation(
organism,
output.dir,
db = "ensembl",
GTF = TRUE,
genome = TRUE,
phix = FALSE,
ncRNA = "",
tRNA = "",
rRNA = "",
gunzip = TRUE,
remake = FALSE,
assembly_type = "primary_assembly"

)

Arguments

organism scientific name of organism, Homo sapiens, Danio rerio, Mus musculus, etc.

output.dir directory to save downloaded data

db database to use for genome and GTF, default adviced: "ensembl" (will contain
haplotypes, large file!). Alternatives: "refseq" (primary assembly) and "gen-
bank" (mix)

GTF logical, default: TRUE, download gtf of organism specified in "organism" argu-
ment. If FALSE, check if the downloaded file already exist. If you want to use
a custom gtf from you hard drive, set GTF = FALSE, and assign:
annotation <- getGenomeAndAnnotation(gtf = FALSE)
annotation["gtf"] = "path/to/gtf.gtf".
Only db = "ensembl" allowed for GTF.

genome logical, default: TRUE, download genome of organism specified in "organism"
argument. If FALSE, check if the downloaded file already exist. If you want to
use a custom gtf from you hard drive, set GTF = FALSE, and assign:
annotation <- getGenomeAndAnnotation(genome = FALSE)
annotation["genome"] = "path/to/genome.fasta".
Will download the primary assembly for ensembl

88 getGenomeAndAnnotation

phix logical, default FALSE, download phix sequence to filter out with. Only use if
illumina sequencing. Phix is used in Illumina sequencers for sequencing quality
control. Genome is: refseq, Escherichia virus phiX174

ncRNA character, default "" (no download), a contaminant genome. Alternatives: "auto"
or manual assign like "human". If "auto" will try to find ncRNA file from organ-
ism, Homo sapiens -> human etc. "auto" will not work for all, then you must
specify the name used by NONCODE, go to the link below and find it. If not
"auto" / "" it must be a character vector of species common name (not scientific
name) Homo sapiens is human, Rattus norwegicus is rat etc, download ncRNA
sequence to filter out with. From NONCODE online server, if you cant find
common name see: http://www.noncode.org/download.php/

tRNA chatacter, default "" (not used), if not "" it must be a character vector to valid
path of mature tRNAs fasta file to remove as contaminants on your disc. Find
and download your wanted mtRNA at: http://gtrnadb.ucsc.edu/, or run trna-scan
on you genome.

rRNA chatacter, default "" (not used), if not "" it must be a character vector to valid
path of mature rRNA fasta file to remove as contaminants on your disc. Find
and download your wanted rRNA at: https://www.arb-silva.de/

gunzip logical, default TRUE, uncompress downloaded files that are zipped when down-
loaded, should be TRUE!

remake logical, default: FALSE, if TRUE remake everything specified
assembly_type a character string specifying from which assembly type the genome shall be re-

trieved from (ensembl only, else this argument is ignored): Default is assembly_type
= "primary_assembly"). This will give you all no copies of any chromosomes.
As an example, the primary_assembly fasta genome in human is only a few GB
uncompressed.
assembly_type = "toplevel"). This will give you all multi-chromosomes
(copies of the same chromosome with small variations). As an example the
toplevel fasta genome in human is over 70 GB uncompressed. To get primary
assembly with 1 chromosome variant per chromosome:

Details

If you want custom genome or gtf from you hard drive, assign it after you run this function, like
this:
annotation <- getGenomeAndAnnotation(GTF = FALSE, genome = FALSE)
annotation["genome"] = "path/to/genome.fasta"
annotation["gtf"] = "path/to/gtf.gtf"

Value

a character vector of path to genomes and gtf downloaded, and additional contaminants if used.

See Also

Other STAR: STAR.align.folder(), STAR.align.single(), STAR.index(), STAR.install(),
STAR.multiQC(), STAR.remove.crashed.genome(), install.fastp()

Examples

output.dir <- "/Bio_data/references/zebrafish"
#getGenomeAndAnnotation("Danio rerio", output.dir)

getGRanges 89

getGRanges Internal GRanges loader from fst data.frame

Description

Internal GRanges loader from fst data.frame

Usage

getGRanges(df)

Arguments

df a data.frame with columns minimum 4 columns: seqnames, start, strand and
width.
Additional columns will be assigned as meta columns

Value

GRanges object

getNGenesCoverage Get number of genes per coverage table

Description

Used to count genes in ORFik meta plots

Usage

getNGenesCoverage(coverage)

Arguments

coverage a data.table with coverage

Value

number of genes in coverage

90 groupGRangesBy

getWeights Get weights from a subject GenomicRanges object

Description

Get weights from a subject GenomicRanges object

Usage

getWeights(subject, weight = 1L)

Arguments

subject a GRanges, IRanges or GAlignment object

weight a vector (default: 1L, if 1L it is identical to countOverlaps()), if single number
(!= 1), it applies for all, if more than one must be equal size of ’reads’. else it
must be the string name of a defined meta column in subject "reads", that gives
number of times a read was found. GRanges("chr1", 1, "+", score = 5), would
mean "score" column tells that this alignment region was found 5 times.

Value

a numeric vector of weights of equal size to subject

groupGRangesBy Group GRanges

Description

It will group / split the GRanges object by the argument ‘other‘. For example if you would like to
to group GRanges object by gene, set other to gene names.
If ‘other‘ is not specified function will try to use the names of the GRanges object. It will then be
similar to ‘split(gr, names(gr))‘.

Usage

groupGRangesBy(gr, other = NULL)

Arguments

gr a GRanges object

other a vector of unique names to group by (default: NULL)

Details

It is important that all intended groups in ‘other‘ are uniquely named, otherwise duplicated group
names will be grouped together.

groupings 91

Value

a GRangesList named after names(Granges) if other is NULL, else names are from unique(other)

Examples

ORFranges <- GRanges(seqnames = Rle(rep("1", 3)),
ranges = IRanges(start = c(1, 10, 20),

end = c(5, 15, 25)),
strand = "+")

ORFranges2 <- GRanges("1",
ranges = IRanges(start = c(20, 30, 40),

end = c(25, 35, 45)),
strand = "+")

names(ORFranges) = rep("tx1_1", 3)
names(ORFranges2) = rep("tx1_2", 3)
grl <- GRangesList(tx1_1 = ORFranges, tx1_2 = ORFranges2)
gr <- unlist(grl, use.names = FALSE)
now recreate the grl
group by orf
grltest <- groupGRangesBy(gr) # using the names to group
identical(grl, grltest) ## they are identical

group by transcript
names(gr) <- txNames(gr)
grltest <- groupGRangesBy(gr)
identical(grl, grltest) ## they are not identical

groupings Get number of ranges per group as an iteration

Description

Get number of ranges per group as an iteration

Usage

groupings(grl)

Arguments

grl GRangesList

Value

an integer vector

Examples

grl <- GRangesList(GRanges("1", c(1, 3, 5), "+"),
GRanges("1", c(19, 21, 23), "+"))

ORFik:::groupings(grl)

92 hasHits

gSort Sort a GRangesList, helper.

Description

A helper for [sortPerGroup()]. A faster, more versatile reimplementation of GenomicRanges::sort()
Normally not used directly. Groups first each group, then either decreasing or increasing (on starts
if byStarts == T, on ends if byStarts == F)

Usage

gSort(grl, decreasing = FALSE, byStarts = TRUE)

Arguments

grl a GRangesList

decreasing should the first in each group have max(start(group)) ->T or min-> default(F) ?

byStarts a logical T, should it order by starts or ends F.

Value

an equally named GRangesList, where each group is sorted within group.

hasHits Hits from reads

Description

Finding GRanges groups that have overlap hits with reads Similar to

Usage

hasHits(grl, reads, keep.names = FALSE, overlaps = NULL)

Arguments

grl a GRangesList or GRanges object

reads a GRanges, GAlignment or GAlignmentPairs object

keep.names logical (F), keep names or not

overlaps default NULL, if not null must be countOverlaps(grl, reads), input if you have
it already.

Value

a list of logicals, T == hit, F == no hit

heatMapL 93

heatMapL Coverage heatmap of multiple libraries

Description

Coverage heatmap of multiple libraries

Usage

heatMapL(
region,
tx,
df,
outdir,
scores = "sum",
upstream,
downstream,
zeroPosition = upstream,
acceptedLengths = NULL,
type = "ofst",
legendPos = "right",
colors = "default",
addFracPlot = TRUE,
location = "TIS",
shifting = NULL,
skip.last = FALSE,
format = ".png",
plot.together = TRUE,
title = TRUE

)

Arguments

region #’ a GRangesList object of region, usually either leaders, cds’, 3’ utrs or ORFs,
start region, stop regions etc. This is the region that will be mapped in heatmap

tx default NULL, a GRangesList of transcripts or (container region), names of tx
must contain all grl names. The names of grl can also be the ORFik orf names.
that is "txName_id"

df an ORFik experiment

outdir a character path to directory to save plot, will be named from ORFik experiment
columns

scores character vector, default c("transcriptNormalized", "sum"), either of zscore, tran-
scriptNormalized, sum, mean, median, .. see ?coverageScorings for info and
more alternatives.

upstream 2 integers, default c(50, 30), how long upstream from 0 should window extend
(first index is 5’ end extension, second is 3’ end extension)

downstream 2 integers, default c(29, 69), how long upstream from 0 should window extend
(first index is 5’ end extension, second is 3’ end extension)

94 heatMapRegion

zeroPosition an integer DEFAULT (upstream), what is the center point? Like leaders and cds
combination, then 0 is the TIS and -1 is last base in leader. NOTE!: if windows
have different widths, this will be ignored.

acceptedLengths

an integer vector (NULL), the read lengths accepted. Default NULL, means all
lengths accepted.

type character, default: "ofst". Type of library: either "default", usually bam format
(the one you gave to experiment), "pshifted" pshifted reads, "ofst", "bed", "bedo"
optimized bed, or "wig"

legendPos a character, Default "right". Where should the fill legend be ? ("top", "bottom",
"right", "left")

colors character vector, default: "default", this gives you: c("white", "yellow2", "yel-
low3", "lightblue", "blue", "navy"), do "high" for more high contrasts, or specify
your own colors.

addFracPlot Add margin histogram plot on top of heatmap with fractions per positions

location a character, default "start site", will make xlabel of heatmap be Position relative
to "start site" or alternative given.

shifting a character, default c("5prime", "3prime"), can also be either or NULL (no shift-
ing of reads)

skip.last skip top(highest) read length, default FALSE

format a character, default ".png", alternative ".pdf"

plot.together logical (default: FALSE), plot all in 1 plot (if TRUE)

title a character, default NULL (no title), what is the top title of plot?

Value

invisible(NULL), plots are saved

See Also

Other heatmaps: coverageHeatMap(), heatMapRegion(), heatMap_single()

heatMapRegion Create heatmap around specified position

Description

Simplified input space for easier abstraction of coverage heatmaps
Pick your region and plot
Input CAGE file if you use TSS and want improved 5’ annotation.

Usage

heatMapRegion(
df,
region = "TIS",
outdir = "default",
scores = c("transcriptNormalized", "sum"),

heatMapRegion 95

type = "ofst",
cage = NULL,
format = ".png",
acceptedLengths = 21:75,
upstream = c(50, 30),
downstream = c(29, 69),
shifting = c("5prime", "3prime")

)

Arguments

df an ORFik experiment

region a character, default "TIS", can be any combination of the set: c("TSS", "TIS",
"TTS"), which are: Transcription start site (5’ end of mrna), Translation initation
site (5’ end of CDS), Translation termination site (3’ end of CDS)

outdir a character path, default: "default", saves to: paste0(dirname(df$filepath[1]),"/QC_STATS/heatmaps/"),
a created folder within the ORFik experiment data folder for plots. Change if
you want custom location.

scores character vector, default c("transcriptNormalized", "sum"), either of zscore, tran-
scriptNormalized, sum, mean, median, .. see ?coverageScorings for info and
more alternatives.

type character, default: "ofst". Type of library: either "default", usually bam format
(the one you gave to experiment), "pshifted" pshifted reads, "ofst", "bed", "bedo"
optimized bed, or "wig"

cage a character path to library file or a GRanges, GAlignments preloaded file of
CAGE data. Only used if "TSS" is defined as region, to redefine 5’ leaders.

format a character, default ".png", alternative ".pdf"
acceptedLengths

an integer vector (NULL), the read lengths accepted. Default NULL, means all
lengths accepted.

upstream 2 integers, default c(50, 30), how long upstream from 0 should window extend
(first index is 5’ end extension, second is 3’ end extension)

downstream 2 integers, default c(29, 69), how long upstream from 0 should window extend
(first index is 5’ end extension, second is 3’ end extension)

shifting a character, default c("5prime", "3prime"), can also be either or NULL (no shift-
ing of reads)

Value

invisible(NULL), plots are saved

See Also

Other heatmaps: coverageHeatMap(), heatMapL(), heatMap_single()

Examples

df <- ORFik.template.experiment()[3,] # Only third library
#heatMapRegion(df, "TIS", outdir = "PATH/TO/SAVE/)
Do also TSS, add cage for specific TSS

96 heatMap_single

heatMapRegion(df, c("TSS", "TIS"), cage = "path/to/cage.bed")

Do on pshifted reads instead of original files
outputLibs(df, type = "pshifted")
heatMapRegion(df, "TIS")

heatMap_single Coverage heatmap of single libraries

Description

Coverage heatmap of single libraries

Usage

heatMap_single(
region,
tx,
reads,
outdir,
scores = "sum",
upstream,
downstream,
zeroPosition = upstream,
returnCoverage = FALSE,
acceptedLengths = NULL,
legendPos = "right",
colors = "default",
addFracPlot = TRUE,
location = "start site",
shifting = NULL,
skip.last = FALSE,
title = NULL

)

Arguments

region #’ a GRangesList object of region, usually either leaders, cds’, 3’ utrs or ORFs,
start region, stop regions etc. This is the region that will be mapped in heatmap

tx default NULL, a GRangesList of transcripts or (container region), names of tx
must contain all grl names. The names of grl can also be the ORFik orf names.
that is "txName_id"

reads a GAlignments or GRanges object of RiboSeq, RnaSeq etc. Weigths for scoring
is default the ’score’ column in ’reads’

outdir a character path to save file as: not just directory, but full name.

scores character vector, default "sum", either of zscore, transcriptNormalized, sum,
mean, median, .. see ?coverageScorings for info and more alternatives.

upstream an integer, relative region to get upstream from.

downstream an integer, relative region to get downstream from

import.bedo 97

zeroPosition an integer DEFAULT (upstream), what is the center point? Like leaders and cds
combination, then 0 is the TIS and -1 is last base in leader. NOTE!: if windows
have different widths, this will be ignored.

returnCoverage logical, default: FALSE, return coverage, if FALSE returns plot instead.
acceptedLengths

an integer vector (NULL), the read lengths accepted. Default NULL, means all
lengths accepted.

legendPos a character, Default "right". Where should the fill legend be ? ("top", "bottom",
"right", "left")

colors character vector, default: "default", this gives you: c("white", "yellow2", "yel-
low3", "lightblue", "blue", "navy"), do "high" for more high contrasts, or specify
your own colors.

addFracPlot Add margin histogram plot on top of heatmap with fractions per positions

location a character, default "start site", will make xlabel of heatmap be Position relative
to "start site" or alternative given.

shifting a character, default NULL (no shifting), can also be either of c("5prime", "3prime")

skip.last skip top(highest) read length, default FALSE

title a character, default NULL (no title), what is the top title of plot?

Value

ggplot2 grob (default), data.table (if returnCoverage is TRUE)

See Also

Other heatmaps: coverageHeatMap(), heatMapL(), heatMapRegion()

import.bedo Load GRanges object from .bedo

Description

.bedo is .bed ORFik, an optimized bed format for coverage reads with read lengths .bedo is a text
based format with columns (6 maximum):
1. chromosome
2. start
3. end
4. strand
5. ref width (cigar # M’s, match/mismatch total)
6. duplicates of that read

Usage

import.bedo(path)

Arguments

path a character, location on disc (full path)

98 import.bedoc

Details

Positions are 1-based, not 0-based as .bed. export with export.bedo

Value

GRanges object

import.bedoc Load GAlignments object from .bedoc

Description

A much faster way to store, load and use bam files.
.bedoc is .bed ORFik, an optimized bed format for coverage reads with cigar and replicate number.
.bedoc is a text based format with columns (5 maximum):
1. chromosome
2. cigar: (cigar # M’s, match/mismatch total)
3. start (left most position)
4. strand (+, -, *)
5. score: duplicates of that read

Usage

import.bedoc(path)

Arguments

path a character, location on disc (full path)

Details

Positions are 1-based, not 0-based as .bed. export with export.bedo

Value

GAlignments object

import.ofst 99

import.ofst Load GRanges / GAlignments object from .ofst

Description

A much faster way to store, load and use bam files.
.ofst is ORFik fast serialized object, an optimized format for coverage reads with cigar and replicate
number. It uses the fst format as back-end: fst-package.
A .ofst ribo seq file can compress the information in a bam file from 5GB down to a few MB. This
new files has super fast reading time, only a few seconds, instead of minutes. It also has random
index access possibility of the file.
.ofst is represented as a data.frane format with minimum 4 columns:
1. chromosome
2. start (left most position)
3. strand (+, -, *)
4. width (not added if cigar exists)
5. cigar (not needed if width exists): (cigar # M’s, match/mismatch total)
5. score: duplicates of that read
6. size: qwidth according to reference of read

If file is from GAlignmentPairs, it will contain a cigar1, cigar2 instead of cigar and start1 and
start2 instead of start

Usage

import.ofst(file)

Arguments

file a path to a .ofst file

Details

Other columns can be named whatever you want and added to meta columns. Positions are 1-based,
not 0-based as .bed. Import with import.ofst

Value

a GAlignment, GAlignmentPairs or GRanges object, dependent of if cigar/cigar1 is defined in .ofst
file.

Examples

GRanges
gr <- GRanges("1:1-3:-")
export.ofst(gr, file = "path.ofst")
import.ofst("path.ofst")
GAlignment
Make input data.frame
df <- data.frame(seqnames = "1", cigar = "3M", start = 1L, strand = "+")
ga <- ORFik:::getGAlignments(df)
export.ofst(ga, file = "path.ofst")
import.ofst("path.ofst")

100 initiationScore

importGtfFromTxdb Import the GTF / GFF that made the txdb

Description

Import the GTF / GFF that made the txdb

Usage

importGtfFromTxdb(txdb)

Arguments

txdb a TxDb, path to txdb / gff or ORFik experiment object

Value

data.frame, the gtf/gff object imported with rtracklayer::import

initiationScore Get initiation score for a GRangesList of ORFs

Description

initiationScore tries to check how much each TIS region resembles, the average of the CDS TIS
regions.

Usage

initiationScore(grl, cds, tx, reads, pShifted = TRUE, weight = "score")

Arguments

grl a GRangesList object with ORFs
cds a GRangesList object with coding sequences
tx a GrangesList of transcripts covering grl.
reads ribo seq reads as GAlignments, GRanges or GRangesList object
pShifted a logical (TRUE), are riboseq reads p-shifted?
weight a vector (default: 1L, if 1L it is identical to countOverlaps()), if single number

(!= 1), it applies for all, if more than one must be equal size of ’reads’. else it
must be the string name of a defined meta column in subject "reads", that gives
number of times a read was found. GRanges("chr1", 1, "+", score = 5), would
mean "score" column tells that this alignment region was found 5 times.

Details

Since this features uses a distance matrix for scoring, values are distributed like this: As result there
is one value per ORF: 0.000: means that ORF had no reads -1.000: means that ORF is identical to
average of CDS 1.000: means that orf is maximum different than average of CDS

If a score column is defined, it will use it as weights, see getWeights

insideOutsideORF 101

Value

an integer vector, 1 score per ORF, with names of grl

References

doi: 10.1186/s12915-017-0416-0

See Also

Other features: computeFeaturesCage(), computeFeatures(), countOverlapsW(), disengagementScore(),
distToCds(), distToTSS(), entropy(), floss(), fpkm_calc(), fpkm(), fractionLength(),
insideOutsideORF(), isInFrame(), isOverlapping(), kozakSequenceScore(), orfScore(),
rankOrder(), ribosomeReleaseScore(), ribosomeStallingScore(), startRegionCoverage(),
startRegion(), subsetCoverage(), translationalEff()

Examples

Good hiting ORF
ORF <- GRanges(seqnames = "1",

ranges = IRanges(21, 40),
strand = "+")

names(ORF) <- c("tx1")
grl <- GRangesList(tx1 = ORF)
1 width p-shifted reads
reads <- GRanges("1", IRanges(c(21, 23, 50, 50, 50, 53, 53, 56, 59),

width = 1), "+")
score(reads) <- 28 # original width
cds <- GRanges(seqnames = "1",

ranges = IRanges(50, 80),
strand = "+")

cds <- GRangesList(tx1 = cds)
tx <- GRanges(seqnames = "1",

ranges = IRanges(1, 85),
strand = "+")

tx <- GRangesList(tx1 = tx)

initiationScore(grl, cds, tx, reads, pShifted = TRUE)

insideOutsideORF Inside/Outside score (IO)

Description

Inside/Outside score is defined as

(reads over ORF)/(reads outside ORF and within transcript)

A pseudo-count of one is added to both the ORF and outside sums.

102 insideOutsideORF

Usage

insideOutsideORF(
grl,
RFP,
GtfOrTx,
ds = NULL,
RFP.sorted = FALSE,
weight = 1L,
overlapGrl = NULL

)

Arguments

grl a GRangesList object with usually either leaders, cds’, 3’ utrs or ORFs.

RFP RiboSeq reads as GAlignments, GRanges or GRangesList object

GtfOrTx If it is TxDb object transcripts will be extracted using exonsBy(Gtf,by = "tx",use.names
= TRUE). Else it must be GRangesList

ds numeric vector (NULL), disengagement score. If you have already calculated
disengagementScore, input here to save time.

RFP.sorted logical (FALSE), an optimizer, have you ran this line: RFP <-sort(RFP[countOverlaps(RFP,tx,type
= "within") > 0]) Normally not touched, for internal optimization purposes.

weight a vector (default: 1L, if 1L it is identical to countOverlaps()), if single number
(!= 1), it applies for all, if more than one must be equal size of ’reads’. else it
must be the string name of a defined meta column in subject "reads", that gives
number of times a read was found. GRanges("chr1", 1, "+", score = 5), would
mean "score" column tells that this alignment region was found 5 times.

overlapGrl an integer, (default: NULL), if defined must be countOverlaps(grl, RFP), added
for speed if you already have it

Value

a named vector of numeric values of scores

References

doi: 10.1242/dev.098345

See Also

Other features: computeFeaturesCage(), computeFeatures(), countOverlapsW(), disengagementScore(),
distToCds(), distToTSS(), entropy(), floss(), fpkm_calc(), fpkm(), fractionLength(),
initiationScore(), isInFrame(), isOverlapping(), kozakSequenceScore(), orfScore(),
rankOrder(), ribosomeReleaseScore(), ribosomeStallingScore(), startRegionCoverage(),
startRegion(), subsetCoverage(), translationalEff()

Examples

Check inside outside score of a ORF within a transcript
ORF <- GRanges("1",

ranges = IRanges(start = c(20, 30, 40),
end = c(25, 35, 45)),

strand = "+")

install.fastp 103

grl <- GRangesList(tx1_1 = ORF)

tx1 <- GRanges(seqnames = "1",
ranges = IRanges(start = c(1, 10, 20, 30, 40, 50),

end = c(5, 15, 25, 35, 45, 200)),
strand = "+")

tx <- GRangesList(tx1 = tx1)
RFP <- GRanges(seqnames = "1",

ranges = IRanges(start = c(1, 4, 30, 60, 80, 90),
end = c(30, 33, 63, 90, 110, 120)),

strand = "+")

insideOutsideORF(grl, RFP, tx)

install.fastp Download and prepare fastp trimmer

Description

On Linux, will not run "make", only use precompiled fastp file.
On Mac OS it will use precompiled binaries.
Does not work yet for Windows!

Usage

install.fastp(folder = "~/bin")

Arguments

folder path to folder for download, file will be named "fastp", this should be most
recent version. On mac it will search for a folder called fastp-master inside
folder given. Since there is no precompiled version of fastp for Mac OS.

Value

path to runnable fastp

References

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6129281/

See Also

Other STAR: STAR.align.folder(), STAR.align.single(), STAR.index(), STAR.install(),
STAR.multiQC(), STAR.remove.crashed.genome(), getGenomeAndAnnotation()

Examples

#install.fastp()

104 is.gr_or_grl

is.grl Helper function to check for GRangesList

Description

Helper function to check for GRangesList

Usage

is.grl(class)

Arguments

class the class you want to check if is GRL, either a character from class or the object
itself.

Value

a boolean

See Also

Other validity: checkRFP(), checkRNA(), is.ORF(), is.gr_or_grl(), is.range(), validGRL(),
validSeqlevels()

is.gr_or_grl Helper function to check for GRangesList or GRanges class

Description

Helper function to check for GRangesList or GRanges class

Usage

is.gr_or_grl(class)

Arguments

class the class you want to check if is GRL or GR, either a character from class or the
object itself.

Value

a boolean

See Also

Other validity: checkRFP(), checkRNA(), is.ORF(), is.grl(), is.range(), validGRL(), validSeqlevels()

is.ORF 105

is.ORF Check if all requirements for an ORFik ORF is accepted.

Description

Check if all requirements for an ORFik ORF is accepted.

Usage

is.ORF(grl)

Arguments

grl a GRangesList or GRanges to check

Value

a logical (TRUE/FALSE)

See Also

Other validity: checkRFP(), checkRNA(), is.gr_or_grl(), is.grl(), is.range(), validGRL(),
validSeqlevels()

is.range Helper function to check for ranged object

Description

Helper function to check for ranged object

Usage

is.range(class)

Arguments

class the class you want to check if is GRL or GR, either a character from class or the
object itself.

Value

a boolean

See Also

Other validity: checkRFP(), checkRNA(), is.ORF(), is.gr_or_grl(), is.grl(), validGRL(),
validSeqlevels()

106 isInFrame

isInFrame Find frame for each orf relative to cds

Description

Input of this function, is the output of the function [distToCds()], or any other relative ORF frame.

Usage

isInFrame(dists)

Arguments

dists a vector of integer distances between ORF and cds. 0 distance means equal
frame

Details

possible outputs: 0: orf is in frame with cds 1: 1 shifted from cds 2: 2 shifted from cds

Value

a logical vector

References

doi: 10.1074/jbc.R116.733899

See Also

Other features: computeFeaturesCage(), computeFeatures(), countOverlapsW(), disengagementScore(),
distToCds(), distToTSS(), entropy(), floss(), fpkm_calc(), fpkm(), fractionLength(),
initiationScore(), insideOutsideORF(), isOverlapping(), kozakSequenceScore(), orfScore(),
rankOrder(), ribosomeReleaseScore(), ribosomeStallingScore(), startRegionCoverage(),
startRegion(), subsetCoverage(), translationalEff()

Examples

simple example
isInFrame(c(3,6,8,11,15))

GRangesList example
grl <- GRangesList(tx1_1 = GRanges("1", IRanges(1,10), "+"))
fiveUTRs <- GRangesList(tx1 = GRanges("1", IRanges(1,20), "+"))
dist <- distToCds(grl, fiveUTRs)
isInFrame <- isInFrame(dist)

isOverlapping 107

isOverlapping Find frame for each orf relative to cds

Description

Input of this function, is the output of the function [distToCds()]

Usage

isOverlapping(dists)

Arguments

dists a vector of distances between ORF and cds

Value

a logical vector

References

doi: 10.1074/jbc.R116.733899

See Also

Other features: computeFeaturesCage(), computeFeatures(), countOverlapsW(), disengagementScore(),
distToCds(), distToTSS(), entropy(), floss(), fpkm_calc(), fpkm(), fractionLength(),
initiationScore(), insideOutsideORF(), isInFrame(), kozakSequenceScore(), orfScore(),
rankOrder(), ribosomeReleaseScore(), ribosomeStallingScore(), startRegionCoverage(),
startRegion(), subsetCoverage(), translationalEff()

Examples

simple example
isOverlapping(c(-3,-6,8,11,15))

GRangesList example
grl <- GRangesList(tx1_1 = GRanges("1", IRanges(1,10), "+"))
fiveUTRs <- GRangesList(tx1 = GRanges("1", IRanges(1,20), "+"))
dist <- distToCds(grl, fiveUTRs)
isOverlapping <- isOverlapping(dist)

108 kozakHeatmap

isPeriodic Find if there is a periodicity of 3 in the vector

Description

It uses Fourier transform for finding periodic vectors on the transcript normalized counts over all
CDS TIS regions from -30 to 29, where TIS is 0.
Checks if there is a periodicity and if the periodicity is 3, more precisely between 2.9 and 3.1.

Usage

isPeriodic(x)

Arguments

x (numeric) Vector of values to detect periodicity of 3 like in RiboSeq data.

Details

Transcript normalized means per CDS TIS region, count reads per position, divide that number per
position by the total of that transcript, then sum up these numbers per position for all transcripts.

Value

a logical, if it is periodic.

kozakHeatmap Make sequence region heatmap relative to scoring

Description

Given sequences, DNA or RNA. And some score, ribo-seq fpkm, TE etc. Create a heatmap divided
per letter in seqs, by how strong the score is.

Usage

kozakHeatmap(
seqs,
rate,
start = 1,
stop = max(nchar(seqs)),
center = ceiling((stop - start + 1)/2),
min.observations = ">q1",
skip.startCodon = FALSE,
xlab = "TIS",
type = "ribo-seq"

)

kozakHeatmap 109

Arguments

seqs the sequences (character vector, DNAStringSet)

rate a scoring vector (equal size to seqs)

start position in seqs to start at (first is 1), default 1.

stop position in seqs to stop at (first is 1), default max(nchar(seqs)), that is the longest
sequence length

center position in seqs to center at (first is 1), center will be +1 in heatmap

min.observations

How many observations per position per letter to accept? numeric or quantile,
default (">q1", bigger than quartile 1 (25 percentile)). You can do (10), to get
all with more than 10 observations.

skip.startCodon

startCodon is defined as after centering (position 1, 2 and 3). Should they be
skipped ? default (FALSE). Not relevant if you are not doing Translation initia-
tion sites (TIS).

xlab Region you are checking, default (TIS)

type What type is the rate scoring ? default (ribo-seq)

Details

It will create blocks around the highest rate per position

Value

a ggplot of the heatmap

Examples

Not run:
if (requireNamespace("BSgenome.Hsapiens.UCSC.hg19")) {

txdbFile <- system.file("extdata", "hg19_knownGene_sample.sqlite",
package = "GenomicFeatures")

#Extract sequences of Coding sequences.
cds <- loadRegion(txdbFile, "cds")
tx <- loadRegion(txdbFile, "mrna")

Get region to check
kozakRegions <- startRegionString(cds, tx, BSgenome.Hsapiens.UCSC.hg19::Hsapiens

, upstream = 4, 5)
Some toy ribo-seq fpkm scores on cds
set.seed(3)
fpkm <- sample(1:115, length(cds), replace = TRUE)
kozakHeatmap(kozakRegions, fpkm, 1, 9, skip.startCodon = F)

}

End(Not run)

110 kozakSequenceScore

kozakSequenceScore Make a score for each ORFs start region by proximity to Kozak

Description

The closer the sequence is to the Kozak sequence the higher the score, based on the experimental
pwms from article referenced. Minimum score is 0 (worst correlation), max is 1 (the best base per
column was chosen).

Usage

kozakSequenceScore(grl, tx, faFile, species = "human", include.N = FALSE)

Arguments

grl a GRangesList grouped by ORF
tx a GRangesList, the reference area for ORFs, each ORF must have a corespond-

ing tx.
faFile FaFile, BSgenome, fasta/index file path or an ORFik experiment. This file is

usually used to find the transcript sequences from some GRangesList.
species ("human"), which species to use, currently supports human (Homo sapiens),

zebrafish (Danio rerio) and mouse (Mus musculus). Both scientific or common
name for these species will work. You can also specify a pfm for your own
species. Syntax of pfm is an rectangular integer matrix, where all columns must
sum to the same value, normally 100. See example for more information. Rows
are in order: c("A", "C", "G", "T")

include.N logical (F), if TRUE, allow N bases to be counted as hits, score will be average
of the other bases. If True, N bases will be added to pfm, automaticly, so dont
include them if you make your own pfm.

Details

Ranges that does not have minimum 15 length (the kozak requirement as a sliding window of size
15 around grl start), will be set to score 0. Since they should not have the posibility to make an
efficient ribosome binding.

Value

a numeric vector with values between 0 and 1

an integer vector, one score per orf

References

doi: https://doi.org/10.1371/journal.pone.0108475

See Also

Other features: computeFeaturesCage(), computeFeatures(), countOverlapsW(), disengagementScore(),
distToCds(), distToTSS(), entropy(), floss(), fpkm_calc(), fpkm(), fractionLength(),
initiationScore(), insideOutsideORF(), isInFrame(), isOverlapping(), orfScore(), rankOrder(),
ribosomeReleaseScore(), ribosomeStallingScore(), startRegionCoverage(), startRegion(),
subsetCoverage(), translationalEff()

lastExonEndPerGroup 111

Examples

Usually the ORFs are found in orfik, which makes names for you etc.
Here we make an example from scratch
seqName <- "Chromosome"
ORF1 <- GRanges(seqnames = seqName,

ranges = IRanges(c(1007, 1096), width = 60),
strand = c("+", "+"))

ORF2 <- GRanges(seqnames = seqName,
ranges = IRanges(c(400, 100), width = 30),
strand = c("-", "-"))

ORFs <- GRangesList(tx1 = ORF1, tx2 = ORF2)
ORFs <- makeORFNames(ORFs) # need ORF names
tx <- extendLeaders(ORFs, 100)
get faFile for sequences
faFile <- FaFile(system.file("extdata", "genome.fasta", package = "ORFik"))
kozakSequenceScore(ORFs, tx, faFile)
For more details see vignettes.

lastExonEndPerGroup Get last end per granges group

Description

Get last end per granges group

Usage

lastExonEndPerGroup(grl, keep.names = TRUE)

Arguments

grl a GRangesList

keep.names a boolean, keep names or not, default: (TRUE)

Value

a Rle(keep.names = T), or integer vector(F)

Examples

gr_plus <- GRanges(seqnames = c("chr1", "chr1"),
ranges = IRanges(c(7, 14), width = 3),
strand = c("+", "+"))

gr_minus <- GRanges(seqnames = c("chr2", "chr2"),
ranges = IRanges(c(4, 1), c(9, 3)),
strand = c("-", "-"))

grl <- GRangesList(tx1 = gr_plus, tx2 = gr_minus)
lastExonEndPerGroup(grl)

112 lastExonStartPerGroup

lastExonPerGroup Get last exon per GRangesList group

Description

grl must be sorted, call ORFik:::sortPerGroup if needed

Usage

lastExonPerGroup(grl)

Arguments

grl a GRangesList

Value

a GRangesList of the last exon per group

Examples

gr_plus <- GRanges(seqnames = c("chr1", "chr1"),
ranges = IRanges(c(7, 14), width = 3),
strand = c("+", "+"))

gr_minus <- GRanges(seqnames = c("chr2", "chr2"),
ranges = IRanges(c(4, 1), c(9, 3)),
strand = c("-", "-"))

grl <- GRangesList(tx1 = gr_plus, tx2 = gr_minus)
lastExonPerGroup(grl)

lastExonStartPerGroup Get last start per granges group

Description

Get last start per granges group

Usage

lastExonStartPerGroup(grl, keep.names = TRUE)

Arguments

grl a GRangesList

keep.names a boolean, keep names or not, default: (TRUE)

Value

a Rle(keep.names = T), or integer vector(F)

libNames 113

Examples

gr_plus <- GRanges(seqnames = c("chr1", "chr1"),
ranges = IRanges(c(7, 14), width = 3),
strand = c("+", "+"))

gr_minus <- GRanges(seqnames = c("chr2", "chr2"),
ranges = IRanges(c(4, 1), c(9, 3)),
strand = c("-", "-"))

grl <- GRangesList(tx1 = gr_plus, tx2 = gr_minus)
lastExonStartPerGroup(grl)

libNames Get library name variants

Description

Used to standardize nomeclature for experiments.
Example: RFP is main naming, but a variant is ribo-seq ribo-seq will then be renamed to RFP

Usage

libNames()

Value

a data.table with 2 columns, the main name, and all name variants of the main name in second
column as a list.

See Also

Other experiment_naming: cellLineNames(), conditionNames(), mainNames(), repNames(),
stageNames(), tissueNames()

libraryTypes Which type of library type in experiment?

Description

Which type of library type in experiment?

Usage

libraryTypes(df)

Arguments

df an ORFik experiment

Value

library types (character vector)

114 list.experiments

See Also

Other ORFik_experiment: ORFik.template.experiment(), bamVarName(), create.experiment(),
experiment-class, filepath(), organism.df(), outputLibs(), read.experiment(), save.experiment(),
validateExperiments()

list.experiments List current experiment available

Description

Will only search .csv extension, also exclude any experiment with the word template.

Usage

list.experiments(
dir = "~/Bio_data/ORFik_experiments/",
pattern = "*",
libtypeExclusive = NULL,
BPPARAM = bpparam()

)

Arguments

dir directory for ORFik experiments: default: "~/Bio_data/ORFik_experiments/"

pattern allowed patterns in experiment file name: default ("*", all experiments)
libtypeExclusive

search for experiments with exclusivly this libtype, default (NULL, all)

BPPARAM how many cores/threads to use? default: bpparam()

Value

a data.table, 1 row per experiment with columns experiment (name), libtypes

Examples

Make your experiments
df <- ORFik.template.experiment(TRUE)
df2 <- df[1:6,] # Only first 2 libs
Save them
save.experiment(df, "~/Bio_data/ORFik_experiments/exp1.csv")
save.experiment(df2, "~/Bio_data/ORFik_experiments/exp1_subset.csv")
List all experiment you have:
Path above is default path, so no dir argument needed
#list.experiments()
#list.experiments(pattern = "subset")
For non default directory experiments
#list.experiments(dir = "MY/CUSTOM/PATH)

loadRegion 115

loadRegion Load transcript region

Description

Usefull to simplify loading of standard regions, like cds’ and leaders.

Usage

loadRegion(txdb, part = "tx", names.keep = NULL, by = "tx")

Arguments

txdb a TxDb file or a path to one of: (.gtf ,.gff, .gff2, .gff2, .db or .sqlite), if it is a
GRangesList, it will return it self.

part a character, one of: tx, leader, cds, trailer, intron, mrna NOTE: difference be-
tween tx and mrna is that tx are all transcripts, while mrna are all transcripts
with a cds

names.keep a character vector of subset of names to keep. Example: loadRegions(txdb,
names = ENST1000005), will return only that transcript. Remember if you set
by to "gene", then this list must be with gene names.

by a character, default "tx" Either "tx" or "gene". What names to output region by,
the transcript name "tx" or gene names "gene"

Details

Load as GRangesList if input is not already GRangesList.

Value

a GrangesList of region

Examples

gtf <- system.file("extdata", "annotations.gtf", package = "ORFik")
loadRegion(gtf, "cds")
loadRegion(gtf, "intron")

loadRegions Get all regions of transcripts specified to environment

Description

By default loads all parts to .GlobalEnv (global environemnt) Useful to not spend time on finding
the functions to load regions.

116 loadTranscriptType

Usage

loadRegions(
txdb,
parts = c("mrna", "leaders", "cds", "trailers"),
extension = "",
names.keep = NULL,
by = "tx",
envir = .GlobalEnv

)

Arguments

txdb a TxDb file, a path to one of: (.gtf ,.gff, .gff2, .gff2, .db or .sqlite) or an ORFik
experiment

parts the transcript parts you want, default: c("mrna", "leaders", "cds", "trailers").
See ?loadRegion for more info on this argument.

extension What to add on the name after leader, like: B -> leadersB

names.keep a character vector of subset of names to keep. Example: loadRegions(txdb,
names = ENST1000005), will return only that transcript. Remember if you set
by to "gene", then this list must be with gene names.

by a character, default "tx" Either "tx" or "gene". What names to output region by,
the transcript name "tx" or gene names "gene"

envir Which environment to save to, default: .GlobalEnv

Value

invisible(NULL) (regions saved in envir)

Examples

Load all mrna regions to Global environment
gtf <- system.file("extdata", "annotations.gtf", package = "ORFik")
loadRegions(gtf, parts = c("mrna", "leaders", "cds", "trailers"))

loadTranscriptType Load transcripts of given biotype

Description

Like rRNA, snoRNA etc. NOTE: Only works on gtf/gff, not .db object for now. Also note that
these anotations are not perfect, some rRNA annotations only contain 5S rRNA etc. If your
gtf does not contain evertyhing you need, use a resource like repeatmasker and download a gtf:
https://genome.ucsc.edu/cgi-bin/hgTables

Usage

loadTranscriptType(object, part = "rRNA", tx = NULL)

loadTxdb 117

Arguments

object a TxDb, ORFik experiment or path to gtf/gff,

part a character, default rRNA. Can also be: snoRNA, tRNA etc. As long as that
biotype is defined in the gtf.

tx a GRangesList of transcripts (Optional, default NULL, all transcript of that
type), else it must be names a list to subset on.

Value

a GRangesList of transcript of that type

References

doi: 10.1002/0471250953.bi0410s25

loadTxdb General loader for txdb

Description

Useful to allow fast TxDb loader like .db

Usage

loadTxdb(txdb, chrStyle = NULL)

Arguments

txdb a TxDb file, a path to one of: (.gtf ,.gff, .gff2, .gff2, .db or .sqlite) or an ORFik
experiment

chrStyle a GRanges object, TxDb, FaFile, or a seqlevelsStyle (Default: NULL) to
get seqlevelsStyle from. Is chromosome 1 called chr1 or 1, is mitocondrial
chromosome called MT or chrM etc. Will use 1st seqlevel-style if more are
present. Like: c("NCBI", "UCSC") -> pick "NCBI"

Value

a TxDb object

Examples

library(GenomicFeatures)
Get the gtf txdb file
txdbFile <- system.file("extdata", "hg19_knownGene_sample.sqlite",

package = "GenomicFeatures")
txdb <- loadDb(txdbFile)

118 mainNames

longestORFs Get longest ORF per stop site

Description

Rule: if seqname, strand and stop site is equal, take longest one. Else keep. If IRangesList or
IRanges, seqnames are groups, if GRanges or GRangesList seqnames are the seqlevels (e.g. chro-
mosomes/transcripts)

Usage

longestORFs(grl)

Arguments

grl a GRangesList/IRangesList, GRanges/IRanges of ORFs

Value

a GRangesList/IRangesList, GRanges/IRanges (same as input)

See Also

Other ORFHelpers: defineTrailer(), mapToGRanges(), orfID(), startCodons(), startSites(),
stopCodons(), stopSites(), txNames(), uniqueGroups(), uniqueOrder()

Examples

ORF1 = GRanges("1", IRanges(10,21), "+")
ORF2 = GRanges("1", IRanges(1,21), "+") # <- longest
grl <- GRangesList(ORF1 = ORF1, ORF2 = ORF2)
longestORFs(grl) # get only longest

mainNames Get main name from variant name

Description

Used to standardize nomeclature for experiments.
Example: RFP is main naming, but a variant is ribo-seq ribo-seq will then be renamed to RFP

Usage

mainNames(names, dt)

Arguments

names a character vector of names that must exist in dt$allNames

dt a data.table with 2 columns (mainName, allNames)

makeExonRanks 119

Value

a data.table with 2 columns, the main name, and all name variants of the main name in second
column as a list.

See Also

Other experiment_naming: cellLineNames(), conditionNames(), libNames(), repNames(),
stageNames(), tissueNames()

makeExonRanks Make grouping by exons ranks

Description

There are two ways to make vector of exon ranking: 1. Iterate per exon in ORF, byTranscript =
FALSE 2. Iterate per ORF in transcript, byTranscript = TRUE.

Usage

makeExonRanks(grl, byTranscript = FALSE)

Arguments

grl a GRangesList

byTranscript logical (default: FALSE), groups orfs by transcript name or ORF name, if ORfs
are by transcript, check duplicates.

Details

Either by transcript or by original groupings. Must be ordered, so that same transcripts are ordered
together.

Value

an integer vector of indices for exon ranks

makeORFNames Make ORF names per orf

Description

grl must be grouped by transcript If a list of orfs are grouped by transcripts, but does not have ORF
names, then create them and return the new GRangesList

Usage

makeORFNames(grl, groupByTx = TRUE)

120 makeSummarizedExperimentFromBam

Arguments

grl a GRangesList

groupByTx logical (T), should output GRangesList be grouped by transcripts (T) or by
ORFs (F)?

Value

(GRangesList) with ORF names, grouped by transcripts, sorted.

Examples

gr_plus <- GRanges(seqnames = c("chr1", "chr1"),
ranges = IRanges(c(7, 14), width = 3),
strand = c("+", "+"))

gr_minus <- GRanges(seqnames = c("chr2", "chr2"),
ranges = IRanges(c(4, 1), c(9, 3)),
strand = c("-", "-"))

grl <- GRangesList(tx1 = gr_plus, tx2 = gr_minus)
makeORFNames(grl)

makeSummarizedExperimentFromBam

Make a count matrix from a library or experiment

Description

Make a summerizedExperiment / matrix object from bam files

Usage

makeSummarizedExperimentFromBam(
df,
saveName = NULL,
longestPerGene = TRUE,
geneOrTxNames = "tx",
region = "mrna",
type = "count",
weight = "score"

)

Arguments

df an ORFik experiment

saveName a character (default NULL), if set save experiment to path given. Always saved
as .rds., it is optional to add .rds, it will be added for you if not present. Also
used to load existing file with that name.

longestPerGene a logical (default TRUE), if FALSE all transcript isoforms per gene.

geneOrTxNames a character vector (default "tx"), should row names keep trancript names ("tx")
or change to gene names ("gene")

mapToGRanges 121

region a character vector (default: "mrna"), make raw count matrices of whole mrnas
or one of (leaders, cds, trailers). Can also be a GRangesList, then it uses this
region directly.

type default: "count" (raw counts matrix), alternative is "fpkm", "log2fpkm" or "log10fpkm"

weight numeric or character, a column to score overlaps by. Default "score", will check
for a metacolumn called "score" in libraries. If not found, will not use weights.

Details

If txdb or gtf path is added, it is a rangedSummerizedExperiment NOTE: If the file called saveName
exists, it will then load file, not remake it!

Value

a SummarizedExperiment object or data.table if "type" is not "count, with rownames as transcript
/ gene names.

Examples

##Make experiment
df <- ORFik.template.experiment()
makeSummarizedExperimentFromBam(df)
Only cds (coding sequences):
makeSummarizedExperimentFromBam(df, region = "cds")
FPKM instead of raw counts on whole mrna regions
makeSummarizedExperimentFromBam(df, type = "fpkm")

mapToGRanges Map orfs to genomic coordinates

Description

Creates GRangesList from the results of ORFs_as_List and the GRangesList used to find the ORFs

Usage

mapToGRanges(grl, result, groupByTx = TRUE)

Arguments

grl A GRangesList of the original sequences that gave the orfs in Genomic coordi-
nates.

result IRangesList A list of the results of finding uorfs list syntax is: Per list group in
IRangesList is per grl index. In transcript coordinates. The names are grl index
as character.

groupByTx logical (T), should output GRangesList be grouped by transcripts (T) or by
ORFs (F)?

Details

There is no check on invalid matches, so be carefull if you use this function directly.

122 matchNaming

Value

A GRangesList of ORFs.

See Also

Other ORFHelpers: defineTrailer(), longestORFs(), orfID(), startCodons(), startSites(),
stopCodons(), stopSites(), txNames(), uniqueGroups(), uniqueOrder()

matchColors Match coloring of coverage plot

Description

Check that colors match with the number of fractions.

Usage

matchColors(coverage, colors)

Arguments

coverage a data.table with coverage

colors a character vector of colors

Value

number of genes in coverage

matchNaming Match naming of GRangesList

Description

Given a GRangesList and a reference, make the naming convention and the number of metacolumns
equal to reference

Usage

matchNaming(gr, reference)

Arguments

gr a GRangesList or GRanges object

reference a GRangesList of a reference

Value

a GRangesList

matchSeqStyle 123

matchSeqStyle A wrapper for seqlevelsStyle

Description

To make sure chromosome naming is correct (chr1 vs 1 vs I etc)

Usage

matchSeqStyle(range, chrStyle = NULL)

Arguments

range a ranged object, (GRanges, GAlignment etc)

chrStyle a GRanges object, TxDb, FaFile, or a seqlevelsStyle (Default: NULL) to
get seqlevelsStyle from. Is chromosome 1 called chr1 or 1, is mitocondrial
chromosome called MT or chrM etc. Will use 1st seqlevel-style if more are
present. Like: c("NCBI", "UCSC") -> pick "NCBI"

Value

a GAlignment/GRanges object depending on input.

metaWindow Calculate meta-coverage of reads around input GRanges/List object.

Description

Sums up coverage over set of GRanges objects as a meta representation.

Usage

metaWindow(
x,
windows,
scoring = "sum",
withFrames = FALSE,
zeroPosition = NULL,
scaleTo = 100,
fraction = NULL,
feature = NULL,
forceUniqueEven = !is.null(scoring),
weight = "score"

)

124 metaWindow

Arguments

x GRanges/GAlignment object of your reads. Remember to resize them before-
hand to width of 1 to focus on 5’ ends of footprints etc, if that is wanted.

windows GRangesList or GRanges of your ranges

scoring a character, default: "sum", one of (zscore, transcriptNormalized, mean, median,
sum, sumLength, NULL), see ?coverageScorings for info and more alternatives.

withFrames a logical (TRUE), return positions with the 3 frames, relative to zeroPosition.
zeroPosition is frame 0.

zeroPosition an integer DEFAULT (NULL), the point if all windows are equal size, that
should be set to position 0. Like leaders and cds combination, then 0 is the
TIS and -1 is last base in leader. NOTE!: if windows have different widths, this
will be ignored.

scaleTo an integer (100), if windows have different size, a meta window can not directly
be created, since a meta window must have equal size for all windows. Rescale
(bin) all windows to scaleTo. i.e c(1,2,3) -> size 2 -> coverage of position c(1,
mean(2,3)) etc.

fraction a character/integer (NULL), the fraction i.e (27) for read length 27, or ("LSU")
for large sub-unit TCP-seq.

feature a character string, info on region. Usually either gene name, transcript part like
cds, leader, or CpG motifs etc.

forceUniqueEven,

a logical (TRUE), if TRUE; require that all windows are of same width and even.
To avoid bugs. FALSE if score is NULL.

weight (default: ’score’), if defined a character name of valid meta column in subject.
GRanges("chr1", 1, "+", score = 5), would mean score column tells that this
alignment region was found 5 times. ORFik .bedo files, contains a score column
like this. As do CAGEr CAGE files and many other package formats. You can
also assign a score column manually.

Value

A data.table with scored counts (score) of reads mapped to positions (position) specified in windows
along with frame (frame).

See Also

Other coverage: coverageScorings(), scaledWindowPositions(), windowPerReadLength()

Examples

library(GenomicRanges)
windows <- GRangesList(GRanges("chr1", IRanges(c(50, 100), c(80, 200)),

"-"))
x <- GenomicRanges::GRanges(

seqnames = "chr1",
ranges = IRanges::IRanges(c(100, 180), c(200, 300)),
strand = "-")

metaWindow(x, windows, withFrames = FALSE)

nrow,experiment-method 125

nrow,experiment-method

Internal nrow function for ORFik experiment Number of runs in exper-
iment

Description

Internal nrow function for ORFik experiment Number of runs in experiment

Usage

S4 method for signature 'experiment'
nrow(x)

Arguments

x an ORFik experiment

Value

number of rows in experiment (integer)

numCodons Get number of codons

Description

Length of object / 3. Choose either only whole codons, or with stubs. For orfs stubs are not relevant,
since there are no correctly defined ORFs that are 17 bases long etc.

Usage

numCodons(grl, as.integer = TRUE, keep.names = FALSE)

Arguments

grl a GRangesList object

as.integer a logical (TRUE), remove stub codons

keep.names a logical (FALSE)

Value

an integer vector

126 optimizeReads

numExonsPerGroup Get list of the number of exons per group

Description

Can also be used generaly to get number of GRanges object per GRangesList group

Usage

numExonsPerGroup(grl, keep.names = TRUE)

Arguments

grl a GRangesList

keep.names a logical, keep names or not, default: (TRUE)

Value

an integer vector of counts

Examples

gr_plus <- GRanges(seqnames = c("chr1", "chr1"),
ranges = IRanges(c(7, 14), width = 3),
strand = c("+", "+"))

gr_minus <- GRanges(seqnames = c("chr2", "chr2"),
ranges = IRanges(c(4, 1), c(9, 3)),
strand = c("-", "-"))

grl <- GRangesList(tx1 = gr_plus, tx2 = gr_minus)
numExonsPerGroup(grl)

optimizeReads Find optimized subset of valid reads

Description

Keep only the ones that overlap within the grl ranges. Also sort them in the end

Usage

optimizeReads(grl, reads)

Arguments

grl a GRangesList or GRanges object

reads a GRanges, GAlignment or GAlignmentPairs object

Value

the reads as GRanges, GAlignment or GAlignmentPairs

orfID 127

See Also

Other utils: bedToGR(), convertToOneBasedRanges(), export.bed12(), export.wiggle(), fimport(),
findFa(), fread.bed(), readBam(), readWig()

orfID Get id’s for each orf

Description

These id’s can be uniqued by isoform etc, this is not supported by GenomicRanges.

Usage

orfID(grl, with.tx = FALSE)

Arguments

grl a GRangesList

with.tx a boolean, include transcript names, if you want unique orfs, so that they dont
have multiple versions on different isoforms, set it to FALSE.

Value

a character vector of ids, 1 per orf

See Also

Other ORFHelpers: defineTrailer(), longestORFs(), mapToGRanges(), startCodons(), startSites(),
stopCodons(), stopSites(), txNames(), uniqueGroups(), uniqueOrder()

ORFik.template.experiment

An ORFik experiment to see how it looks

Description

NOTE! This experiment should only be used for testing, since it is just sampled data internal in
ORFik.

Usage

ORFik.template.experiment(as.temp = FALSE)

Arguments

as.temp logical, default FALSE, load as ORFik experiment. If TRUE, loads as data.frame
template of the experiment.

128 ORFikQC

Value

an ORFik experiment

See Also

Other ORFik_experiment: bamVarName(), create.experiment(), experiment-class, filepath(),
libraryTypes(), organism.df(), outputLibs(), read.experiment(), save.experiment(),
validateExperiments()

Examples

ORFik.template.experiment()

ORFikQC A post Alignment quality control of reads

Description

The ORFik QC uses the aligned files (usually bam files), fastp and STAR log files combined with
annotation to create relevant statistics.

This report consists of several steps:
1. From this report you will get a summary csv table, with distribution of aligned reads and overlap
counts over transcript regions like: leader, cds, trailer, lincRNAs, tRNAs, rRNAs, snoRNAs etc. It
will be called STATS.csv. And can be imported with QCstats function.
2. It will also make correlation plots and meta coverage plots, so you get a good understanding of
how good the quality of your NGS data production + aligner step were.
3. Count tables are produced, similar to HTseq count tables. Over mrna, leader, cds and trailer sep-
arately. This tables are stored as SummarizedExperiment, for easy loading into DEseq, conversion
to normalized fpkm values, or collapsing replicates in an experiment. And can be imported with
countTable function.
Everything will be outputed in the directory of your NGS data, inside the folder ./QC_STATS/, rel-
ative to data location in ’df’. You can specify new out location with out.dir if you want.
To make a ORFik experiment, see ?ORFik::experiment
To see some normal mrna coverage profiles of different RNA-seq protocols: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4310221/figure/F6/

Usage

ORFikQC(df, out.dir = dirname(df$filepath[1]), BPPARAM = bpparam())

Arguments

df an ORFik experiment

out.dir optional output directory, default: dirname(df$filepath[1]). Will make a
folder called "QC_STATS" with all results in this directory.

BPPARAM how many cores/threads to use? default: bpparam(). To see number of threads
used, do bpparam()$workers

Value

invisible(NULL) (objects are stored to disc)

orfScore 129

See Also

Other QC report: QCplots(), QCstats()

Examples

Load an experiment
df <- ORFik.template.experiment()
Run QC
QCreport(df)

orfScore Get ORFscore for a GRangesList of ORFs

Description

ORFscore tries to check whether the first frame of the 3 possible frames in an ORF has more reads
than second and third frame. IMPORTANT: Only use p-shifted libraries, see (detectRibosomeShifts).
Else this score makes no sense.

Usage

orfScore(grl, RFP, is.sorted = FALSE, weight = "score", overlapGrl = NULL)

Arguments

grl a GRangesList of 5’ utrs, CDS, transcripts, etc.

RFP ribosomal footprints, given as GAlignments or GRanges object, must be already
shifted and resized to the p-site. Requires a $size column with original read
lengths.

is.sorted logical (FALSE), is grl sorted. That is + strand groups in increasing ranges
(1,2,3), and - strand groups in decreasing ranges (3,2,1)

weight (default: ’score’), if defined a character name of valid meta column in subject.
GRanges("chr1", 1, "+", score = 5), would mean score column tells that this
alignment region was found 5 times. ORFik .bedo files, contains a score column
like this. As do CAGEr CAGE files and many other package formats. You can
also assign a score column manually.

overlapGrl an integer, (default: NULL), if defined must be countOverlaps(grl, RFP), added
for speed if you already have it

Details

Pseudocode: assume rff - is reads fraction in specific frame

ORFScore = log(rrf1 + rrf2 + rrf3)

If rrf2 or rrf3 is bigger than rff1, negate the resulting value.

ORFScore[rrf1Smaller] <- ORFScore[rrf1Smaller] * -1

130 organism.df

As result there is one value per ORF: Positive values say that the first frame have the most reads,
negative values say that the first frame does not have the most reads. NOTE: If reads are not of
width 1, then a read from 1-4 on range of 1-4, will get scores frame1 = 2, frame2 = 1, frame3 = 1.
What could be logical is that only the 5’ end is important, so that only frame1 = 1, to get this, you
first resize reads to 5’end only.

NOTES: 1. p shifting is not exact, so some functional ORFs will get a bad ORF score.
2. If a score column is defined, it will use it as weights, set to weight = 1L if you don’t have weight,
and score column is something else. see getWeights

Value

a data.table with 4 columns, the orfscore (ORFScores) and score of each of the 3 tiles (frame_zero_RP,
frame_one_RP, frame_two_RP)

References

doi: 10.1002/embj.201488411

See Also

Other features: computeFeaturesCage(), computeFeatures(), countOverlapsW(), disengagementScore(),
distToCds(), distToTSS(), entropy(), floss(), fpkm_calc(), fpkm(), fractionLength(),
initiationScore(), insideOutsideORF(), isInFrame(), isOverlapping(), kozakSequenceScore(),
rankOrder(), ribosomeReleaseScore(), ribosomeStallingScore(), startRegionCoverage(),
startRegion(), subsetCoverage(), translationalEff()

Examples

ORF <- GRanges(seqnames = "1",
ranges = IRanges(start = c(1, 10, 20), end = c(5, 15, 25)),
strand = "+")

names(ORF) <- c("tx1", "tx1", "tx1")
grl <- GRangesList(tx1_1 = ORF)
RFP <- GRanges("1", IRanges(25, 25), "+") # 1 width position based
score(RFP) <- 28 # original width
orfScore(grl, RFP) # negative because more hits on frames 1,2 than 0.

example with positive result, more hits on frame 0 (in frame of ORF)
RFP <- GRanges("1", IRanges(c(1, 1, 1, 25), width = 1), "+")
score(RFP) <- c(28, 29, 31, 28) # original width
orfScore(grl, RFP)

organism.df Get organism of the ORFik experiment

Description

Uses the txdb / gtf organism information, if existing.

Usage

organism.df(df)

outputLibs 131

Arguments

df an ORFik experiment

Value

organism (character vector), if no organism set: NA

See Also

Other ORFik_experiment: ORFik.template.experiment(), bamVarName(), create.experiment(),
experiment-class, filepath(), libraryTypes(), outputLibs(), read.experiment(), save.experiment(),
validateExperiments()

Examples

if you have set organism in txdb of
ORFik experiment:
df <- ORFik.template.experiment()
#organism.df(df)

#' If you have not set the organism you can do:
#txdb <- GenomicFeatures::makeTxDbFromGFF("pat/to/gff_or_gff")
#BiocGenerics::organism(txdb) <- "Homo sapiens"
#saveDb(txdb, paste0("pat/to/gff_or_gff", ".db"))
then use this txdb in you ORFik experiment and load:
create.experiment(exper = "new_experiment",
txdb = paste0("pat/to/gff_or_gff", ".db")) ...
organism.df(read.experiment("new-experiment))

outputLibs Output bam/bed/bedo/bedoc/ofst/wig files to R as variables

Description

Variable names defined by df (ORFik experiment DataFrame) Uses multiple cores to load, defined
by multicoreParam

Usage

outputLibs(
df,
chrStyle = NULL,
type = "default",
envir = .GlobalEnv,
BPPARAM = bpparam()

)

132 pasteDir

Arguments

df an ORFik experiment

chrStyle a GRanges object, TxDb, FaFile, or a seqlevelsStyle (Default: NULL) to
get seqlevelsStyle from. Is chromosome 1 called chr1 or 1, is mitocondrial
chromosome called MT or chrM etc. Will use 1st seqlevel-style if more are
present. Like: c("NCBI", "UCSC") -> pick "NCBI"

type a character(default: "default"), load files in experiment or some precomputed
variant, either "bedo", "bedoc", "ofst or "pshifted". These are made with OR-
Fik:::simpleLibs(), shiftFootprintsByExperiment()..

envir environment to save to, default (.GlobalEnv)

BPPARAM how many cores/threads to use? default: bpparam(). To see number of threads
used, do bpparam()$workers

Value

NULL (libraries set by envir assignment)

See Also

Other ORFik_experiment: ORFik.template.experiment(), bamVarName(), create.experiment(),
experiment-class, filepath(), libraryTypes(), organism.df(), read.experiment(), save.experiment(),
validateExperiments()

Examples

Load a template ORFik experiment
df <- ORFik.template.experiment()
Default library type load, usually bam files
outputLibs(df, type = "default")
.ofst file load, if ofst files does not exists
it will load default
outputLibs(df, type = "ofst")
.wig file load, if wiggle files does not exists
it will load default
outputLibs(df, type = "wig")

pasteDir A paste function for directories Makes sure slashes are corrected, and
not doubled.

Description

A paste function for directories Makes sure slashes are corrected, and not doubled.

Usage

pasteDir(...)

Arguments

... any amount of arguments that are possible to convert to characters

percentage_to_ratio 133

Value

the pasted string

percentage_to_ratio Convert percentage to ratio of 1

Description

50 -> 0.5 etc, if length cds > minimum.cds

Usage

percentage_to_ratio(top_tx, cds, minimum.cds = 1000)

Arguments

top_tx numeric

cds GRangesList object

minimum.cds numeric, default 1000

Value

numeric, as ratio of 1

plotHelper Helper function for coverage plots

Description

Should only be used internally

Usage

plotHelper(
coverage,
df,
outdir,
scores,
returnCoverage = FALSE,
title = "coverage metaplot",
colors = c("skyblue4", "orange"),
plotFunction = "windowCoveragePlot"

)

134 pmapFromTranscriptF

Arguments

coverage a data.table containing at least columns (count/score, position), it is possible to
have additionals: (genes, fraction, feature)

df an ORFik experiment

outdir directory to save to (default: NULL, no saving)

scores scoring function (default: c("sum", "zscore")), see ?coverageScorings for possi-
ble scores.

returnCoverage (defualt: FALSE), return the ggplot object (TRUE) or NULL (FALSE).

title Title to give plot

colors Which colors to use, default (skyblue4)

plotFunction Which plot function, default: windowCoveragePlot

Value

NULL (or ggplot object if returnCoverage is TRUE)

pmapFromTranscriptF Faster pmapFromTranscript

Description

Map range coordinates between features in the transcriptome and genome (reference) space. The
length of x must be the same as length of transcripts. Only exception is if x have integer names like
(1, 3, 3, 5), so that x[1] maps to 1, x[2] maps to transcript 3 etc.

Usage

pmapFromTranscriptF(x, transcripts, removeEmpty = FALSE)

Arguments

x IRangesList/IRanges/GRanges to map to genomic coordinates

transcripts a GRangesList to map against (the genomic coordinates)

removeEmpty a logical, remove non hit exons, else they are set to 0. That is all exons in the
reference that the transcript coordinates do not span.

Details

This version tries to fix the short commings of GenomicFeature’s version. Much faster and uses
less memory. Implemented as dynamic program optimized c++ code.

Value

a GRangesList of mapped reads, names from ranges are kept.

pmapToTranscriptF 135

Examples

ranges <- IRanges(start = c(5, 6), end = c(10, 10))
seqnames = rep("chr1", 2)
strands = rep("-", 2)
grl <- split(GRanges(seqnames, IRanges(c(85, 70), c(89, 82)), strands),

c(1, 1))
ranges <- split(ranges, c(1,1)) # both should be mapped to transcript 1
pmapFromTranscriptF(ranges, grl, TRUE)

pmapToTranscriptF Faster pmapToTranscript

Description

Map range coordinates between features in the transcriptome and genome (reference) space. The
length of x must be the same as length of transcripts. Only exception is if x have integer names like
(1, 3, 3, 5), so that x[1] maps to 1, x[2] maps to transcript 3 etc.

Usage

pmapToTranscriptF(
x,
transcripts,
ignore.strand = FALSE,
x.is.sorted = TRUE,
tx.is.sorted = TRUE

)

Arguments

x GRangesList/GRanges/IRangesList/IRanges to map to transcriptomic coordi-
nates

transcripts a GRangesList/GRanges/IRangesList/IRanges to map against (the genomic co-
ordinates). Must be of lower abstraction level than x. So if x is GRanges, tran-
scripts can not be IRanges etc.

ignore.strand When ignore.strand is TRUE, strand is ignored in overlaps operations (i.e., all
strands are considered "+") and the strand in the output is ’*’.
When ignore.strand is FALSE (default) strand in the output is taken from the
transcripts argument. When transcripts is a GRangesList, all inner list elements
of a common list element must have the same strand or an error is thrown.
Mapped position is computed by counting from the transcription start site (TSS)
and is not affected by the value of ignore.strand.

x.is.sorted if x is a GRangesList object, are "-" strand groups pre-sorted in decreasing order
within group, default: TRUE

tx.is.sorted if transcripts is a GRangesList object, are "-" strand groups pre-sorted in de-
creasing order within group, default: TRUE

Details

This version tries to fix the shortcommings of GenomicFeature’s version. Much faster and uses less
memory. Implemented as dynamic program optimized c++ code.

136 pSitePlot

Value

object of same class as input x, names from ranges are kept.

Examples

ranges <- IRanges(start = c(5, 6), end = c(10, 10))
seqnames = rep("chr1", 2)
strands = rep("-", 2)
grl <- split(GRanges(seqnames, IRanges(c(85, 70), c(89, 82)), strands),

c(1, 1))
ranges <- split(ranges, c(1,1)) # both should be mapped to transcript 1
pmapFromTranscriptF(ranges, grl, TRUE)

prettyScoring Prettify scoring name

Description

Prettify scoring name

Usage

prettyScoring(scoring)

Arguments

scoring a character (the scoring)

Value

a new scoring name or the same if pretty

pSitePlot Plot area around TIS as histogram

Description

Usefull to validate p-shifting is correct Can be used for any coverage of region around a point, like
TIS, TSS, stop site etc.

Usage

pSitePlot(
hitMap,
length = 29,
region = "start",
output = NULL,
type = "canonical CDS",
scoring = "Averaged counts",
forHeatmap = FALSE

)

QCplots 137

Arguments

hitMap a data.frame/data.table, given from metaWindow (must have columns: position,
(score or count) and frame)

length an integer (29), which length is this for?

region a character (start), either "start or "stop"

output character (NULL), if set, saves the plot as pdf or png to path given. If no format
is given, is save as pdf.

type character (canonical CDS), type for plot

scoring character, default: (Averaged counts), which scoring did you use ? see ?cover-
ageScorings for info and more alternatives.

forHeatmap a logical (FALSE), should the plot be part of a heatmap? It will scale it differ-
ently. Removing title, x and y labels, and truncate spaces between bars.

Details

The region is represented as a histogram with different colors for the 3 frames. To make it easy
to see patterns in the reads. Remember if you want to change anything like colors, just return the
ggplot object, and reassign like: obj + scale_color_brewer() etc.

Value

a ggplot object of the coverage plot, NULL if output is set, then the plot will only be saved to
location.

See Also

Other coveragePlot: coverageHeatMap(), savePlot(), windowCoveragePlot()

Examples

An ORF
grl <- GRangesList(tx1 = GRanges("1", IRanges(1, 6), "+"))
Ribo-seq reads
range <- IRanges(c(rep(1, 3), 2, 3, rep(4, 2), 5, 6), width = 1)
reads <- GRanges("1", range, "+")
coverage <- coveragePerTiling(grl, reads, TRUE, as.data.table = TRUE,

withFrames = TRUE)
pSitePlot(coverage)

See vignette for more examples

QCplots Correlation and coverage plots for ORFikQC

Description

Correlation plots default to mRNA covering reads. Meta plots defaults to leader, cds, trailer.
Output will be stored in same folder as the libraries in df.
Correlation plots will be fpkm correlation and log2(fpkm + 1) correlation between samples.

138 QCreport

Usage

QCplots(
df,
region = "mrna",
stats_folder = paste0(dirname(df$filepath[1]), "/QC_STATS/")

)

Arguments

df an ORFik experiment

region a character (default: mrna), make raw count matrices of whole mrnas or one of
(leaders, cds, trailers)

stats_folder directory to save, default: paste0(dirname(df$filepath[1]), "/QC_STATS/")

Details

Is part of QCreport

Value

invisible(NULL) (objects stored to disc)

See Also

Other QC report: QCreport(), QCstats()

QCreport A post Alignment quality control of reads

Description

The ORFik QC uses the aligned files (usually bam files), fastp and STAR log files combined with
annotation to create relevant statistics.

This report consists of several steps:
1. From this report you will get a summary csv table, with distribution of aligned reads and overlap
counts over transcript regions like: leader, cds, trailer, lincRNAs, tRNAs, rRNAs, snoRNAs etc. It
will be called STATS.csv. And can be imported with QCstats function.
2. It will also make correlation plots and meta coverage plots, so you get a good understanding of
how good the quality of your NGS data production + aligner step were.
3. Count tables are produced, similar to HTseq count tables. Over mrna, leader, cds and trailer sep-
arately. This tables are stored as SummarizedExperiment, for easy loading into DEseq, conversion
to normalized fpkm values, or collapsing replicates in an experiment. And can be imported with
countTable function.
Everything will be outputed in the directory of your NGS data, inside the folder ./QC_STATS/, rel-
ative to data location in ’df’. You can specify new out location with out.dir if you want.
To make a ORFik experiment, see ?ORFik::experiment
To see some normal mrna coverage profiles of different RNA-seq protocols: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4310221/figure/F6/

QCstats 139

Usage

QCreport(df, out.dir = dirname(df$filepath[1]), BPPARAM = bpparam())

Arguments

df an ORFik experiment

out.dir optional output directory, default: dirname(df$filepath[1]). Will make a
folder called "QC_STATS" with all results in this directory.

BPPARAM how many cores/threads to use? default: bpparam(). To see number of threads
used, do bpparam()$workers

Value

invisible(NULL) (objects are stored to disc)

See Also

Other QC report: QCplots(), QCstats()

Examples

Load an experiment
df <- ORFik.template.experiment()
Run QC
QCreport(df)

QCstats Load ORFik QC Statistics report

Description

Loads the pre / post alignment statistcs made in ORFik.

Usage

QCstats(df, path = paste0(dirname(df$filepath[1]), "/QC_STATS/STATS.csv"))

Arguments

df an ORFik experiment

path path to QC statistics report, default: paste0(dirname(df$filepath[1]), "/QC_STATS/STATS.csv")

Details

The ORFik QC uses the aligned files (usually bam files), fastp and STAR log files combined with
annotation to create relevant statistics.

Value

data.table of QC report or NULL if not exists

140 QCstats.plot

See Also

Other QC report: QCplots(), QCreport()

Examples

df <- ORFik.template.experiment()[3,]
First make QC report
QCreport(df)
stats <- QCstats(df)

QCstats.plot Make plot of ORFik QCreport

Description

From post-alignment QC relative to annotation, make a plot for all samples. Will contain things
like aligned_reads, read lengths, reads overlapping leaders, cds, trailers, rRNA, tRNA etc.

Usage

QCstats.plot(stats, output.dir = NULL)

Arguments

stats path to ORFik QC stats .csv file, or the experiment object.

output.dir NULL or character path, default: NULL, plot not saved to disc. If defined saves
plot to that directory with the name "/STATS_plot.png".

Value

ggplot object of the the statistics data

Examples

df <- ORFik.template.experiment()[3,]
First make QC report
QCreport(df)
Now you can get plot
QCstats.plot(df)

QC_count_tables 141

QC_count_tables Create count table info for QC report

Description

The better the annotation / gtf used, the more results you get.

Usage

QC_count_tables(df, out.dir, BPPARAM = bpparam())

Arguments

df an ORFik experiment

out.dir optional output directory, default: dirname(df$filepath[1]). Will make a
folder called "QC_STATS" with all results in this directory.

BPPARAM how many cores/threads to use? default: bpparam(). To see number of threads
used, do bpparam()$workers

Value

a data.table of the count info

rankOrder ORF rank in transcripts

Description

Creates an ordering of ORFs per transcript, so that ORF with the most upstream start codon is 1,
second most upstream start codon is 2, etc. Must input a grl made from ORFik, txNames_2 -> 2.

Usage

rankOrder(grl)

Arguments

grl a GRangesList object with ORFs

Value

a numeric vector of integers

References

doi: 10.1074/jbc.R116.733899

142 read.experiment

See Also

Other features: computeFeaturesCage(), computeFeatures(), countOverlapsW(), disengagementScore(),
distToCds(), distToTSS(), entropy(), floss(), fpkm_calc(), fpkm(), fractionLength(),
initiationScore(), insideOutsideORF(), isInFrame(), isOverlapping(), kozakSequenceScore(),
orfScore(), ribosomeReleaseScore(), ribosomeStallingScore(), startRegionCoverage(),
startRegion(), subsetCoverage(), translationalEff()

Examples

gr_plus <- GRanges(seqnames = c("chr1", "chr1"),
ranges = IRanges(c(7, 14), width = 3),
strand = c("+", "+"))

gr_minus <- GRanges(seqnames = c("chr2", "chr2"),
ranges = IRanges(c(4, 1), c(9, 3)),
strand = c("-", "-"))

grl <- GRangesList(tx1 = gr_plus, tx2 = gr_minus)
grl <- ORFik:::makeORFNames(grl)
rankOrder(grl)

read.experiment Read ORFik experiment

Description

Read in runs / samples from an experiment as a single R object. To read an ORFik experiment, you
must of course make one first. See create.experiment The file must be csv and be a valid ORFik
experiment

Usage

read.experiment(file, in.dir = "~/Bio_data/ORFik_experiments/")

Arguments

file relative path to a ORFik experiment. That is a .csv file following ORFik experi-
ment style ("," as seperator). , or a template data.frame from create.experiment.
Can also be full path to file, then in.dir argument is ignored.

in.dir Directory to load experiment csv file from, default: "~/Bio_data/ORFik_experiments/"
Set to NULL if you don’t want to save it to disc. Does not apply if file is not a
path, but a data.frame. Also does not apply if file was given as full path.

Value

an ORFik experiment

See Also

Other ORFik_experiment: ORFik.template.experiment(), bamVarName(), create.experiment(),
experiment-class, filepath(), libraryTypes(), organism.df(), outputLibs(), save.experiment(),
validateExperiments()

readBam 143

Examples

From file
Not run:
Read from file
df <- read.experiment(filepath) # <- valid ORFik .csv file

End(Not run)
Read from (create.experiment() template)
df <- ORFik.template.experiment()

To save it, do:
save.experiment(df, file = "path/to/save/experiment")
You can then do:
read.experiment("path/to/save/experiment")
or (identical):
read.experiment("experiment", in.dir = "path/to/save/")

readBam Custom bam reader

Description

Safer version that handles the most important error done. In the future will use a faster .bam loader
for big .bam files in R.

Usage

readBam(path, chrStyle = NULL)

Arguments

path a character path to .bam file. If paired end bam files, input must be a data.table
with two columns (forward and reverse) and one row:
if paired end reads in single bam file:
forward contains paired end bam file path, reverse must be either "paired-end"
or "" (single end).
if paired end reads split in two files:
forward contains paired end bam file path (R1), reverse must be paired end bam
file path (R2 file), this is a rare case
If all are single-end or you don’t need to load data as paired end, the reverse
column can be skipped.

chrStyle a GRanges object, TxDb, FaFile, or a seqlevelsStyle (Default: NULL) to
get seqlevelsStyle from. Is chromosome 1 called chr1 or 1, is mitocondrial
chromosome called MT or chrM etc. Will use 1st seqlevel-style if more are
present. Like: c("NCBI", "UCSC") -> pick "NCBI"

Value

a GAlignments object of bam file

144 readWidths

See Also

Other utils: bedToGR(), convertToOneBasedRanges(), export.bed12(), export.wiggle(), fimport(),
findFa(), fread.bed(), optimizeReads(), readWig()

Examples

bam_file <- system.file("extdata", "ribo-seq.bam", package = "ORFik")
readBam(bam_file, "UCSC")

readWidths Get read widths

Description

Input any reads, e.g. ribo-seq object and get width of reads, this is to avoid confusion between
width, qwidth and meta column containing original read width.

Usage

readWidths(reads, after.softclips = TRUE, along.reference = FALSE)

Arguments

reads a GRanges, GAlignment or GAlignmentPairs object.

after.softclips

logical (TRUE), include softclips in width. Does not apply if along.reference is
TRUE.

along.reference

logical (FALSE), example: The cigar "26MI2" is by default width 28, but if
along.reference is TRUE, it will be 26. The length of the read along the refer-
ence. Also "1D20M" will be 21 if by along.reference is TRUE. Intronic regions
(cigar: N) will be removed. So: "1M200N19M" is 20, not 220.

Details

If input is p-shifted and GRanges, the "$size" or "$score" colum" must exist, and the column must
contain the original read widths. In ORFik "$size" have higher priority than "$score" for defining
length. ORFik P-shifting creates a $size column, other softwares like shoelaces creates a score
column.

Remember to think about how you define length. Like the question: is a Illumina error mismatch
sufficient to reduce size of read and how do you know what is biological variance and what are
Illumina errors?

Value

an integer vector of widths

readWig 145

Examples

gr <- GRanges("chr1", 1)
readWidths(gr)

GAlignment with hit (1M) and soft clipped base (1S)
ga <- GAlignments(seqnames = "1", pos = as.integer(1), cigar = "1M1S",
strand = factor("+", levels = c("+", "-", "*")))

readWidths(ga) # Without soft-clip bases

readWidths(ga, after.softclips = FALSE) # With soft-clip bases

readWig Custom wig reader

Description

Given 2 wig files, first is forward second is reverse. Merge them and return as GRanges object. If
they contain name reverse and forward, first and second order does not matter, it will search for
forward and reverse.

Usage

readWig(path, chrStyle = NULL)

Arguments

path a character path to two .wig files, or a data.table with 2 columns, (forward,
filepath) and reverse, only 1 row.

chrStyle a GRanges object, TxDb, FaFile, or a seqlevelsStyle (Default: NULL) to
get seqlevelsStyle from. Is chromosome 1 called chr1 or 1, is mitocondrial
chromosome called MT or chrM etc. Will use 1st seqlevel-style if more are
present. Like: c("NCBI", "UCSC") -> pick "NCBI"

Value

a GRanges object of the file/s

See Also

Other utils: bedToGR(), convertToOneBasedRanges(), export.bed12(), export.wiggle(), fimport(),
findFa(), fread.bed(), optimizeReads(), readBam()

146 reassignTSSbyCage

reassignTSSbyCage Reassign all Transcript Start Sites (TSS)

Description

Given a GRangesList of 5’ UTRs or transcripts, reassign the start sites using max peaks from
CageSeq data. A max peak is defined as new TSS if it is within boundary of 5’ leader range,
specified by ‘extension‘ in bp. A max peak must also be higher than minimum CageSeq peak cutoff
specified in ‘filterValue‘. The new TSS will then be the positioned where the cage read (with highest
read count in the interval). If removeUnused is TRUE, leaders without cage hits, will be removed,
if FALSE the original TSS will be used.

Usage

reassignTSSbyCage(
fiveUTRs,
cage,
extension = 1000,
filterValue = 1,
restrictUpstreamToTx = FALSE,
removeUnused = FALSE,
preCleanup = TRUE,
cageMcol = FALSE

)

Arguments

fiveUTRs (GRangesList) The 5’ leaders or full transcript sequences

cage Either a filePath for the CageSeq file as .bed .bam or .wig, with possible com-
pressions (".gzip", ".gz", ".bgz"), or already loaded CageSeq peak data as GRanges
or GAlignment. NOTE: If it is a .bam file, it will add a score column by run-
ning: convertToOneBasedRanges(cage, method = "5prime", addScoreColumn =
TRUE) The score column is then number of replicates of read, if score column
is something else, like read length, set the score column to NULL first.

extension The maximum number of basses upstream of the TSS to search for CageSeq
peak.

filterValue The minimum number of reads on cage position, for it to be counted as possible
new tss. (represented in score column in CageSeq data) If you already filtered,
set it to 0.

restrictUpstreamToTx

a logical (FALSE). If TRUE: restrict leaders to not extend closer than 5 bases
from closest upstream leader, set this to TRUE.

removeUnused logical (FALSE), if False: (standard is to set them to original annotation), If
TRUE: remove leaders that did not have any cage support.

preCleanup logical (TRUE), if TRUE, remove all reads in region (-5:-1, 1:5) of all original
tss in leaders. This is to keep original TSS if it is only +/- 5 bases from the
original.

cageMcol a logical (FALSE), if TRUE, add a meta column to the returned object with the
raw CAGE counts in support for new TSS.

reassignTxDbByCage 147

Details

Note: If you used CAGEr, you will get reads of a probability region, with always score of 1. Re-
member then to set filterValue to 0. And you should use the 5’ end of the read as input, use:
ORFik:::convertToOneBasedRanges(cage) NOTE on filtervalue: To get high quality TSS, set filter-
value to median count of reads overlapping per leader. This will make you discard a lot of new TSS
positions though. I usually use 10 as a good standard.

TIP: do summary(countOverlaps(fiveUTRs, cage)) so you can find a good cutoff value for noise.

Value

a GRangesList of newly assigned TSS for fiveUTRs, using CageSeq data.

See Also

Other CAGE: assignTSSByCage(), reassignTxDbByCage()

Examples

example 5' leader, notice exon_rank column
fiveUTRs <- GenomicRanges::GRangesList(

GenomicRanges::GRanges(seqnames = "chr1",
ranges = IRanges::IRanges(1000, 2000),
strand = "+",
exon_rank = 1))

names(fiveUTRs) <- "tx1"

make fake CageSeq data from promoter of 5' leaders, notice score column
cage <- GenomicRanges::GRanges(

seqnames = "1",
ranges = IRanges::IRanges(500, width = 1),
strand = "+",
score = 10) # <- Number of tags (reads) per position

notice also that seqnames use different naming, this is fixed by ORFik
finally reassign TSS for fiveUTRs
reassignTSSbyCage(fiveUTRs, cage)
See vignette for example using gtf file and real CAGE data.

reassignTxDbByCage Input a txdb and reassign the TSS for each transcript by CAGE

Description

Given a TxDb object, reassign the start site per transcript using max peaks from CageSeq data. A
max peak is defined as new TSS if it is within boundary of 5’ leader range, specified by ‘extension‘
in bp. A max peak must also be higher than minimum CageSeq peak cutoff specified in ‘filter-
Value‘. The new TSS will then be the positioned where the cage read (with highest read count in
the interval).

148 reassignTxDbByCage

Usage

reassignTxDbByCage(
txdb,
cage,
extension = 1000,
filterValue = 1,
restrictUpstreamToTx = FALSE,
removeUnused = FALSE,
preCleanup = TRUE

)

Arguments

txdb a TxDb file, a path to one of: (.gtf ,.gff, .gff2, .gff2, .db or .sqlite) or an ORFik
experiment

cage Either a filePath for the CageSeq file as .bed .bam or .wig, with possible com-
pressions (".gzip", ".gz", ".bgz"), or already loaded CageSeq peak data as GRanges
or GAlignment. NOTE: If it is a .bam file, it will add a score column by run-
ning: convertToOneBasedRanges(cage, method = "5prime", addScoreColumn =
TRUE) The score column is then number of replicates of read, if score column
is something else, like read length, set the score column to NULL first.

extension The maximum number of basses upstream of the TSS to search for CageSeq
peak.

filterValue The minimum number of reads on cage position, for it to be counted as possible
new tss. (represented in score column in CageSeq data) If you already filtered,
set it to 0.

restrictUpstreamToTx

a logical (FALSE). If TRUE: restrict leaders to not extend closer than 5 bases
from closest upstream leader, set this to TRUE.

removeUnused logical (FALSE), if False: (standard is to set them to original annotation), If
TRUE: remove leaders that did not have any cage support.

preCleanup logical (TRUE), if TRUE, remove all reads in region (-5:-1, 1:5) of all original
tss in leaders. This is to keep original TSS if it is only +/- 5 bases from the
original.

Details

Note: If you used CAGEr, you will get reads of a probability region, with always score of 1.
Remember then to set filterValue to 0. And you should use the 5’ end of the read as input, use:
ORFik:::convertToOneBasedRanges(cage)

Value

a TxDb obect of reassigned transcripts

See Also

Other CAGE: assignTSSByCage(), reassignTSSbyCage()

reduceKeepAttr 149

Examples

Not run:
library(GenomicFeatures)
Get the gtf txdb file
txdbFile <- system.file("extdata", "hg19_knownGene_sample.sqlite",
package = "GenomicFeatures")
cagePath <- system.file("extdata", "cage-seq-heart.bed.bgz",
package = "ORFik")
reassignTxDbByCage(txdbFile, cagePath)

End(Not run)

reduceKeepAttr Reduce GRanges / GRangesList

Description

Reduce away all GRanges elements with 0-width.

Usage

reduceKeepAttr(
grl,
keep.names = FALSE,
drop.empty.ranges = FALSE,
min.gapwidth = 1L,
with.revmap = FALSE,
with.inframe.attrib = FALSE,
ignore.strand = FALSE,
min.strand.decreasing = TRUE

)

Arguments

grl a GRangesList or GRanges object

keep.names (FALSE) keep the names and meta columns of the GRangesList

drop.empty.ranges

(FALSE) if a group is empty (width 0), delete it.

min.gapwidth (1L) how long gap can it be between two ranges, to merge them.

with.revmap (FALSE) return info on which mapped to which

with.inframe.attrib

(FALSE) For internal use.

ignore.strand (FALSE), can different strands be reduced together.

min.strand.decreasing

(TRUE), if GRangesList, return minus strand group ranges in decreasing order
(1-5, 30-50) -> (30-50, 1-5)

150 remakeTxdbExonIds

Details

Extends function reduce by trying to keep names and meta columns, if it is a GRangesList. It
also does not lose sorting for GRangesList, since original reduce sorts all by ascending position. If
keep.names == FALSE, it’s just the normal GenomicRanges::reduce with sorting negative strands
descending for GRangesList.

Value

A reduced GRangesList

See Also

Other ExtendGenomicRanges: asTX(), coveragePerTiling(), extendLeaders(), extendTrailers(),
tile1(), txSeqsFromFa(), windowPerGroup()

Examples

ORF <- GRanges(seqnames = "1",
ranges = IRanges(start = c(1, 2, 3), end = c(1, 2, 3)),
strand = "+")

For GRanges
reduceKeepAttr(ORF, keep.names = TRUE)
For GRangesList
grl <- GRangesList(tx1_1 = ORF)
reduceKeepAttr(grl, keep.names = TRUE)

remakeTxdbExonIds Get new exon ids after update of txdb

Description

Get new exon ids after update of txdb

Usage

remakeTxdbExonIds(txList)

Arguments

txList a list, call of as.list(txdb)

Value

a new valid ordered list of exon ids (integer)

remove.experiments 151

remove.experiments Remove bam/bed/wig files load in R as variables

Description

Variable names defined by df, in envir defined

Usage

remove.experiments(df, envir = .GlobalEnv)

Arguments

df an ORFik experiment

envir environment to save to, default (.GlobalEnv)

Value

NULL (objects removed from envir specified)

Examples

df <- ORFik.template.experiment()
Output to .GlobalEnv with:
outputLibs(df)
Then remove them with:
remove.experiments(df)

remove.file_ext Remove file extension of path

Description

Allows removal of compression

Usage

remove.file_ext(path, basename = FALSE)

Arguments

path character path (allows multiple paths)

basename relative path (TRUE) or full path (FALSE)? (default: FALSE)

Value

character path without file extension

152 removeORFsWithinCDS

removeMetaCols Removes meta columns

Description

Removes meta columns

Usage

removeMetaCols(grl)

Arguments

grl a GRangesList or GRanges object

Value

same type and structure as input without meta columns

removeORFsWithinCDS Remove ORFs that are within cds

Description

Remove ORFs that are within cds

Usage

removeORFsWithinCDS(grl, cds)

Arguments

grl (GRangesList), the ORFs to filter

cds (GRangesList), the coding sequences (main ORFs on transcripts), to filter against.

Value

(GRangesList) of filtered uORFs

See Also

Other uorfs: addCdsOnLeaderEnds(), filterUORFs(), removeORFsWithSameStartAsCDS(), removeORFsWithSameStopAsCDS(),
removeORFsWithStartInsideCDS(), uORFSearchSpace()

removeORFsWithSameStartAsCDS 153

removeORFsWithSameStartAsCDS

Remove ORFs that have same start site as the CDS

Description

Remove ORFs that have same start site as the CDS

Usage

removeORFsWithSameStartAsCDS(grl, cds)

Arguments

grl (GRangesList), the ORFs to filter
cds (GRangesList), the coding sequences (main ORFs on transcripts), to filter against.

Value

(GRangesList) of filtered uORFs

See Also

Other uorfs: addCdsOnLeaderEnds(), filterUORFs(), removeORFsWithSameStopAsCDS(), removeORFsWithStartInsideCDS(),
removeORFsWithinCDS(), uORFSearchSpace()

removeORFsWithSameStopAsCDS

Remove ORFs that have same stop site as the CDS

Description

Remove ORFs that have same stop site as the CDS

Usage

removeORFsWithSameStopAsCDS(grl, cds)

Arguments

grl (GRangesList), the ORFs to filter
cds (GRangesList), the coding sequences (main ORFs on transcripts), to filter against.

Value

(GRangesList) of filtered uORFs

See Also

Other uorfs: addCdsOnLeaderEnds(), filterUORFs(), removeORFsWithSameStartAsCDS(), removeORFsWithStartInsideCDS(),
removeORFsWithinCDS(), uORFSearchSpace()

154 removeTxdbExons

removeORFsWithStartInsideCDS

Remove ORFs that have start site within the CDS

Description

Remove ORFs that have start site within the CDS

Usage

removeORFsWithStartInsideCDS(grl, cds)

Arguments

grl (GRangesList), the ORFs to filter

cds (GRangesList), the coding sequences (main ORFs on transcripts), to filter against.

Value

(GRangesList) of filtered uORFs

See Also

Other uorfs: addCdsOnLeaderEnds(), filterUORFs(), removeORFsWithSameStartAsCDS(), removeORFsWithSameStopAsCDS(),
removeORFsWithinCDS(), uORFSearchSpace()

removeTxdbExons Remove exons in txList that are not in fiveUTRs

Description

Remove exons in txList that are not in fiveUTRs

Usage

removeTxdbExons(txList, fiveUTRs)

Arguments

txList a list, call of as.list(txdb)

fiveUTRs a GRangesList of 5’ leaders

Value

a list, modified call of as.list(txdb)

removeTxdbTranscripts 155

removeTxdbTranscripts Remove specific transcripts in txdb List

Description

Remove all transcripts, except the ones in fiveUTRs.

Usage

removeTxdbTranscripts(txList, fiveUTRs)

Arguments

txList a list, call of as.list(txdb)

fiveUTRs a GRangesList of 5’ leaders

Value

a txList

repNames Get replicate name variants

Description

Used to standardize nomeclature for experiments.
Example: 1 is main naming, but a variant is rep1 rep1 will then be renamed to 1

Usage

repNames()

Value

a data.table with 2 columns, the main name, and all name variants of the main name in second
column as a list.

See Also

Other experiment_naming: cellLineNames(), conditionNames(), libNames(), mainNames(),
stageNames(), tissueNames()

156 reverseMinusStrandPerGroup

restrictTSSByUpstreamLeader

Restrict extension of 5’ UTRs to closest upstream leader end

Description

Basicly this function restricts all startSites, to the upstream GRangesList objects end. Usually
leaders, for CAGE. Example: leader1: start on 10, leader2: stop on 8, extend leader1 to 5 -> this
function will resize leader1 to 9, to be outside leader2, so that CAGE reads can not wrongly overlap.

Usage

restrictTSSByUpstreamLeader(fiveUTRs, shiftedfiveUTRs)

Arguments

fiveUTRs The 5’ leader sequences as GRangesList
shiftedfiveUTRs

The 5’ leader sequences as GRangesList shifted by CAGE

Value

GRangesList object of restricted fiveUTRs

reverseMinusStrandPerGroup

Reverse minus strand

Description

Reverse minus strand per group in a GRangesList Only reverse if minus strand is in increasing order

Usage

reverseMinusStrandPerGroup(grl, onlyIfIncreasing = TRUE)

Arguments

grl a GRangesList

onlyIfIncreasing

logical, default (TRUE), only reverse if decreasing

Value

a GRangesList

ribosomeReleaseScore 157

ribosomeReleaseScore Ribosome Release Score (RRS)

Description

Ribosome Release Score is defined as

(RPFs over ORF)/(RPFs over 3' utrs)

and additionaly normalized by lengths. If RNA is added as argument, it will normalize by RNA
counts to justify location of 3’ utrs. It can be understood as a ribosome stalling feature. A pseudo-
count of one was added to both the ORF and downstream sums.

Usage

ribosomeReleaseScore(
grl,
RFP,
GtfOrThreeUtrs,
RNA = NULL,
weight.RFP = 1L,
weight.RNA = 1L,
overlapGrl = NULL

)

Arguments

grl a GRangesList object with usually either leaders, cds’, 3’ utrs or ORFs.

RFP RiboSeq reads as GAlignments, GRanges or GRangesList object

GtfOrThreeUtrs if Gtf: a TxDb object of a gtf file transcripts is called from: ‘threeUTRsByTran-
script(Gtf, use.names = TRUE)‘, if object is GRangesList, it is presumed to be
the 3’ utrs

RNA RnaSeq reads as GAlignments, GRanges or GRangesList object

weight.RFP a vector (default: 1L). Can also be character name of column in RFP. As in trans-
lationalEff(weight = "score") for: GRanges("chr1", 1, "+", score = 5), would
mean score column tells that this alignment region was found 5 times.

weight.RNA Same as weightRFP but for RNA weights. (default: 1L)

overlapGrl an integer, (default: NULL), if defined must be countOverlaps(grl, RFP), added
for speed if you already have it

Value

a named vector of numeric values of scores, NA means that no 3’ utr was found for that transcript.

References

doi: 10.1016/j.cell.2013.06.009

158 ribosomeStallingScore

See Also

Other features: computeFeaturesCage(), computeFeatures(), countOverlapsW(), disengagementScore(),
distToCds(), distToTSS(), entropy(), floss(), fpkm_calc(), fpkm(), fractionLength(),
initiationScore(), insideOutsideORF(), isInFrame(), isOverlapping(), kozakSequenceScore(),
orfScore(), rankOrder(), ribosomeStallingScore(), startRegionCoverage(), startRegion(),
subsetCoverage(), translationalEff()

Examples

ORF <- GRanges(seqnames = "1",
ranges = IRanges(start = c(1, 10, 20), end = c(5, 15, 25)),
strand = "+")

grl <- GRangesList(tx1_1 = ORF)
threeUTRs <- GRangesList(tx1 = GRanges("1", IRanges(40, 50), "+"))
RFP <- GRanges("1", IRanges(25, 25), "+")
RNA <- GRanges("1", IRanges(1, 50), "+")
ribosomeReleaseScore(grl, RFP, threeUTRs, RNA)

ribosomeStallingScore Ribosome Stalling Score (RSS)

Description

Is defined as

(RPFs over ORF stop sites)/(RPFs over ORFs)

and normalized by lengths A pseudo-count of one was added to both the ORF and downstream
sums.

Usage

ribosomeStallingScore(grl, RFP, weight = 1L, overlapGrl = NULL)

Arguments

grl a GRangesList object with usually either leaders, cds’, 3’ utrs or ORFs.

RFP RiboSeq reads as GAlignments, GRanges or GRangesList object

weight a vector (default: 1L, if 1L it is identical to countOverlaps()), if single number
(!= 1), it applies for all, if more than one must be equal size of ’reads’. else it
must be the string name of a defined meta column in subject "reads", that gives
number of times a read was found. GRanges("chr1", 1, "+", score = 5), would
mean "score" column tells that this alignment region was found 5 times.

overlapGrl an integer, (default: NULL), if defined must be countOverlaps(grl, RFP), added
for speed if you already have it

Value

a named vector of numeric values of RSS scores

rnaNormalize 159

References

doi: 10.1016/j.cels.2017.08.004

See Also

Other features: computeFeaturesCage(), computeFeatures(), countOverlapsW(), disengagementScore(),
distToCds(), distToTSS(), entropy(), floss(), fpkm_calc(), fpkm(), fractionLength(),
initiationScore(), insideOutsideORF(), isInFrame(), isOverlapping(), kozakSequenceScore(),
orfScore(), rankOrder(), ribosomeReleaseScore(), startRegionCoverage(), startRegion(),
subsetCoverage(), translationalEff()

Examples

ORF <- GRanges(seqnames = "1",
ranges = IRanges(start = c(1, 10, 20), end = c(5, 15, 25)),
strand = "+")

grl <- GRangesList(tx1_1 = ORF)
RFP <- GRanges("1", IRanges(25, 25), "+")
ribosomeStallingScore(grl, RFP)

rnaNormalize Normalize a data.table of coverage by RNA seq per position

Description

Normalizes per position per gene by this function: (reads at position / min(librarysize, 1) * number
of genes) / fpkm of that gene’s RNA-seq

Usage

rnaNormalize(coverage, df, dfr = NULL, tx, normalizeMode = "position")

Arguments

coverage a data.table containing at least columns (count/score, position), it is possible to
have additionals: (genes, fraction, feature)

df an ORFik experiment

dfr an ORFik experiment of RNA-seq to normalize against. Will add RNA nor-
malized to plot name if this is done.

tx a GRangesList of mrna transcripts

normalizeMode a character (default: "position"), how to normalize library against rna library.
Either on "position", normalize by number of genes, sum of reads and RNA seq,
on tx "region" or "feature": same as position but RNA is split into the feature
groups to normalize. Useful if you have a list of targets and background genes.

Details

Good way to compare libraries

160 savePlot

Value

a data.table of normalized transcripts by RNA.

save.experiment Save experiment to disc

Description

Save experiment to disc

Usage

save.experiment(df, file)

Arguments

df an ORFik experiment

file name of file to save df as

Value

NULL (experiment save only)

See Also

Other ORFik_experiment: ORFik.template.experiment(), bamVarName(), create.experiment(),
experiment-class, filepath(), libraryTypes(), organism.df(), outputLibs(), read.experiment(),
validateExperiments()

Examples

df <- ORFik.template.experiment()
Save with:
#save.experiment(df, file = "path/to/save/experiment.csv")
Identical (.csv not needed, can be added):
#save.experiment(df, file = "path/to/save/experiment")

savePlot Helper function for writing plots to disc

Description

Helper function for writing plots to disc

Usage

savePlot(plot, output = NULL, width = 200, height = 150, dpi = 300)

scaledWindowPositions 161

Arguments

plot the ggplot to save
output character string (NULL), if set, saves the plot as pdf or png to path given. If no

format is given, is save as png.
width width of output in mm
height height of output in mm
dpi (300) dpi of plot

Value

a ggplot object of the coverage plot, NULL if output is set, then the plot will only be saved to
location.

See Also

Other coveragePlot: coverageHeatMap(), pSitePlot(), windowCoveragePlot()

scaledWindowPositions Scale (bin) windows to a meta window of given size

Description

For example scale a coverage table of a all human CDS to width 100

Usage

scaledWindowPositions(
grl,
reads,
scaleTo = 100,
scoring = "meanPos",
weight = "score",
is.sorted = FALSE

)

Arguments

grl GRangesList or GRanges of your ranges
reads GRanges object of your reads.
scaleTo an integer (100), if windows have different size, a meta window can not directly

be created, since a meta window must have equal size for all windows. Rescale
all windows to scaleTo. i.e c(1,2,3) -> size 2 -> c(1, mean(2,3)) etc. Can also be
a vector, 1 number per grl group.

scoring a character, one of (meanPos, sumPos)
weight (default: ’score’), if defined a character name of valid meta column in subject.

GRanges("chr1", 1, "+", score = 5), would mean score column tells that this
alignment region was found 5 times. ORFik .bedo files, contains a score column
like this. As do CAGEr CAGE files and many other package formats. You can
also assign a score column manually.

is.sorted logical (FALSE), is grl sorted. That is + strand groups in increasing ranges
(1,2,3), and - strand groups in decreasing ranges (3,2,1)

162 scoreSummarizedExperiment

Details

Nice for making metaplots, the score will be mean of merged positions.

Value

A data.table with scored counts (counts) of reads mapped to positions (position) specified in win-
dows along with frame (frame).

See Also

Other coverage: coverageScorings(), metaWindow(), windowPerReadLength()

Examples

library(GenomicRanges)
windows <- GRangesList(GRanges("chr1", IRanges(1, 200), "-"))
x <- GenomicRanges::GRanges(

seqnames = "chr1",
ranges = IRanges::IRanges(c(1, 100, 199), c(2, 101, 200)),
strand = "-")

scaledWindowPositions(windows, x, scaleTo = 100)

scoreSummarizedExperiment

Helper function for makeSummarizedExperimentFromBam

Description

If txdb or gtf path is added, it is a rangedSummerizedExperiment For FPKM values, DESeq2::fpkm(robust
= FALSE) is used

Usage

scoreSummarizedExperiment(
final,
score = "transcriptNormalized",
collapse = FALSE

)

Arguments

final ranged summarized experiment object
score default: "transcriptNormalized" (row normalized raw counts matrix), alternative

is "fpkm", "log2fpkm" or "log10fpkm"
collapse a logical/character (default FALSE), if TRUE all samples within the group SAM-

PLE will be collapsed to one. If "all", all groups will be merged into 1 col-
umn called merged_all. Collapse is defined as rowSum(elements_per_group) /
ncol(elements_per_group)

Value

a DEseq summerizedExperiment object (transcriptNormalized) or matrix (if fpkm input)

seqnamesPerGroup 163

seqnamesPerGroup Get list of seqnames per granges group

Description

Get list of seqnames per granges group

Usage

seqnamesPerGroup(grl, keep.names = TRUE)

Arguments

grl a GRangesList

keep.names a boolean, keep names or not, default: (TRUE)

Value

a character vector or Rle of seqnames(if seqnames == T)

Examples

gr_plus <- GRanges(seqnames = c("chr1", "chr1"),
ranges = IRanges(c(7, 14), width = 3),
strand = c("+", "+"))

gr_minus <- GRanges(seqnames = c("chr2", "chr2"),
ranges = IRanges(c(4, 1), c(9, 3)),
strand = c("-", "-"))

grl <- GRangesList(tx1 = gr_plus, tx2 = gr_minus)
seqnamesPerGroup(grl)

shiftFootprints Shift footprints by selected offsets

Description

Function shifts footprints (GRanges) using specified offsets for every of the specified lengths. Reads
that do not conform to the specified lengths are filtered out and rejected. Reads are resized to single
base in 5’ end fashion, treated as p site. This function takes account for junctions in cigars of the
reads. Length of the footprint is saved in size’ parameter of GRanges output. Footprints are also
sorted according to their genomic position, ready to be saved as a ofst, bed or wig file.

Usage

shiftFootprints(footprints, shifts, sort = TRUE)

164 shiftFootprints

Arguments

footprints GAlignments object of RiboSeq reads

shifts a data.frame / data.table with minimum 2 columns, fraction (selected_lengths)
and selected_shifts (relative position). Output from detectRibosomeShifts

sort logical, default TRUE. If False will keep original order of reads, and not sort
output reads in increasing genomic location per chromosome and strand.

Details

The two columns in the shift data.frame/data.table argument are:
- fraction Numeric vector of lengths of footprints you select for shifting.
- offsets_start Numeric vector of shifts for corresponding selected_lengths. eg. c(-10, -10) with
selected_lengths of c(31, 32) means length of 31 will be shifted left by 10. Footprints of length 32
will be shifted right by 10.

NOTE: It will remove softclips from valid width, the CIGAR 3S30M is qwidth 33, but will remove
3S so final read width is 30 in ORFik.

Value

A GRanges object of shifted footprints, sorted and resized to 1bp of p-site, with metacolumn "size"
indicating footprint size before shifting and resizing, sorted in increasing order.

References

https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-018-4912-6

See Also

Other pshifting: changePointAnalysis(), detectRibosomeShifts(), shiftFootprintsByExperiment()

Examples

Basic run
#shiftFootprints(footprints, shifts)
Full example
Not run:
input path to gtf, or load it as TxDb.
gtf_file <- system.file("extdata", "annotations.gtf", package = "ORFik")
load reads
riboSeq_file <- system.file("extdata", "ribo-seq.bam", package = "ORFik")
footprints <- GenomicAlignments::readGAlignments(

riboSeq_file, param = ScanBamParam(flag = scanBamFlag(
isDuplicate = FALSE, isSecondaryAlignment = FALSE)))

detect the shifts automagically
shifts <- detectRibosomeShifts(footprints, gtf_file)
shift the RiboSeq footprints
shiftedReads <- shiftFootprints(footprints, shifts)

End(Not run)

shiftFootprintsByExperiment 165

shiftFootprintsByExperiment

Shift footprints of each file in experiment

Description

For more details, see: detectRibosomeShifts

Usage

shiftFootprintsByExperiment(
df,
out.dir = pasteDir(dirname(df$filepath[1]), "/pshifted/"),
start = TRUE,
stop = FALSE,
top_tx = 10L,
minFiveUTR = 30L,
minCDS = 150L,
minThreeUTR = 30L,
firstN = 150L,
min_reads = 1000,
accepted.lengths = 26:34,
output_format = c("ofst", "wig"),
BPPARAM = bpparam(),
log = TRUE,
heatmap = FALSE,
must.be.periodic = TRUE

)

Arguments

df an ORFik experiment

out.dir output directory for files, default: dirname(df$filepath[1]), making a /pshifted
folder at that location

start (logical) Whether to include predictions based on the start codons. Default
TRUE.

stop (logical) Whether to include predictions based on the stop codons. Default
FASLE. Only use if there exists 3’ UTRs for the annotation. If peridicity around
stop codon is stronger than at the start codon, use stop instead of start region for
p-shifting.

top_tx (integer), default 10. Specify which reads transcripts to use for estimation of the
shifts. By default we take top 10 top covered transcripts as they represent less
noisy dataset. This is only applicable when there are more than 1000 transcripts.

minFiveUTR (integer) minimum bp for 5’ UTR during filtering for the transcripts. Set to
NULL if no 5’ UTRs exists for annotation.

minCDS (integer) minimum bp for CDS during filtering for the transcripts

minThreeUTR (integer) minimum bp for 3’ UTR during filtering for the transcripts. Set to
NULL if no 3’ UTRs exists for annotation.

166 shiftFootprintsByExperiment

firstN (integer) Represents how many bases of the transcripts downstream of start
codons to use for initial estimation of the periodicity.

min_reads default (1000), how many reads must a read-length have to be considered for
periodicity.

accepted.lengths

accepted readlengths, default 26:34, usually ribo-seq is strongest between 27:32.

output_format default c("ofst", "wig"), use export.ofst or wiggle format (wig) using export.wiggle
? Default is both. The wig format version can be used in IGV, the score column
is counts of that read with that read length, the cigar reference width is lost, ofst
is much faster to save and load in R, and retain cigar reference width, but can
not be used in IGV.
You can also do bedoc format, bed format keeping cigar: export.bedoc. bedoc
is usually not used for p-shifting.

BPPARAM how many cores/threads to use? default: bpparam()

log logical, default (TRUE), output a log file with parameters used.

heatmap a logical or character string, default FALSE. If TRUE, will plot heatmap of raw
reads before p-shifting to console, to see if shifts given make sense. You can
also set a filepath to save the file there.

must.be.periodic

logical TRUE, if FALSE will not filter on periodic read lengths. (The Fourier
transform filter will be skipped).

Details

#’ Saves files to a specified location as .ofst and .wig, The .ofst file will include a score column
containing read width.
The .wig fiels, will be saved in pairs of +/- strand, and score column will be replicates of reads
starting at that position, score = 5 means 5 reads.
Remember that different species might have different default Ribosome read lengths, for human,
mouse etc, normally around 27:30.

Value

NULL (Objects are saved to out.dir/pshited/"name_pshifted.ofst", wig, bedo or .bedo)

References

https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-018-4912-6

See Also

Other pshifting: changePointAnalysis(), detectRibosomeShifts(), shiftFootprints()

Examples

df <- ORFik.template.experiment()
df <- df[3,] #lets only p-shift RFP sample at index 3
If you want to check it in IGV do:
shiftFootprintsByExperiment(df)
Then use the .wig files that are created, which are readable in IGV.
If you only need in R, do: (then you get no .wig files)
#shiftFootprintsByExperiment(df, output_format = "ofst")

shiftPlots 167

shiftPlots Plot shifted heatmaps per library

Description

A good validation for you p-shifting, to see shifts are corresponding and close to the CDS TIS.

Usage

shiftPlots(
df,
output = NULL,
title = "Ribo-seq",
scoring = "transcriptNormalized",
addFracPlot = TRUE,
BPPARAM = bpparam()

)

Arguments

df an ORFik experiment

output name to save file, full path. (Default NULL) No saving.

title Title for top of plot, default "Ribo-seq". A more informative name could be
"Ribo-seq zebrafish Chew et al. 2013"

scoring which scoring scheme to use for heatmap, default "transcriptNormalized". Some
alternatives: "sum", "zscore".

addFracPlot logical, default TRUE, add positional sum plot on top per heatmap.

BPPARAM how many cores/threads to use? default: bpparam()

Value

a ggplot2 grob object

Examples

df <- ORFik.template.experiment()
df <- df[3,] #lets only p-shift RFP sample at index 3
#shiftFootprintsByExperiment(df, output_format = "bedo)
#shiftPlots(df, title = "Ribo-seq Human ORFik et al. 2020")

168 show,experiment-method

shifts.load Load the shifts from experiment

Description

When you p-shift using the function shiftFootprintsByExperiment, you will get a list of shifts per
library. To automatically load them, you can use this function. Defaults to loading pshifts, if you
made a-sites or e-sites, change the path argument to ashifted/eshifted folder instead.

Usage

shifts.load(
df,
path = pasteDir(dirname(df$filepath[1]), "/pshifted/shifting_table.rds")

)

Arguments

df an ORFik experiment

path path to .rds file containing the shifts as a list, one list element per shifted bam
file.

Value

a list of the shifts, one list element per shifted bam file.

Examples

df <- ORFik.template.experiment()
subset on Ribo-seq
df <- df[df$libtype == "RFP",]
#shiftFootprintsByExperiment(df)
#shifts.load(df)

show,experiment-method

experiment show definition

Description

Show a simplified version of experiment. The show function simplifies the view so that any column
of data (like replicate or stage) is not shown, if all values are identical in that column. Filepath is
also never shown.

Usage

S4 method for signature 'experiment'
show(object)

simpleLibs 169

Arguments

object an ORFik experiment

Value

print state of experiment

simpleLibs Converted format of NGS libraries

Description

Export as either .ofst, .bedo or .bedoc files.
Export files as .bedo files: It is a bed file with 2 score columns. Gives a massive speedup when cigar
string and bam flags are not needed.
Export files as .bedoc files: If cigar is needed, gives you replicates and cigar, so a fast way to load
a GAlignment object, other bam flags are lost. If type is bedoc addSizeColumn and method will be
ignored.

Usage

simpleLibs(
df,
out.dir = dirname(df$filepath[1]),
addScoreColumn = TRUE,
addSizeColumn = TRUE,
must.overlap = NULL,
method = "None",
type = "ofst"

)

Arguments

df an ORFik experiment

out.dir optional output directory, default: dirname(df$filepath[1]), if it is NULL, it will
just reassign R objects to simplified libraries.

addScoreColumn logical, default TRUE, if FALSE will not add replicate numbers as score col-
umn, see ORFik::convertToOneBasedRanges.

addSizeColumn logical, default TRUE, if FALSE will not add size (width) as size column, see
ORFik::convertToOneBasedRanges. Does not apply for .ofst or .bedoc.

must.overlap default (NULL), else a GRanges / GRangesList object, so only reads that over-
lap (must.overlap) are kept. This is useful when you only need the reads over
transcript annotation or subset etc.

method character, default "None", the method to reduce ranges, for more info see convertToOneBasedRanges

type a character of format, default "ofst". Alternatives: "ofst", "wig","bedo" or "bedoc".
Which format you want. Will make a folder within out.dir with this name con-
taining the files.

170 sortPerGroup

Details

See export.bedo and export.bedoc for information on file formats

Value

NULL (saves files to disc or R .GlobalEnv)

Examples

df <- ORFik.template.experiment()
#convertLibs(df)
Keep only 5' ends of reads
#convertLibs(df, method = "5prime")

sortPerGroup Sort a GRangesList

Description

A faster, more versatile reimplementation of sort.GenomicRanges for GRangesList, needed since
the original works poorly for more than 10k groups. This function sorts each group, where "+"
strands are increasing by starts and "-" strands are decreasing by ends.

Usage

sortPerGroup(grl, ignore.strand = FALSE, quick.rev = FALSE)

Arguments

grl a GRangesList

ignore.strand a boolean, (default FALSE): should minus strands be sorted from highest to
lowest ends. If TRUE: from lowest to highest ends.

quick.rev default: FALSE, if TRUE, given that you know all ranges are sorted from min
to max for both strands, it will only reverse coordinates for minus strand groups,
and only if they are in increasing order. Much quicker

Details

Note: will not work if groups have equal names.

Value

an equally named GRangesList, where each group is sorted within group.

splitIn3Tx 171

Examples

gr_plus <- GRanges(seqnames = c("chr1", "chr1"),
ranges = IRanges(c(14, 7), width = 3),
strand = c("+", "+"))

gr_minus <- GRanges(seqnames = c("chr2", "chr2"),
ranges = IRanges(c(1, 4), c(3, 9)),
strand = c("-", "-"))

grl <- GRangesList(tx1 = gr_plus, tx2 = gr_minus)
sortPerGroup(grl)

splitIn3Tx Create binned coverage of transcripts, split into the 3 parts.

Description

The 3 parts of transcripts are the leaders, the cds’ and trailers. Per transcript part, bin them all to
windowSize (default 100), and make a data.table, rows are positions, useful for plotting with ORFik
and ggplot2.

Usage

splitIn3Tx(
leaders,
cds,
trailers,
reads,
windowSize = 100,
fraction = "1",
weight = "score"

)

Arguments

leaders a GRangesList of leaders (5’ UTRs)

cds a GRangesList of coding sequences

trailers a GRangesList of trailers (3’ UTRs)

reads GRanges or GAlignment of reads

windowSize an integer (100), size of windows (columns)

fraction a character (1), info on reads (which read length, or which type (RNA seq)) (row
names)

weight (default: ’score’), if defined a character name of valid meta column in subject.
GRanges("chr1", 1, "+", score = 5), would mean score column tells that this
alignment region was found 5 times. ORFik .bedo files, contains a score column
like this. As do CAGEr CAGE files and many other package formats. You can
also assign a score column manually.

Value

a data.table with columns position, score

172 STAR.align.folder

stageNames Get stage name variants

Description

Used to standardize nomeclature for experiments.
Example: 64Cell stage is same as 2 hours post fertilization, so all 2hpf will be converted to 64Cell
etc.

Usage

stageNames()

Value

a data.table with 2 columns, the main name, and all name variants of the main name in second
column as a list.

See Also

Other experiment_naming: cellLineNames(), conditionNames(), libNames(), mainNames(),
repNames(), tissueNames()

STAR.align.folder Align all libraries in folder with STAR

Description

Does either all files as paired end or single end, so if you have mix, split them in two different
folders.
#’ If STAR halts at loading genome, it means the STAR index was aborted early, then you need
to run: STAR.remove.crashed.genome(), with the genome that crashed, and rerun.

Usage

STAR.align.folder(
input.dir,
output.dir,
index.dir,
star.path = STAR.install(),
fastp = install.fastp(),
paired.end = "no",
steps = "tr-ge",
adapter.sequence = "auto",
min.length = 15,
trim.front = 0,
alignment.type = "Local",
max.cpus = min(90, detectCores() - 1),
wait = TRUE,
include.subfolders = "n",

STAR.align.folder 173

script.folder = system.file("STAR_Aligner", "RNA_Align_pipeline_folder.sh", package =
"ORFik"),

script.single = system.file("STAR_Aligner", "RNA_Align_pipeline.sh", package =
"ORFik")

)

Arguments

input.dir path to fast files to align, can either be fasta files (.fastq, .fq, .fa etc) or com-
pressed files with .gz. Also either paired end or single end reads.

output.dir directory to save indices, default: paste0(dirname(arguments[1]), "/STAR_index/"),
where arguments is the arguments input for this function.

index.dir path to STAR index folder. Path returned from ORFik function STAR.index,
when you created the index folders.

star.path path to STAR, default: STAR.install(), if you don’t have STAR installed at de-
fault location, it will install it there, set path to a runnable star if you already
have it.

fastp path to fastp trimmer, default: install.fastp(), if you have it somewhere else al-
ready installed, give the path. Only works for unix (linux or Mac OS), if not on
unix, use your favorite trimmer and give the output files from that trimmer as
input.dir here.

paired.end default "no", alternative "yes". Will auto detect pairs by names. If yes running
on a folder: The folder must then contain an even number of files and they must
be named with the same prefix and sufix of either _1 and _2, 1 and 2, etc.

steps a character, default: "tr-ge", trimming then genome alignment
steps of depletion and alignment wanted: The posible candidates you can use
are: tr: trim reads, ph: phix depletion, rR: rrna depletion, nc: ncrna depletion,
tR: trna depletion, ge: genome alignment, all: run all steps)
If not "all", a subset of these ("tr-ph-rR-nc-tR-ge")
In bash script it is reformated to this style: (trimming and genome do: "tr-
ge", write "all" to get all: "tr-ph-rR-nc-tR-ge") the step where you align to the
genome is usually always included, unless you are doing pure contaminant anal-
ysis. For Ribo-seq and TCP(RCP-seq) you should do rR (ribosomal RNA deple-
tion), so when you made the STAR index you need the rRNA step (usually just
download a Silva rRNA database for SSU&LSU at: https://www.arb-silva.de/)

adapter.sequence

character, default: "auto" (auto detect adapter, is not very reliable for Ribo-seq,
so then you must include, else alignment will most likely fail!). Else manual as-
signed adapter like: "ATCTCGTATGCCGTCTTCTGCTTG" or "AAAAAAAAAAAAA".

min.length 15, minimum length of reads to pass filter.
trim.front 0, default trim 0 bases 5’. For Ribo-seq set use 0. Ignored if tr (trim) is not one

of the arguments in "steps"
alignment.type default: "Local": standard local alignment with soft-clipping allowed, "End-

ToEnd" (global): force end-to-end read alignment, does not soft-clip.
max.cpus integer, default: min(90, detectCores() - 1), number of threads to use. Default is

minimum of 90 and maximum cores - 1
wait a logical (not NA) indicating whether the R interpreter should wait for the com-

mand to finish, or run it asynchronously. This will be ignored (and the inter-
preter will always wait) if intern = TRUE. When running the command asyn-
chronously, no output will be displayed on the Rgui console in Windows (it will
be dropped, instead).

174 STAR.align.single

include.subfolders

"n" (no), do recursive search downwards for fast files if "y".

script.folder location of STAR index script, default internal ORFik file. You can change it
and give your own if you need special alignments.

script.single location of STAR single file alignment script, default internal ORFik file. You
can change it and give your own if you need special alignments.

Details

Can only run on unix systems (Linux and Mac), and requires minimum 30GB memory on genomes
like human, rat, zebrafish etc. The trimmer used is fastp (the fastest I could find), works on mac and
linux. If you want to use your own trimmer set file1/file2 to the location of the trimmed files from
your program.

Value

output.dir, can be used as as input in ORFik::create.experiment

See Also

Other STAR: STAR.align.single(), STAR.index(), STAR.install(), STAR.multiQC(), STAR.remove.crashed.genome(),
getGenomeAndAnnotation(), install.fastp()

Examples

Use your own paths for annotation or the ORFik way

use ORFik way:
output.dir <- "/Bio_data/references/Human"
arguments <- getGenomeAndAnnotation("Homo sapiens", output.dir)
index <- STAR.index(arguments, output.dir)
STAR.align.folder("data/raw_data/human_rna_seq", "data/processed/human_rna_seq",
index, paired.end = "no")

STAR.align.single Align single or paired end pair with STAR

Description

If you want more than two files use: STAR.align.folder
If genome aligner halts at loading genome, it means the star index was aborted early, then you
need to run: STAR.remove.crashed.genome(), with the genome that crashed, and rerun.

Usage

STAR.align.single(
file1,
file2 = NULL,
output.dir,
index.dir,
star.path = STAR.install(),
fastp = install.fastp(),

STAR.align.single 175

steps = "tr-ge",
adapter.sequence = "auto",
min.length = 15,
trim.front = 0,
alignment.type = "Local",
max.cpus = min(90, detectCores() - 1),
wait = TRUE,
resume = NULL,
script.single = system.file("STAR_Aligner", "RNA_Align_pipeline.sh", package =

"ORFik")
)

Arguments

file1 library file, if paired must be R1 file

file2 default NULL, set if paired end to R2 file

output.dir directory to save indices, default: paste0(dirname(arguments[1]), "/STAR_index/"),
where arguments is the arguments input for this function.

index.dir path to STAR index folder. Path returned from ORFik function STAR.index,
when you created the index folders.

star.path path to STAR, default: STAR.install(), if you don’t have STAR installed at de-
fault location, it will install it there, set path to a runnable star if you already
have it.

fastp path to fastp trimmer, default: install.fastp(), if you have it somewhere else al-
ready installed, give the path. Only works for unix (linux or Mac OS), if not on
unix, use your favorite trimmer and give the output files from that trimmer as
input.dir here.

steps a character, default: "tr-ge", trimming then genome alignment
steps of depletion and alignment wanted: The posible candidates you can use
are: tr: trim reads, ph: phix depletion, rR: rrna depletion, nc: ncrna depletion,
tR: trna depletion, ge: genome alignment, all: run all steps)
If not "all", a subset of these ("tr-ph-rR-nc-tR-ge")
In bash script it is reformated to this style: (trimming and genome do: "tr-
ge", write "all" to get all: "tr-ph-rR-nc-tR-ge") the step where you align to the
genome is usually always included, unless you are doing pure contaminant anal-
ysis. For Ribo-seq and TCP(RCP-seq) you should do rR (ribosomal RNA deple-
tion), so when you made the STAR index you need the rRNA step (usually just
download a Silva rRNA database for SSU&LSU at: https://www.arb-silva.de/)

adapter.sequence

character, default: "auto" (auto detect adapter, is not very reliable for Ribo-seq,
so then you must include, else alignment will most likely fail!). Else manual as-
signed adapter like: "ATCTCGTATGCCGTCTTCTGCTTG" or "AAAAAAAAAAAAA".

min.length 15, minimum length of reads to pass filter.

trim.front 0, default trim 0 bases 5’. For Ribo-seq set use 0. Ignored if tr (trim) is not one
of the arguments in "steps"

alignment.type default: "Local": standard local alignment with soft-clipping allowed, "End-
ToEnd" (global): force end-to-end read alignment, does not soft-clip.

max.cpus integer, default: min(90, detectCores() - 1), number of threads to use. Default is
minimum of 90 and maximum cores - 1

176 STAR.index

wait a logical (not NA) indicating whether the R interpreter should wait for the com-
mand to finish, or run it asynchronously. This will be ignored (and the inter-
preter will always wait) if intern = TRUE. When running the command asyn-
chronously, no output will be displayed on the Rgui console in Windows (it will
be dropped, instead).

resume default: NULL, continue from step, lets say steps are "tr-ph-ge": (trim, phix
depletion, genome alignment) and resume is "ph", you will use the trimmed
data and continue from there starting at phix, usefull if something crashed.

script.single location of STAR single file alignment script, default internal ORFik file. You
can change it and give your own if you need special alignments.

Details

Can only run on unix systems (Linux and Mac), and requires minimum 30GB memory on genomes
like human, rat, zebrafish etc.
The trimmer used is fastp (the fastest I could find), works on mac and linux. If you want to use your
own trimmer set file1/file2 to the location of the trimmed files from your program.

Value

output.dir, can be used as as input in ORFik::create.experiment

See Also

Other STAR: STAR.align.folder(), STAR.index(), STAR.install(), STAR.multiQC(), STAR.remove.crashed.genome(),
getGenomeAndAnnotation(), install.fastp()

Examples

Use your own paths for annotation or the ORFik way

use ORFik way:
output.dir <- "/Bio_data/references/Human"
arguments <- getGenomeAndAnnotation("Homo sapiens", output.dir)
index <- STAR.index(arguments, output.dir)
STAR.align.single("data/raw_data/human_rna_seq/file1.bam", "data/processed/human_rna_seq",
index)

STAR.index Create STAR genome index

Description

Used as reference when aligning data
Get genome and gtf by running getGenomeAndFasta()

STAR.index 177

Usage

STAR.index(
arguments,
output.dir = paste0(dirname(arguments[1]), "/STAR_index/"),
star.path = STAR.install(),
max.cpus = min(90, detectCores() - 1),
wait = TRUE,
remake = FALSE,
script = system.file("STAR_Aligner", "STAR_MAKE_INDEX.sh", package = "ORFik")

)

Arguments

arguments a named character vector containing paths wanted to use for index creation.
They must be named correctly: names must be a subset of: c("gtf", "genome",
"phix", "rRNA", "tRNA","ncRNA")

output.dir directory to save indices, default: paste0(dirname(arguments[1]), "/STAR_index/"),
where arguments is the arguments input for this function.

star.path path to STAR, default: STAR.install(), if you don’t have STAR installed at de-
fault location, it will install it there, set path to a runnable star if you already
have it.

max.cpus integer, default: min(90, detectCores() - 1), number of threads to use. Default is
minimum of 90 and maximum cores - 1

wait a logical (not NA) indicating whether the R interpreter should wait for the com-
mand to finish, or run it asynchronously. This will be ignored (and the inter-
preter will always wait) if intern = TRUE. When running the command asyn-
chronously, no output will be displayed on the Rgui console in Windows (it will
be dropped, instead).

remake logical, default: FALSE, if TRUE remake everything specified

script location of STAR index script, default internal ORFik file. You can change it
and give your own if you need special alignments.

Details

Can only run on unix systems (Linux and Mac), and requires minimum 30GB memory on genomes
like human, rat, zebrafish etc.

Value

output.dir, can be used as as input for STAR.align..

See Also

Other STAR: STAR.align.folder(), STAR.align.single(), STAR.install(), STAR.multiQC(),
STAR.remove.crashed.genome(), getGenomeAndAnnotation(), install.fastp()

Examples

Manual way, specify all paths yourself.
#arguments <- c(path.GTF, path.genome, path.phix, path.rrna, path.trna, path.ncrna)
#names(arguments) <- c("gtf", "genome", "phix", "rRNA", "tRNA","ncRNA")

178 STAR.install

#STAR.index(arguments, "output.dir")

Or use ORFik way:
output.dir <- "/Bio_data/references/Human"
arguments <- getGenomeAndAnnotation("Homo sapiens", output.dir)
STAR.index(arguments, output.dir)

STAR.install Download and prepare STAR

Description

Will not run "make", only use precompiled STAR file.
Can only run on unix systems (Linux and Mac), and requires minimum 30GB memory on genomes
like human, rat, zebrafish etc.

Usage

STAR.install(folder = "~/bin", version = "2.7.4a")

Arguments

folder path to folder for download, fille will be named "STAR-version", where version
is version wanted.

version default "2.7.4a"

Value

path to runnable STAR

References

https://www.ncbi.nlm.nih.gov/pubmed/23104886

See Also

Other STAR: STAR.align.folder(), STAR.align.single(), STAR.index(), STAR.multiQC(),
STAR.remove.crashed.genome(), getGenomeAndAnnotation(), install.fastp()

Examples

#STAR.install("~/bin", version = "2.7.4a")

STAR.multiQC 179

STAR.multiQC Create STAR multiQC plot and table

Description

Takes a folder with multiple Log.final.out files from STAR, and create a multiQC report

Usage

STAR.multiQC(folder)

Arguments

folder path to LOGS folder of ORFik STAR runs. Can also be the path to the aligned/
(parent directory of LOGS), then it will move into LOG from there. Only if no
files with pattern Log.final.out are found in parent directory. If no LOGS folder
is found it can check for a folder /aligned/LOGS/ so to go 2 folders down.

Value

invisible(NULL), plot and data saved to disc. Named: "/00_STAR_LOG_plot.png" and "/00_STAR_LOG_table.csv"

See Also

Other STAR: STAR.align.folder(), STAR.align.single(), STAR.index(), STAR.install(),
STAR.remove.crashed.genome(), getGenomeAndAnnotation(), install.fastp()

STAR.remove.crashed.genome

Remove crashed STAR genome

Description

This happens if you abort STAR run early, and it halts at: loading genome

Usage

STAR.remove.crashed.genome(index.path, star.path = STAR.install())

Arguments

index.path path to index folder of genome

star.path path to STAR, default: STAR.install(), if you don’t have STAR installed at de-
fault location, it will install it there, set path to a runnable star if you already
have it.

Value

return value from system, 0 if all good.

180 startCodons

See Also

Other STAR: STAR.align.folder(), STAR.align.single(), STAR.index(), STAR.install(),
STAR.multiQC(), getGenomeAndAnnotation(), install.fastp()

Examples

STAR.remove.crashed.genome(index.path = "/home/data/human_index/phix/)

startCodons Get the Start codons(3 bases) from a GRangesList of orfs grouped by
orfs

Description

In ATGTTTTGA, get the positions ATG. It takes care of exons boundaries, with exons < 3 length.

Usage

startCodons(grl, is.sorted = FALSE)

Arguments

grl a GRangesList object

is.sorted a boolean, a speedup if you know the ranges are sorted

Value

a GRangesList of start codons, since they might be split on exons

See Also

Other ORFHelpers: defineTrailer(), longestORFs(), mapToGRanges(), orfID(), startSites(),
stopCodons(), stopSites(), txNames(), uniqueGroups(), uniqueOrder()

Examples

gr_plus <- GRanges(seqnames = c("chr1", "chr1"),
ranges = IRanges(c(7, 14), width = 3),
strand = c("+", "+"))

gr_minus <- GRanges(seqnames = c("chr2", "chr2"),
ranges = IRanges(c(4, 1), c(9, 3)),
strand = c("-", "-"))

grl <- GRangesList(tx1 = gr_plus, tx2 = gr_minus)
startCodons(grl, is.sorted = FALSE)

startDefinition 181

startDefinition Returns start codon definitions

Description

According to: <http://www.ncbi.nlm.nih.gov/Taxonomy/taxonomyhome.html/ index.cgi?chapter=tgencodes#SG1>
ncbi genetic code number for translation. This version is a cleaned up version, unknown indices
removed.

Usage

startDefinition(transl_table)

Arguments

transl_table numeric. NCBI genetic code number for translation.

Value

A string of START sites separatd with "|".

See Also

Other findORFs: findMapORFs(), findORFsFasta(), findORFs(), findUORFs(), stopDefinition()

Examples

startDefinition
startDefinition(1)

startRegion Start region as GRangesList

Description

Get the start region of each ORF. If you want the start codon only, set upstream = 0 or just use
startCodons. Standard is 2 upstream and 2 downstream, a width 5 window centered at start site.
since p-shifting is not 100 usually the reads from the start site.

Usage

startRegion(grl, tx = NULL, is.sorted = TRUE, upstream = 2L, downstream = 2L)

182 startRegionCoverage

Arguments

grl a GRangesList object with usually either leaders, cds’, 3’ utrs or ORFs

tx default NULL, a GRangesList of transcripts or (container region), names of tx
must contain all grl names. The names of grl can also be the ORFik orf names.
that is "txName_id"

is.sorted logical (TRUE), is grl sorted.

upstream an integer (2), relative region to get upstream from.

downstream an integer (2), relative region to get downstream from

Details

If tx is null, then upstream will be forced to 0 and downstream to a maximum of grl width. Since
there is no reference for splicing.

Value

a GRanges, or GRangesList object if any group had > 1 exon.

See Also

Other features: computeFeaturesCage(), computeFeatures(), countOverlapsW(), disengagementScore(),
distToCds(), distToTSS(), entropy(), floss(), fpkm_calc(), fpkm(), fractionLength(),
initiationScore(), insideOutsideORF(), isInFrame(), isOverlapping(), kozakSequenceScore(),
orfScore(), rankOrder(), ribosomeReleaseScore(), ribosomeStallingScore(), startRegionCoverage(),
subsetCoverage(), translationalEff()

startRegionCoverage Start region coverage

Description

Get the number of reads in the start region of each ORF. If you want the start codon coverage only,
set upstream = 0. Standard is 2 upstream and 2 downstream, a width 5 window centered at start site.
since p-shifting is not 100 start site.

Usage

startRegionCoverage(
grl,
RFP,
tx = NULL,
is.sorted = TRUE,
upstream = 2L,
downstream = 2L,
weight = 1L

)

startRegionString 183

Arguments

grl a GRangesList object with usually either leaders, cds’, 3’ utrs or ORFs

RFP ribo seq reads as GAlignments, GRanges or GRangesList object

tx default NULL, a GRangesList of transcripts or (container region), names of tx
must contain all grl names. The names of grl can also be the ORFik orf names.
that is "txName_id"

is.sorted logical (TRUE), is grl sorted.

upstream an integer (2), relative region to get upstream from.

downstream an integer (2), relative region to get downstream from

weight a vector (default: 1L, if 1L it is identical to countOverlaps()), if single number
(!= 1), it applies for all, if more than one must be equal size of ’reads’. else it
must be the string name of a defined meta column in subject "reads", that gives
number of times a read was found. GRanges("chr1", 1, "+", score = 5), would
mean "score" column tells that this alignment region was found 5 times.

Details

If tx is null, then upstream will be force to 0 and downstream to a maximum of grl width. Since
there is no reference for splicing.

Value

a numeric vector of counts

See Also

Other features: computeFeaturesCage(), computeFeatures(), countOverlapsW(), disengagementScore(),
distToCds(), distToTSS(), entropy(), floss(), fpkm_calc(), fpkm(), fractionLength(),
initiationScore(), insideOutsideORF(), isInFrame(), isOverlapping(), kozakSequenceScore(),
orfScore(), rankOrder(), ribosomeReleaseScore(), ribosomeStallingScore(), startRegion(),
subsetCoverage(), translationalEff()

startRegionString Get start region as DNA-strings per GRanges group

Description

One window per start site, if upstream and downstream are both 0, then only the startsite is returned.

Usage

startRegionString(grl, tx, faFile, upstream = 20, downstream = 20)

184 startSites

Arguments

grl a GRangesList of ranges to find regions in.
tx a GRangesList of transcripts or (container region), names of tx must contain

all gr names. The names of gr can also be the ORFik orf names. that is "tx-
Name_id".

faFile FaFile, BSgenome, fasta/index file path or an ORFik experiment. This file is
usually used to find the transcript sequences from some GRangesList.

upstream an integer, default (0), relative region to get upstream from.
downstream an integer, default (0), relative region to get downstream from

Value

a character vector of start regions

startSites Get the start sites from a GRangesList of orfs grouped by orfs

Description

In ATGTTTTGG, get the position of the A.

Usage

startSites(grl, asGR = FALSE, keep.names = FALSE, is.sorted = FALSE)

Arguments

grl a GRangesList object
asGR a boolean, return as GRanges object
keep.names a logical (FALSE), keep names of input.
is.sorted a speedup, if you know the ranges are sorted

Value

if asGR is False, a vector, if True a GRanges object

See Also

Other ORFHelpers: defineTrailer(), longestORFs(), mapToGRanges(), orfID(), startCodons(),
stopCodons(), stopSites(), txNames(), uniqueGroups(), uniqueOrder()

Examples

gr_plus <- GRanges(seqnames = c("chr1", "chr1"),
ranges = IRanges(c(7, 14), width = 3),
strand = c("+", "+"))

gr_minus <- GRanges(seqnames = c("chr2", "chr2"),
ranges = IRanges(c(4, 1), c(9, 3)),
strand = c("-", "-"))

grl <- GRangesList(tx1 = gr_plus, tx2 = gr_minus)
startSites(grl, is.sorted = FALSE)

stopCodons 185

stopCodons Get the Stop codons (3 bases) from a GRangesList of orfs grouped by
orfs

Description

In ATGTTTTGA, get the positions TGA. It takes care of exons boundaries, with exons < 3 length.

Usage

stopCodons(grl, is.sorted = FALSE)

Arguments

grl a GRangesList object

is.sorted a boolean, a speedup if you know the ranges are sorted

Value

a GRangesList of stop codons, since they might be split on exons

See Also

Other ORFHelpers: defineTrailer(), longestORFs(), mapToGRanges(), orfID(), startCodons(),
startSites(), stopSites(), txNames(), uniqueGroups(), uniqueOrder()

Examples

gr_plus <- GRanges(seqnames = c("chr1", "chr1"),
ranges = IRanges(c(7, 14), width = 3),
strand = c("+", "+"))

gr_minus <- GRanges(seqnames = c("chr2", "chr2"),
ranges = IRanges(c(4, 1), c(9, 3)),
strand = c("-", "-"))

grl <- GRangesList(tx1 = gr_plus, tx2 = gr_minus)
stopCodons(grl, is.sorted = FALSE)

stopDefinition Returns stop codon definitions

Description

According to: <http://www.ncbi.nlm.nih.gov/Taxonomy/taxonomyhome.html/ index.cgi?chapter=tgencodes#SG1>
ncbi genetic code number for translation. This version is a cleaned up version, unknown indices
removed.

Usage

stopDefinition(transl_table)

186 stopSites

Arguments

transl_table numeric. NCBI genetic code number for translation.

Value

A string of STOP sites separatd with "|".

See Also

Other findORFs: findMapORFs(), findORFsFasta(), findORFs(), findUORFs(), startDefinition()

Examples

stopDefinition
stopDefinition(1)

stopSites Get the stop sites from a GRangesList of orfs grouped by orfs

Description

In ATGTTTTGC, get the position of the C.

Usage

stopSites(grl, asGR = FALSE, keep.names = FALSE, is.sorted = FALSE)

Arguments

grl a GRangesList object

asGR a boolean, return as GRanges object

keep.names a logical (FALSE), keep names of input.

is.sorted a speedup, if you know the ranges are sorted

Value

if asGR is False, a vector, if True a GRanges object

See Also

Other ORFHelpers: defineTrailer(), longestORFs(), mapToGRanges(), orfID(), startCodons(),
startSites(), stopCodons(), txNames(), uniqueGroups(), uniqueOrder()

strandBool 187

Examples

gr_plus <- GRanges(seqnames = c("chr1", "chr1"),
ranges = IRanges(c(7, 14), width = 3),
strand = c("+", "+"))

gr_minus <- GRanges(seqnames = c("chr2", "chr2"),
ranges = IRanges(c(4, 1), c(9, 3)),
strand = c("-", "-"))

grl <- GRangesList(tx1 = gr_plus, tx2 = gr_minus)
stopSites(grl, is.sorted = FALSE)

strandBool Get logical list of strands

Description

Helper function to get a logical list of True/False, if GRangesList group have + strand = T, if - strand
= F Also checks for * strands, so a good check for bugs

Usage

strandBool(grl)

Arguments

grl a GRangesList or GRanges object

Value

a logical vector

Examples

gr <- GRanges(Rle(c("chr2", "chr2", "chr1", "chr3"), c(1, 3, 2, 4)),
IRanges(1:10, width = 10:1),
Rle(strand(c("-", "+", "*", "+", "-")), c(1, 2, 2, 3, 2)))

strandBool(gr)

strandPerGroup Get list of strands per granges group

Description

Get list of strands per granges group

Usage

strandPerGroup(grl, keep.names = TRUE)

188 subsetCoverage

Arguments

grl a GRangesList

keep.names a boolean, keep names or not, default: (TRUE)

Value

a vector named/unnamed of characters

Examples

gr_plus <- GRanges(seqnames = c("chr1", "chr1"),
ranges = IRanges(c(7, 14), width = 3),
strand = c("+", "+"))

gr_minus <- GRanges(seqnames = c("chr2", "chr2"),
ranges = IRanges(c(4, 1), c(9, 3)),
strand = c("-", "-"))

grl <- GRangesList(tx1 = gr_plus, tx2 = gr_minus)
strandPerGroup(grl)

subsetCoverage Subset GRanges to get coverage.

Description

GRanges object should be beforehand tiled to size of 1. This subsetting takes account for strand.

Usage

subsetCoverage(cov, y)

Arguments

cov A coverage object from coverage()

y GRanges object for which coverage should be extracted

Value

numeric vector of coverage of input GRanges object

See Also

Other features: computeFeaturesCage(), computeFeatures(), countOverlapsW(), disengagementScore(),
distToCds(), distToTSS(), entropy(), floss(), fpkm_calc(), fpkm(), fractionLength(),
initiationScore(), insideOutsideORF(), isInFrame(), isOverlapping(), kozakSequenceScore(),
orfScore(), rankOrder(), ribosomeReleaseScore(), ribosomeStallingScore(), startRegionCoverage(),
startRegion(), translationalEff()

subsetToFrame 189

subsetToFrame Subset GRanges to get desired frame.

Description

Usually used for ORFs to get specific frame (0-2): frame 0, frame 1, frame 2

Usage

subsetToFrame(x, frame)

Arguments

x A tiled to size of 1 GRanges object

frame A numeric indicating which frame to extract

Details

GRanges object should be beforehand tiled to size of 1. This subsetting takes account for strand.

Value

GRanges object reduced to only first frame

tile1 Tile each GRangesList group to 1-base resolution.

Description

Will tile a GRangesList into single bp resolution, each group of the list will be splited by positions
of 1. Returned values are sorted as the same groups as the original GRangesList, except they are in
bp resolutions. This is not supported originally by GenomicRanges for GRangesList.

Usage

tile1(grl, sort.on.return = TRUE, matchNaming = TRUE)

Arguments

grl a GRangesList object with names

sort.on.return logical (T), should the groups be sorted before return.

matchNaming logical (T), should groups keep unlisted names and meta data.(This make the
list very big, for > 100K groups)

Value

a GRangesList grouped by original group, tiled to 1

190 TOP.Motif.ecdf

See Also

Other ExtendGenomicRanges: asTX(), coveragePerTiling(), extendLeaders(), extendTrailers(),
reduceKeepAttr(), txSeqsFromFa(), windowPerGroup()

Examples

gr1 <- GRanges("1", ranges = IRanges(start = c(1, 10, 20),
end = c(5, 15, 25)),

strand = "+")
gr2 <- GRanges("1", ranges = IRanges(start = c(20, 30, 40),

end = c(25, 35, 45)),
strand = "+")

names(gr1) = rep("tx1_1", 3)
names(gr2) = rep("tx1_2", 3)
grl <- GRangesList(tx1_1 = gr1, tx1_2 = gr2)
tile1(grl)

tissueNames Get tissue name variants

Description

Used to standardize nomeclature for experiments.
Example: testis is main naming, but a variant is testicles. testicles will then be renamed to testis.

Usage

tissueNames()

Value

a data.table with 2 columns, the main name, and all name variants of the main name in second
column as a list.

See Also

Other experiment_naming: cellLineNames(), conditionNames(), libNames(), mainNames(),
repNames(), stageNames()

TOP.Motif.ecdf TOP Motif ecdf plot

Description

Given sequences, DNA or RNA. And some score, scanning efficiency (SE), ribo-seq fpkm, TE etc.

TOP.Motif.ecdf 191

Usage

TOP.Motif.ecdf(
seqs,
rate,
start = 1,
stop = max(nchar(seqs)),
xlim = c("q10", "q99"),
type = "Scanning efficiency",
legend.position.1st = c(0.75, 0.28),
legend.position.motif = c(0.75, 0.28)

)

Arguments

seqs the sequences (character vector, DNAStringSet), of 5’ UTRs (leaders). See ex-
ample below for input.

rate a scoring vector (equal size to seqs)

start position in seqs to start at (first is 1), default 1.

stop position in seqs to stop at (first is 1), default max(nchar(seqs)), that is the longest
sequence length

xlim What interval of rate values you want to show type: numeric or quantile of
length 2, 1. default c("q10","q99"). bigger than 10 percentile and less than 99
percentile. 2. Set to numeric values, like c(5, 1000), 3. Set to NULL if you want
all values. Backend uses coord_cartesian.

type What type is the rate scoring ? default ("Scanning efficiency")
legend.position.1st

adjust left plot label position, default c(0.75, 0.28), ("none", "left", "right", "bot-
tom", "top", or two-element numeric vector)

legend.position.motif

adjust right plot label position, default c(0.75, 0.28), ("none", "left", "right",
"bottom", "top", or two-element numeric vector)

Details

Top motif defined as a TSS of C and 4 T’s or C’s (pyrimidins) downstream of TSS C.

The right plot groups: C nucleotide, TOP motif (C, then 4 pyrimidines) and OTHER (all other TSS
variants).

Value

a ggplot gtable of the TOP motifs in 2 plots

Examples

Not run:
if (requireNamespace("BSgenome.Hsapiens.UCSC.hg19")) {

txdbFile <- system.file("extdata", "hg19_knownGene_sample.sqlite",
package = "GenomicFeatures")

#Extract sequences of Coding sequences.
leaders <- loadRegion(txdbFile, "leaders")

192 topMotif

Should update by CAGE if not already done
cageData <- system.file("extdata", "cage-seq-heart.bed.bgz",

package = "ORFik")
leadersCage <- reassignTSSbyCage(leaders, cageData)
Get region to check
seqs <- startRegionString(leadersCage, NULL,

BSgenome.Hsapiens.UCSC.hg19::Hsapiens, 0, 4)
Some toy ribo-seq fpkm scores on cds
set.seed(3)
fpkm <- sample(1:115, length(leadersCage), replace = TRUE)
Standard arguments
TOP.Motif.ecdf(seqs, fpkm, type = "ribo-seq FPKM",

legend.position.1st = "bottom",
legend.position.motif = "bottom")

with no zoom on x-axis:
TOP.Motif.ecdf(seqs, fpkm, xlim = NULL,

legend.position.1st = "bottom",
legend.position.motif = "bottom")

}

End(Not run)

topMotif TOP Motif detection

Description

Per leader, detect if the leader has a TOP motif at TSS (5’ end of leader) TOP motif defined as: (C,
then 4 pyrimidines)

Usage

topMotif(seqs, start = 1, stop = max(nchar(seqs)), return.sequence = TRUE)

Arguments

seqs the sequences (character vector, DNAStringSet), of 5’ UTRs (leaders) start re-
gion. seqs must be of minimum widths start - stop + 1 to be included.
See example below for input.

start position in seqs to start at (first is 1), default 1.
stop position in seqs to stop at (first is 1), default max(nchar(seqs)), that is the longest

sequence length
return.sequence

logical, default TRUE, return as data.table with sequence as columns in addition
to TOP class. If FALSE, return character vector.

Value

default: return.sequence == FALSE, a character vector of either TOP, C or OTHER. C means leaders
started on C, Other means not TOP and did not start on C. If return.sequence == TRUE, a data.table
is returned with the base per position in the motif is included as additional columns (per position
called seq1, seq2 etc) and a id column called X.gene_id (with names of seqs).

transcriptWindow 193

Examples

Not run:
if (requireNamespace("BSgenome.Hsapiens.UCSC.hg19")) {

txdbFile <- system.file("extdata", "hg19_knownGene_sample.sqlite",
package = "GenomicFeatures")

#Extract sequences of Coding sequences.
leaders <- loadRegion(txdbFile, "leaders")

Should update by CAGE if not already done
cageData <- system.file("extdata", "cage-seq-heart.bed.bgz",

package = "ORFik")
leadersCage <- reassignTSSbyCage(leaders, cageData)
Get region to check
seqs <- startRegionString(leadersCage, NULL,

BSgenome.Hsapiens.UCSC.hg19::Hsapiens, 0, 4)
topMotif(seqs)
}

End(Not run)

transcriptWindow Make 100 bases size meta window for all libraries in experiment

Description

Gives you binned meta coverage plots, either saved seperatly or all in one.

Usage

transcriptWindow(
leaders,
cds,
trailers,
df,
outdir = NULL,
scores = c("sum", "zscore"),
allTogether = TRUE,
colors = rep("skyblue4", nrow(df)),
title = "Coverage metaplot",
windowSize = min(100, min(widthPerGroup(leaders, FALSE)), min(widthPerGroup(cds,

FALSE)), min(widthPerGroup(trailers, FALSE))),
returnPlot = is.null(outdir),
dfr = NULL,
idName = "",
format = ".png",
type = "ofst",
BPPARAM = bpparam()

)

194 transcriptWindow

Arguments

leaders a GRangesList of leaders (5’ UTRs)

cds a GRangesList of coding sequences

trailers a GRangesList of trailers (3’ UTRs)

df an ORFik experiment

outdir directory to save to (default: NULL, no saving)

scores scoring function (default: c("sum", "zscore")), see ?coverageScorings for possi-
ble scores.

allTogether plot all coverage plots in 1 output? (defualt: TRUE)

colors Which colors to use, default (skyblue4)

title title of ggplot

windowSize size of binned windows, default: 100

returnPlot return plot from function, default is.null(outdir), so TRUE if outdir is not de-
fined.

dfr an ORFik experiment of RNA-seq to normalize against. Will add RNA nor-
malized to plot name if this is done.

idName A character ID to add to saved name of plot, if you make several plots in the
same folder, and same experiment, like splitting transcripts in two groups like
targets / nontargets etc. (default: "")

format default (".png"), do ".pdf" if you want as pdf

type a character(default: "bedoc"), load files in experiment or some precomputed
variant, either "bedo", "bedoc", "pshifted" or default. These are made with OR-
Fik:::simpleLibs(), shiftFootprintsByExperiment().. Will load default if bedoc
is not found

BPPARAM how many cores/threads to use? default: bpparam()

Value

NULL, or ggplot object if returnPlot is TRUE

See Also

Other experiment plots: transcriptWindow1(), transcriptWindowPer()

Examples

df <- ORFik.template.experiment()[3,] # Only third library
loadRegions(df) # Load leader, cds and trailers as GRangesList
#transcriptWindow(leaders, cds, trailers, df, outdir = "directory/to/save")

transcriptWindow1 195

transcriptWindow1 Meta coverage over all transcripts

Description

Given as single window

Usage

transcriptWindow1(
df,
outdir = NULL,
scores = c("sum", "zscore"),
colors = rep("skyblue4", nrow(df)),
title = "Coverage metaplot",
windowSize = 100,
returnPlot = is.null(outdir),
dfr = NULL,
idName = "",
format = ".png",
type = "ofst",
BPPARAM = bpparam()

)

Arguments

df an ORFik experiment

outdir directory to save to (default: NULL, no saving)

scores scoring function (default: c("sum", "zscore")), see ?coverageScorings for possi-
ble scores.

colors Which colors to use, default (skyblue4)

title title of ggplot

windowSize size of binned windows, default: 100

returnPlot return plot from function, default is.null(outdir), so TRUE if outdir is not de-
fined.

dfr an ORFik experiment of RNA-seq to normalize against. Will add RNA nor-
malized to plot name if this is done.

idName A character ID to add to saved name of plot, if you make several plots in the
same folder, and same experiment, like splitting transcripts in two groups like
targets / nontargets etc. (default: "")

format default (".png"), do ".pdf" if you want as pdf

type a character(default: "bedoc"), load files in experiment or some precomputed
variant, either "bedo", "bedoc", "pshifted" or default. These are made with OR-
Fik:::simpleLibs(), shiftFootprintsByExperiment().. Will load default if bedoc
is not found

BPPARAM how many cores/threads to use? default: bpparam()

196 transcriptWindowPer

Value

NULL, or ggplot object if returnPlot is TRUE

See Also

Other experiment plots: transcriptWindowPer(), transcriptWindow()

transcriptWindowPer Helper function for transcriptWindow

Description

Make 100 bases size meta window for one library in experiment

Usage

transcriptWindowPer(
leaders,
cds,
trailers,
df,
outdir = NULL,
scores = c("sum", "zscore"),
reads,
returnCoverage = FALSE,
windowSize = 100,
BPPARAM = bpparam()

)

Arguments

leaders a GRangesList of leaders (5’ UTRs)

cds a GRangesList of coding sequences

trailers a GRangesList of trailers (3’ UTRs)

df an ORFik experiment

outdir directory to save to (default: NULL, no saving)

scores scoring function (default: c("sum", "zscore")), see ?coverageScorings for possi-
ble scores.

reads a GRanges / GAligment object of reads, can also be a list of those.

returnCoverage return data.table with coverage (default: FALSE)

windowSize size of binned windows, default: 100

BPPARAM how many cores/threads to use? default: bpparam()

Details

Gives you binned meta coverage plots, either saved seperatly or all in one.

translationalEff 197

Value

NULL, or ggplot object if returnPlot is TRUE

See Also

Other experiment plots: transcriptWindow1(), transcriptWindow()

translationalEff Translational efficiency

Description

Uses RnaSeq and RiboSeq to get translational efficiency of every element in ‘grl‘. Translational
efficiency is defined as:

(density of RPF within ORF) / (RNA expression of ORFs transcript)

Usage

translationalEff(
grl,
RNA,
RFP,
tx,
with.fpkm = FALSE,
pseudoCount = 0,
librarySize = "full",
weight.RFP = 1L,
weight.RNA = 1L

)

Arguments

grl a GRangesList object can be either transcripts, 5’ utrs, cds’, 3’ utrs or ORFs as
a special case (uORFs, potential new cds’ etc). If regions are not spliced you
can send a GRanges object.

RNA RnaSeq reads as GAlignments, GRanges or GRangesList object

RFP RiboSeq reads as GAlignments, GRanges or GRangesList object

tx a GRangesList of the transcripts. If you used cage data, then the tss for the the
leaders have changed, therefor the tx lengths have changed. To account for that
call: ‘ translationalEff(grl, RNA, RFP, tx = extendLeaders(tx, cageFiveUTRs))
‘ where cageFiveUTRs are the reannotated by CageSeq data leaders.

with.fpkm logical, default: FALSE, if true return the fpkm values together with transla-
tional efficiency as a data.table

pseudoCount an integer, by default is 0, set it to 1 if you want to avoid NA and inf values.

198 trim_detection

librarySize either numeric value or character vector. Default ("full"), number of alignments
in library (reads). If you just have a subset, you can give the value by library-
Size = length(wholeLib), if you want lib size to be only number of reads over-
lapping grl, do: librarySize = "overlapping" sum(countOverlaps(reads, grl) >
0), if reads[1] has 3 hits in grl, and reads[2] has 2 hits, librarySize will be 2,
not 5. You can also get the inverse overlap, if you want lib size to be total
number of overlaps, do: librarySize = "DESeq" This is standard fpkm way of
DESeq2::fpkm(robust = FALSE) sum(countOverlaps(grl, reads)) if grl[1] has 3
reads and grl[2] has 2 reads, librarySize is 5, not 2.

weight.RFP a vector (default: 1L). Can also be character name of column in RFP. As in trans-
lationalEff(weight = "score") for: GRanges("chr1", 1, "+", score = 5), would
mean score column tells that this alignment region was found 5 times.

weight.RNA Same as weightRFP but for RNA weights. (default: 1L)

Value

a numeric vector of fpkm ratios, if with.fpkm is TRUE, return a data.table with te and fpkm values
(total 3 columns then)

References

doi: 10.1126/science.1168978

See Also

Other features: computeFeaturesCage(), computeFeatures(), countOverlapsW(), disengagementScore(),
distToCds(), distToTSS(), entropy(), floss(), fpkm_calc(), fpkm(), fractionLength(),
initiationScore(), insideOutsideORF(), isInFrame(), isOverlapping(), kozakSequenceScore(),
orfScore(), rankOrder(), ribosomeReleaseScore(), ribosomeStallingScore(), startRegionCoverage(),
startRegion(), subsetCoverage()

Examples

ORF <- GRanges(seqnames = "1",
ranges = IRanges(start = c(1, 10, 20), end = c(5, 15, 25)),
strand = "+")

grl <- GRangesList(tx1_1 = ORF)
RFP <- GRanges("1", IRanges(25, 25), "+")
RNA <- GRanges("1", IRanges(1, 50), "+")
tx <- GRangesList(tx1 = GRanges("1", IRanges(1, 50), "+"))
grl must have same names as cds + _1 etc, so that they can be matched.
te <- translationalEff(grl, RNA, RFP, tx, with.fpkm = TRUE, pseudoCount = 1)
te$fpkmRFP
te$te

trim_detection Add trimming info to QC report

Description

Only works if alignment was done using ORFik with STAR.

txNames 199

Usage

trim_detection(df, finals, out.dir)

Arguments

df an ORFik experiment

finals a data.table with current output from QCreport

out.dir optional output directory, default: dirname(df$filepath[1]). Will make a
folder called "QC_STATS" with all results in this directory.

Value

a data.table of the update finals object with trim info

txNames Get transcript names from orf names

Description

Using the ORFik definition of orf name, which is: example ENSEMBL: tx name: ENST0909090909090
orf id: _1 (the first of on that tx) orf_name: ENST0909090909090_1 So therefor txNames("ENST0909090909090_1")
= ENST0909090909090

Usage

txNames(grl, ref = NULL, unique = FALSE)

Arguments

grl a GRangesList grouped by ORF , GRanges object or IRanges object.

ref a reference GRangesList. The object you want grl to subset by names. Add to
make sure naming is valid.

unique a boolean, if true unique the names, used if several orfs map to same transcript
and you only want the unique groups

Details

The names must be extracted from a column called names, or the names of the grl object. If it is
already tx names, it returns the input

NOTE! Do not use _123 etc in end of transcript names if it is not ORFs. Else you will get errors.
Just _ will work, but if transcripts are called ENST_123124124000 etc, it will crash, so substitute
"_" with "." gsub("_", ".", names)

Value

a character vector of transcript names, without _* naming

See Also

Other ORFHelpers: defineTrailer(), longestORFs(), mapToGRanges(), orfID(), startCodons(),
startSites(), stopCodons(), stopSites(), uniqueGroups(), uniqueOrder()

200 txNamesToGeneNames

Examples

gr_plus <- GRanges(seqnames = c("chr1", "chr1"),
ranges = IRanges(c(7, 14), width = 3),
strand = c("+", "+"))

gr_minus <- GRanges(seqnames = c("chr2", "chr2"),
ranges = IRanges(c(4, 1), c(9, 3)),
strand = c("-", "-"))

grl <- GRangesList(tx1_1 = gr_plus, tx2_1 = gr_minus)
there are 2 orfs, both the first on each transcript
txNames(grl)

txNamesToGeneNames Convert transcript names to gene names

Description

Works for ensembl, UCSC and other standard annotations.

Usage

txNamesToGeneNames(txNames, txdb)

Arguments

txNames character vector, the transcript names to convert. Can also be a named object
with tx names (like a GRangesList), will then extract names.

txdb the transcript database to use or gtf/gff path to it.

Value

character vector of gene names

Examples

gtf <- system.file("extdata", "annotations.gtf", package = "ORFik")
txdb <- loadTxdb(gtf)
loadRegions(txdb, "cds") # using tx names
txNamesToGeneNames(cds, txdb)
Identical to:
loadRegions(txdb, "cds", by = "gene")

txSeqsFromFa 201

txSeqsFromFa Get transcript sequence from a GrangesList and a faFile or BSgenome

Description

For each GRanges object, find the sequence of it from faFile or BSgenome.

Usage

txSeqsFromFa(grl, faFile, is.sorted = FALSE, keep.names = TRUE)

Arguments

grl a GRangesList object

faFile FaFile, BSgenome, fasta/index file path or an ORFik experiment. This file is
usually used to find the transcript sequences from some GRangesList.

is.sorted a speedup, if you know the grl ranges are sorted

keep.names a logical, default (TRUE), if FALSE: return as character vector without names.

Details

A small safety wrapper around extractTranscriptSeqs For debug of errors do: which(!(unique(seqnamesPerGroup(grl,
FALSE)) This happens usually when the grl contains chromsomes that the fasta file does not have.
A normal error is that mitocondrial chromosome is called MT vs chrM even though they have same
seqlevelsStyle. The above line will give you which chromosome it is missing.

Value

a DNAStringSet of the transcript sequences

See Also

Other ExtendGenomicRanges: asTX(), coveragePerTiling(), extendLeaders(), extendTrailers(),
reduceKeepAttr(), tile1(), windowPerGroup()

uniqueGroups Get the unique set of groups in a GRangesList

Description

Sometimes GRangesList groups might be identical, for example ORFs from different isoforms can
have identical ranges. Use this function to reduce these groups to unique elements in GRangesList
grl, without names and metacolumns.

Usage

uniqueGroups(grl)

202 uniqueOrder

Arguments

grl a GRangesList

Value

a GRangesList of unique orfs

See Also

Other ORFHelpers: defineTrailer(), longestORFs(), mapToGRanges(), orfID(), startCodons(),
startSites(), stopCodons(), stopSites(), txNames(), uniqueOrder()

Examples

gr1 <- GRanges("1", IRanges(1,10), "+")
gr2 <- GRanges("1", IRanges(20, 30), "+")
make a grl with duplicated ORFs (gr1 twice)
grl <- GRangesList(tx1_1 = gr1, tx2_1 = gr2, tx3_1 = gr1)
uniqueGroups(grl)

uniqueOrder Get unique ordering for GRangesList groups

Description

This function can be used to calculate unique numerical identifiers for each of the GRangesList
elements. Elements of GRangesList are unique when the GRanges inside are not duplicated, so
ranges differences matter as well as sorting of the ranges.

Usage

uniqueOrder(grl)

Arguments

grl a GRangesList

Value

an integer vector of indices of unique groups

See Also

uniqueGroups

Other ORFHelpers: defineTrailer(), longestORFs(), mapToGRanges(), orfID(), startCodons(),
startSites(), stopCodons(), stopSites(), txNames(), uniqueGroups()

unlistGrl 203

Examples

gr1 <- GRanges("1", IRanges(1,10), "+")
gr2 <- GRanges("1", IRanges(20, 30), "+")
make a grl with duplicated ORFs (gr1 twice)
grl <- GRangesList(tx1_1 = gr1, tx2_1 = gr2, tx3_1 = gr1)
uniqueOrder(grl) # remember ordering

example on unique ORFs
uniqueORFs <- uniqueGroups(grl)
now the orfs are unique, let's map back to original set:
reMappedGrl <- uniqueORFs[uniqueOrder(grl)]

unlistGrl Safe unlist

Description

Same as [AnnotationDbi::unlist2()], keeps names correctly. Two differences is that if grl have no
names, it will not make integer names, but keep them as null. Also if the GRangesList has names ,
and also the GRanges groups, then the GRanges group names will be kept.

Usage

unlistGrl(grl)

Arguments

grl a GRangesList

Value

a GRanges object

Examples

ORF <- GRanges(seqnames = "1",
ranges = IRanges(start = c(1, 10, 20),

end = c(5, 15, 25)),
strand = "+")

grl <- GRangesList(tx1_1 = ORF)
unlistGrl(grl)

204 uORFSearchSpace

uORFSearchSpace Create search space to look for uORFs

Description

Given a GRangesList of 5’ UTRs or transcripts, reassign the start sites using max peaks from
CageSeq data (if CAGE is given). A max peak is defined as new TSS if it is within boundary
of 5’ leader range, specified by ‘extension‘ in bp. A max peak must also be higher than minimum
CageSeq peak cutoff specified in ‘filterValue‘. The new TSS will then be the positioned where the
cage read (with highest read count in the interval). If you want to include uORFs going into the
CDS, add this argument too.

Usage

uORFSearchSpace(
fiveUTRs,
cage = NULL,
extension = 1000,
filterValue = 1,
restrictUpstreamToTx = FALSE,
removeUnused = FALSE,
cds = NULL

)

Arguments

fiveUTRs (GRangesList) The 5’ leaders or full transcript sequences

cage Either a filePath for the CageSeq file as .bed .bam or .wig, with possible com-
pressions (".gzip", ".gz", ".bgz"), or already loaded CageSeq peak data as GRanges
or GAlignment. NOTE: If it is a .bam file, it will add a score column by run-
ning: convertToOneBasedRanges(cage, method = "5prime", addScoreColumn =
TRUE) The score column is then number of replicates of read, if score column
is something else, like read length, set the score column to NULL first.

extension The maximum number of basses upstream of the TSS to search for CageSeq
peak.

filterValue The minimum number of reads on cage position, for it to be counted as possible
new tss. (represented in score column in CageSeq data) If you already filtered,
set it to 0.

restrictUpstreamToTx

a logical (FALSE). If TRUE: restrict leaders to not extend closer than 5 bases
from closest upstream leader, set this to TRUE.

removeUnused logical (FALSE), if False: (standard is to set them to original annotation), If
TRUE: remove leaders that did not have any cage support.

cds (GRangesList) CDS of relative fiveUTRs, applicable only if you want to extend
5’ leaders downstream of CDS’s, to allow upstream ORFs that can overlap into
CDS’s.

Value

a GRangesList of newly assigned TSS for fiveUTRs, using CageSeq data.

updateTxdbRanks 205

See Also

Other uorfs: addCdsOnLeaderEnds(), filterUORFs(), removeORFsWithSameStartAsCDS(), removeORFsWithSameStopAsCDS(),
removeORFsWithStartInsideCDS(), removeORFsWithinCDS()

Examples

example 5' leader, notice exon_rank column
fiveUTRs <- GenomicRanges::GRangesList(

GenomicRanges::GRanges(seqnames = "chr1",
ranges = IRanges::IRanges(1000, 2000),
strand = "+",
exon_rank = 1))

names(fiveUTRs) <- "tx1"

make fake CageSeq data from promoter of 5' leaders, notice score column
cage <- GenomicRanges::GRanges(

seqnames = "chr1",
ranges = IRanges::IRanges(500, 510),
strand = "+",
score = 10)

finally reassign TSS for fiveUTRs
uORFSearchSpace(fiveUTRs, cage)

updateTxdbRanks Update exon ranks of exon data.frame inside txdb object

Description

Update exon ranks of exon data.frame inside txdb object

Usage

updateTxdbRanks(exons)

Arguments

exons a data.frame, call of as.list(txdb)$splicings

Value

a data.frame, modified call of as.list(txdb)

206 upstreamFromPerGroup

updateTxdbStartSites Update start sites of leaders

Description

Update start sites of leaders

Usage

updateTxdbStartSites(txList, fiveUTRs, removeUnused)

Arguments

txList a list, call of as.list(txdb)

fiveUTRs a GRangesList of 5’ leaders

removeUnused logical (FALSE), remove leaders that did not have any cage support. (standard
is to set them to original annotation)

Value

a list, modified call of as.list(txdb)

upstreamFromPerGroup Get rest of objects upstream (inclusive)

Description

Per group get the part upstream of position. upstreamFromPerGroup(tx, stopSites(fiveUTRs, asGR
= TRUE)) will return the 5’ utrs per transcript as GRangesList, usually used for interesting parts of
the transcripts.

Usage

upstreamFromPerGroup(tx, upstreamFrom)

Arguments

tx a GRangesList, usually of Transcripts to be changed

upstreamFrom a vector of integers, for each group in tx, where is the new start point of first
valid exon.

Details

If you don’t want to include the points given in the region, use upstreamOfPerGroup

Value

a GRangesList of upstream part

upstreamOfPerGroup 207

See Also

Other GRanges: assignFirstExonsStartSite(), assignLastExonsStopSite(), downstreamFromPerGroup(),
downstreamOfPerGroup(), upstreamOfPerGroup()

upstreamOfPerGroup Get rest of objects upstream (exclusive)

Description

Per group get the part upstream of position upstreamOfPerGroup(tx, startSites(cds, asGR = TRUE))
will return the 5’ utrs per transcript, usually used for interesting parts of the transcripts.

Usage

upstreamOfPerGroup(tx, upstreamOf, allowOutside = TRUE)

Arguments

tx a GRangesList, usually of Transcripts to be changed

upstreamOf a vector of integers, for each group in tx, where is the the base after the new stop
point of last valid exon.

allowOutside a logical (T), can upstreamOf extend outside range of tx, can set boundary as a
false hit, so beware.

Value

a GRangesList of upstream part

See Also

Other GRanges: assignFirstExonsStartSite(), assignLastExonsStopSite(), downstreamFromPerGroup(),
downstreamOfPerGroup(), upstreamFromPerGroup()

validateExperiments Validate ORFik experiment

Description

Check for valid existing, non-empty and all unique. A good way to see if your experiment is valid.

Usage

validateExperiments(df)

Arguments

df an ORFik experiment

208 validSeqlevels

Value

NULL (Stops if failed)

See Also

Other ORFik_experiment: ORFik.template.experiment(), bamVarName(), create.experiment(),
experiment-class, filepath(), libraryTypes(), organism.df(), outputLibs(), read.experiment(),
save.experiment()

validGRL Helper Function to check valid GRangesList input

Description

Helper Function to check valid GRangesList input

Usage

validGRL(class, type = "grl", checkNULL = FALSE)

Arguments

class as character vector the given class of supposed GRangesList object

type a character vector, is it gtf, cds, 5’, 3’, for messages.

checkNULL should NULL classes be checked and return indeces of these?

Value

either NULL or indices (checkNULL == TRUE)

See Also

Other validity: checkRFP(), checkRNA(), is.ORF(), is.gr_or_grl(), is.grl(), is.range(),
validSeqlevels()

validSeqlevels Helper function to find overlaping seqlevels

Description

Keep only seqnames in reads that are in grl Useful to avoid seqname warnings in bioC

Usage

validSeqlevels(grl, reads)

Arguments

grl a GRangesList or GRanges object

reads a GRanges, GAlignment or GAlignmentPairs object

widthPerGroup 209

Value

a character vector of valid seqlevels

See Also

Other validity: checkRFP(), checkRNA(), is.ORF(), is.gr_or_grl(), is.grl(), is.range(),
validGRL()

widthPerGroup Get list of widths per granges group

Description

Get list of widths per granges group

Usage

widthPerGroup(grl, keep.names = TRUE)

Arguments

grl a GRangesList

keep.names a boolean, keep names or not, default: (TRUE)

Value

an integer vector (named/unnamed) of widths

Examples

gr_plus <- GRanges(seqnames = c("chr1", "chr1"),
ranges = IRanges(c(7, 14), width = 3),
strand = c("+", "+"))

gr_minus <- GRanges(seqnames = c("chr2", "chr2"),
ranges = IRanges(c(4, 1), c(9, 3)),
strand = c("-", "-"))

grl <- GRangesList(tx1 = gr_plus, tx2 = gr_minus)
widthPerGroup(grl)

210 windowCoveragePlot

windowCoveragePlot Get meta coverage plot of reads

Description

Spanning a region like a transcripts, plot how the reads distribute.

Usage

windowCoveragePlot(
coverage,
output = NULL,
scoring = "zscore",
colors = c("skyblue4", "orange"),
title = "Coverage metaplot",
type = "transcripts",
scaleEqual = FALSE,
setMinToZero = FALSE

)

Arguments

coverage a data.table, e.g. output of scaledWindowCoverage

output character string (NULL), if set, saves the plot as pdf or png to path given. If no
format is given, is save as pdf.

scoring character vector, default "zscore", either of zscore, transcriptNormalized, sum,
mean, median, NULL. Set NULL if already scored. see ?coverageScorings for
info and more alternatives.

colors character vector colors to use in plot, will fix automaticly, using binary splits
with colors c(’skyblue4’, ’orange’).

title a character (metaplot) (what is the title of plot?)

type a character (transcripts), what should legends say is the whole region? Tran-
scripts, genes, non coding rnas etc.

scaleEqual a logical (FALSE), should all fractions (rows), have same max value, for easy
comparison of max values if needed.

setMinToZero a logical (FALSE), should minimum y-value be 0 (TRUE). With FALSE mini-
mum value is minimum score at any position. This parameter overrides scaleE-
qual.

Details

If coverage has a column called feature, this can be used to subdivide the meta coverage into parts
as (5’ UTRs, cds, 3’ UTRs) These are the columns in the plot. The fraction column divide sequence
libraries. Like ribo-seq and rna-seq. These are the rows of the plot. If you return this function
without assigning it and output is NULL, it will automaticly plot the figure in your session. If
output is assigned, no plot will be shown in session. NULL is returned and object is saved to
output.

Colors: Remember if you want to change anything like colors, just return the ggplot object, and
reassign like: obj + scale_color_brewer() etc.

windowPerGroup 211

Value

a ggplot object of the coverage plot, NULL if output is set, then the plot will only be saved to
location.

See Also

Other coveragePlot: coverageHeatMap(), pSitePlot(), savePlot()

Examples

library(data.table)
coverage <- data.table(position = seq(20),

score = sample(seq(20), 20, replace = TRUE))
windowCoveragePlot(coverage)

#Multiple plots in one frame:
coverage2 <- copy(coverage)
coverage$fraction <- "Ribo-seq"
coverage2$fraction <- "RNA-seq"
dt <- rbindlist(list(coverage, coverage2))
windowCoveragePlot(dt, scoring = "log10sum")

See vignette for a more practical example

windowPerGroup Get window region of GRanges object

Description

Per GRanges input (gr), create a GRangesList window output of specified upstream, downstream
region. This is an extension of the resize funciton, that works for spliced ranges.
If downstream is 20, it means the window will start 20 downstream of gr start site (-20 in relative
transcript coordinates.) If upstream is 20, it means the window will start 20 upstream of gr start site
(+20 in relative transcript coordinates.) It will keep exon structure of tx, so if -20 is on next exon, it
jumps to next exon.

Usage

windowPerGroup(gr, tx, upstream = 0L, downstream = 0L)

Arguments

gr a GRanges/IRanges object (startSites or others, must be single point per in ge-
nomic coordinates)

tx a GRangesList of transcripts or (container region), names of tx must contain
all gr names. The names of gr can also be the ORFik orf names. that is "tx-
Name_id".

upstream an integer, default (0), relative region to get upstream from.

downstream an integer, default (0), relative region to get downstream from

212 windowPerReadLength

Details

If a region has a part that goes out of bounds, E.g if you try to get window around the CDS start
site, goes longer than the 5’ leader start site, it will set start to the edge boundary (the TSS of the
transcript in this case). If region has no hit in bound, a width 0 GRanges object is returned. This is
usefull for things like countOverlaps, since 0 hits will then always be returned for the correct object.
If you don’t want the 0 width windows, use reduce() to remove 0-width windows.

Value

a GRanges, or GRangesList object if any group had > 1 exon.

See Also

Other ExtendGenomicRanges: asTX(), coveragePerTiling(), extendLeaders(), extendTrailers(),
reduceKeepAttr(), tile1(), txSeqsFromFa()

Examples

find 2nd codon of an ORF on a spliced transcript
ORF <- GRanges("1", c(3), "+") # start site
names(ORF) <- "tx1_1" # ORF 1 on tx1
tx <- GRangesList(tx1 = GRanges("1", c(1,3,5,7,9,11,13), "+"))
windowPerGroup(ORF, tx, upstream = -3, downstream = 5) # <- 2nd codon

With multiple extensions downstream
ORF <- rep(ORF, 2)
names(ORF)[2] <- "tx1_2"
windowPerGroup(ORF, tx, upstream = 0, downstream = c(3, 5))

windowPerReadLength Find proportion of reads per position per read length in window

Description

This is defined as: Fraction of reads per read length, per position in whole window (defined by
upstream and downstream)

Usage

windowPerReadLength(
grl,
tx = NULL,
reads,
pShifted = TRUE,
upstream = if (pShifted) 5 else 20,
downstream = if (pShifted) 20 else 5,
acceptedLengths = NULL,
zeroPosition = upstream,
scoring = "transcriptNormalized",
weight = "score"

)

windowPerReadLength 213

Arguments

grl a GRangesList object with usually either leaders, cds’, 3’ utrs or ORFs

tx default NULL, a GRangesList of transcripts or (container region), names of tx
must contain all grl names. The names of grl can also be the ORFik orf names.
that is "txName_id"

reads a GAlignments or GRanges object of RiboSeq, RnaSeq etc. Weigths for scoring
is default the ’score’ column in ’reads’

pShifted a logical (TRUE), are Ribo-seq reads p-shifted to size 1 width reads? If upstream
and downstream is set, this argument is irrelevant. So set to FALSE if this is not
p-shifted Ribo-seq.

upstream an integer (5), relative region to get upstream from.

downstream an integer (20), relative region to get downstream from

acceptedLengths

an integer vector (NULL), the read lengths accepted. Default NULL, means all
lengths accepted.

zeroPosition an integer DEFAULT (upstream), what is the center point? Like leaders and cds
combination, then 0 is the TIS and -1 is last base in leader. NOTE!: if windows
have different widths, this will be ignored.

scoring a character (transcriptNormalized), one of (zscore, transcriptNormalized, mean,
median, sum, sumLength, fracPos), see ?coverageScorings for more info. Use
to decide a scoring of hits per position for metacoverage etc.

weight (default: ’score’), if defined a character name of valid meta column in subject.
GRanges("chr1", 1, "+", score = 5), would mean score column tells that this
alignment region was found 5 times. ORFik .bedo files, contains a score column
like this. As do CAGEr CAGE files and many other package formats. You can
also assign a score column manually.

Details

If tx is not NULL, it gives a metaWindow, centered around startSite of grl from upstream and
downstream. If tx is NULL, it will use only downstream , since it has no reference on how to find
upstream region. The exception is when upstream is negative, that is, going into downstream region
of the object.

Value

a data.table with lengths by coverage / vector of proportions

See Also

Other coverage: coverageScorings(), metaWindow(), scaledWindowPositions()

214 windowPerTranscript

windowPerTranscript Get a binned coverage window per transcript

Description

Per transcript (or other regions), bin them all to windowSize (default 100), and make a data.table,
rows are positions, useful for plotting with ORFik and ggplot2.

Usage

windowPerTranscript(
txdb,
reads,
splitIn3 = TRUE,
windowSize = 100,
fraction = "1",
weight = "score"

)

Arguments

txdb a TxDb object or a path to gtf/gff/db file.

reads GRanges or GAlignment of reads

splitIn3 a logical(TRUE), split window in 3 (leader, cds, trailer)

windowSize an integer (100), size of windows (columns)

fraction a character (1), info on reads (which read length, or which type (RNA seq)) (row
names)

weight (default: ’score’), if defined a character name of valid meta column in subject.
GRanges("chr1", 1, "+", score = 5), would mean score column tells that this
alignment region was found 5 times. ORFik .bedo files, contains a score column
like this. As do CAGEr CAGE files and many other package formats. You can
also assign a score column manually.

Details

NOTE: All ranges with smaller width than windowSize, will of course be removed. What is the
100th position on a 1 width object ?

Value

a data.table with columns position, score

xAxisScaler 215

xAxisScaler Scale x axis correctly

Description

Works for all coverage plots, that need 0 position aligning

Usage

xAxisScaler(covPos)

Arguments

covPos a numeric vector of positions in coverage

Details

It basicly bins the x axis on floor(length of x axis / 20) or 1 if x < 20

Value

a numeric vector from the seq() function, aligned to 0.

yAxisScaler Scale y axis correctly

Description

Works for all coverage plots.

Usage

yAxisScaler(covPos)

Arguments

covPos a levels object from a factor of y axis

Value

a character vector from the seq() function, aligned to 0.

Index

∗ CAGE
assignTSSByCage, 13
reassignTSSbyCage, 146
reassignTxDbByCage, 147

∗ ExtendGenomicRanges
asTX, 14
coveragePerTiling, 36
extendLeaders, 60
extendTrailers, 61
reduceKeepAttr, 149
tile1, 189
txSeqsFromFa, 201
windowPerGroup, 211

∗ GRanges
assignFirstExonsStartSite, 12
assignLastExonsStopSite, 12
downstreamFromPerGroup, 48
downstreamOfPerGroup, 49
upstreamFromPerGroup, 206
upstreamOfPerGroup, 207

∗ ORFHelpers
defineTrailer, 41
longestORFs, 118
mapToGRanges, 121
orfID, 127
startCodons, 180
startSites, 184
stopCodons, 185
stopSites, 186
txNames, 199
uniqueGroups, 201
uniqueOrder, 202

∗ ORFik_experiment
bamVarName, 15
create.experiment, 39
experiment-class, 51
filepath, 62
libraryTypes, 113
ORFik.template.experiment, 127
organism.df, 130
outputLibs, 131
read.experiment, 142
save.experiment, 160

validateExperiments, 207
∗ QC report

QCplots, 137
QCreport, 138
QCstats, 139

∗ STAR
getGenomeAndAnnotation, 87
install.fastp, 103
STAR.align.folder, 172
STAR.align.single, 174
STAR.index, 176
STAR.install, 178
STAR.multiQC, 179
STAR.remove.crashed.genome, 179

∗ coveragePlot
coverageHeatMap, 35
pSitePlot, 136
savePlot, 160
windowCoveragePlot, 210

∗ coverage
coverageScorings, 38
metaWindow, 123
scaledWindowPositions, 161
windowPerReadLength, 212

∗ experiment plots
transcriptWindow, 193
transcriptWindow1, 195
transcriptWindowPer, 196

∗ experiment_naming
cellLineNames, 18
conditionNames, 28
libNames, 113
mainNames, 118
repNames, 155
stageNames, 172
tissueNames, 190

∗ features
computeFeatures, 24
computeFeaturesCage, 25
countOverlapsW, 31
disengagementScore, 45
distToCds, 46
distToTSS, 47

216

INDEX 217

entropy, 49
floss, 79
fpkm, 81
fpkm_calc, 83
fractionLength, 83
initiationScore, 100
insideOutsideORF, 101
isInFrame, 106
isOverlapping, 107
kozakSequenceScore, 110
orfScore, 129
rankOrder, 141
ribosomeReleaseScore, 157
ribosomeStallingScore, 158
startRegion, 181
startRegionCoverage, 182
subsetCoverage, 188
translationalEff, 197

∗ findORFs
findMapORFs, 69
findORFs, 72
findORFsFasta, 73
findUORFs, 75
startDefinition, 181
stopDefinition, 185

∗ heatmaps
coverageHeatMap, 35
heatMap_single, 96
heatMapL, 93
heatMapRegion, 94

∗ pshifting
changePointAnalysis, 18
detectRibosomeShifts, 42
shiftFootprints, 163
shiftFootprintsByExperiment, 165

∗ uorfs
addCdsOnLeaderEnds, 8
filterUORFs, 66
removeORFsWithinCDS, 152
removeORFsWithSameStartAsCDS, 153
removeORFsWithSameStopAsCDS, 153
removeORFsWithStartInsideCDS, 154
uORFSearchSpace, 204

∗ utils
bedToGR, 17
convertToOneBasedRanges, 29
export.bed12, 52
export.wiggle, 59
fimport, 66
findFa, 67
fread.bed, 84
optimizeReads, 126

readBam, 143
readWig, 145

∗ validity
checkRFP, 19
checkRNA, 19
is.gr_or_grl, 104
is.grl, 104
is.ORF, 105
is.range, 105
validGRL, 208
validSeqlevels, 208

addCdsOnLeaderEnds, 8, 66, 152–154, 205
addNewTSSOnLeaders, 8
allFeaturesHelper, 9
artificial.orfs, 10
assignAnnotations, 11
assignFirstExonsStartSite, 12, 13, 48, 49,

207
assignLastExonsStopSite, 12, 12, 48, 49,

207
assignTSSByCage, 13, 147, 148
asTX, 14, 37, 60, 61, 150, 190, 201, 212

bamVarName, 15, 40, 51, 62, 114, 128, 131,
132, 142, 160, 208

bamVarNamePicker, 16
bedToGR, 17, 30, 53, 59, 67, 68, 85, 127, 144,

145

cellLineNames, 18, 28, 113, 119, 155, 172,
190

changePointAnalysis, 18, 44, 164, 166
checkRFP, 19, 20, 104, 105, 208, 209
checkRNA, 19, 19, 104, 105, 208, 209
codonSumsPerGroup, 20
collapse.by.scores, 21
collapseDuplicatedReads, 21
collapseDuplicatedReads,GAlignmentPairs-method,

22
collapseDuplicatedReads,GAlignments-method,

22
collapseDuplicatedReads,GRanges-method,

23
computeFeatures, 24, 27, 31, 46, 47, 50, 80,

82–84, 101, 102, 106, 107, 110, 130,
142, 158, 159, 182, 183, 188, 198

computeFeaturesCage, 25, 25, 31, 46, 47, 50,
80, 82–84, 101, 102, 106, 107, 110,
130, 142, 158, 159, 182, 183, 188,
198

conditionNames, 18, 28, 113, 119, 155, 172,
190

218 INDEX

convertLibs, 28
convertToOneBasedRanges, 17, 29, 29, 53,

59, 67, 68, 85, 127, 144, 145, 169
countOverlapsW, 25, 27, 31, 46, 47, 50, 80,

82–84, 101, 102, 106, 107, 110, 130,
142, 158, 159, 182, 183, 188, 198

countTable, 32, 128, 138
countTable_regions, 33
coverageByTranscript, 34
coverageByTranscriptW, 34
coverageGroupings, 34
coverageHeatMap, 35, 94, 95, 97, 137, 161,

211
coveragePerTiling, 15, 36, 60, 61, 150, 190,

201, 212
coverageScorings, 38, 124, 162, 213
create.experiment, 16, 39, 51, 62, 114, 128,

131, 132, 142, 160, 208

data.frame, 17
defineIsoform, 41
defineTrailer, 41, 118, 122, 127, 180,

184–186, 199, 202
detectRibosomeShifts, 19, 42, 129,

164–166
disengagementScore, 25, 27, 31, 45, 47, 50,

80, 82–84, 101, 102, 106, 107, 110,
130, 142, 158, 159, 182, 183, 188,
198

distToCds, 25, 27, 31, 46, 46, 47, 50, 80,
82–84, 101, 102, 106, 107, 110, 130,
142, 158, 159, 182, 183, 188, 198

distToTSS, 25, 27, 31, 46, 47, 47, 50, 80,
82–84, 101, 102, 106, 107, 110, 130,
142, 158, 159, 182, 183, 188, 198

DNAStringSet, 201
downstreamFromPerGroup, 12, 13, 48, 49,

207
downstreamN, 48
downstreamOfPerGroup, 12, 13, 48, 49, 207

entropy, 25, 27, 31, 46, 47, 49, 80, 82–84,
101, 102, 106, 107, 110, 130, 142,
158, 159, 182, 183, 188, 198

experiment, 10, 15–17, 24, 26, 29, 32, 33, 39,
62, 67, 68, 93, 95, 110, 113, 120,
125, 128, 131, 132, 134, 138, 139,
141, 142, 151, 159, 160, 165,
167–169, 184, 194–196, 199, 201,
207

experiment (experiment-class), 51
experiment-class, 51

export.bed12, 17, 30, 52, 59, 67, 68, 85, 127,
144, 145

export.bedo, 29, 53, 170
export.bedoc, 29, 54, 166, 170
export.ofst, 54
export.ofst,GAlignmentPairs-method, 55
export.ofst,GAlignments-method, 56
export.ofst,GRanges-method, 58
export.wiggle, 17, 30, 53, 59, 67, 68, 85,

127, 144, 145, 166
extendLeaders, 15, 37, 60, 61, 150, 190, 201,

212
extendsTSSexons, 61
extendTrailers, 15, 37, 60, 61, 150, 190,

201, 212
extractTranscriptSeqs, 201

FaFile, 10, 24, 26, 67, 69, 72, 76, 110, 184,
201

filepath, 16, 40, 51, 62, 114, 128, 131, 132,
142, 160, 208

filterCage, 63
filterExtremePeakGenes, 64
filterTranscripts, 65
filterUORFs, 8, 66, 152–154, 205
fimport, 17, 30, 53, 59, 66, 68, 85, 127, 144,

145
findFa, 17, 30, 53, 59, 67, 67, 85, 127, 144,

145
findFromPath, 68
findLibrariesInFolder, 68
findMapORFs, 69, 73, 74, 77, 181, 186
findMaxPeaks, 70
findNewTSS, 71
findNGSPairs, 71
findORFs, 70, 72, 74, 77, 181, 186
findORFsFasta, 70, 73, 73, 77, 181, 186
findPeaksPerGene, 74
findUORFs, 70, 73, 74, 75, 181, 186
firstEndPerGroup, 77
firstExonPerGroup, 78
firstStartPerGroup, 78
floss, 25, 27, 31, 46, 47, 50, 79, 82–84, 101,

102, 106, 107, 110, 130, 142, 158,
159, 182, 183, 188, 198

footprints.analysis, 81
fpkm, 25, 27, 31, 46, 47, 50, 80, 81, 83, 84,

101, 102, 106, 107, 110, 130, 142,
158, 159, 182, 183, 188, 198

fpkm_calc, 25, 27, 31, 46, 47, 50, 80, 82, 83,
84, 101, 102, 106, 107, 110, 130,
142, 158, 159, 182, 183, 188, 198

INDEX 219

fractionLength, 25, 27, 31, 46, 47, 50, 80,
82, 83, 83, 101, 102, 106, 107, 110,
130, 142, 158, 159, 182, 183, 188,
198

fread.bed, 17, 30, 53, 59, 67, 68, 84, 127,
144, 145

GAlignmentPairs, 99
GAlignments, 9, 24, 26, 34, 37, 43, 50, 67, 79,

81, 95, 96, 100, 129, 143, 157, 164,
197, 213

gcContent, 85
getGAlignments, 86
getGAlignmentsPairs, 86
getGenomeAndAnnotation, 87, 103, 174,

176–180
getGRanges, 89
getNGenesCoverage, 89
getWeights, 25, 90, 100, 130
GRanges, 9, 17, 24, 26, 34, 37, 50, 67, 79, 81,

85, 95, 96, 129, 145, 157, 164, 197,
202, 213

GRangesList, 9, 12, 15, 24, 26, 34, 37, 45–50,
60, 61, 69, 77–79, 81, 84, 92, 93, 96,
100, 102, 110–112, 118–122,
125–127, 129, 141, 149, 156–159,
163, 170, 171, 180, 182–189, 194,
196, 197, 199, 201, 202, 206–209,
211, 213

groupGRangesBy, 90
groupings, 91
gSort, 92

hasHits, 92
heatMap_single, 36, 94, 95, 96
heatMapL, 36, 93, 95, 97
heatMapRegion, 36, 94, 94, 97

import, 84
import.bedo, 97
import.bedoc, 98
import.ofst, 99
importGtfFromTxdb, 100
initiationScore, 25, 27, 31, 46, 47, 50, 80,

82–84, 100, 102, 106, 107, 110, 130,
142, 158, 159, 182, 183, 188, 198

insideOutsideORF, 25, 27, 31, 46, 47, 50, 80,
82–84, 101, 101, 106, 107, 110, 130,
142, 158, 159, 182, 183, 188, 198

install.fastp, 88, 103, 174, 176–180
IRanges, 72
IRangesList, 72
is.gr_or_grl, 19, 20, 104, 104, 105, 208, 209

is.grl, 19, 20, 104, 104, 105, 208, 209
is.ORF, 19, 20, 104, 105, 105, 208, 209
is.range, 19, 20, 104, 105, 105, 208, 209
isInFrame, 25, 27, 31, 46, 47, 50, 80, 82–84,

101, 102, 106, 107, 110, 130, 142,
158, 159, 182, 183, 188, 198

isOverlapping, 25, 27, 31, 46, 47, 50, 80,
82–84, 101, 102, 106, 107, 110, 130,
142, 158, 159, 182, 183, 188, 198

isPeriodic, 44, 108

kozakHeatmap, 108
kozakSequenceScore, 25, 27, 31, 46, 47, 50,

80, 82–84, 101, 102, 106, 107, 110,
130, 142, 158, 159, 182, 183, 188,
198

lastExonEndPerGroup, 111
lastExonPerGroup, 112
lastExonStartPerGroup, 112
libNames, 18, 28, 113, 119, 155, 172, 190
libraryTypes, 16, 40, 51, 62, 113, 128, 131,

132, 142, 160, 208
list.experiments, 114
loadRegion, 115
loadRegions, 115
loadTranscriptType, 116
loadTxdb, 117
longestORFs, 42, 69, 72, 74, 76, 118, 122,

127, 180, 184–186, 199, 202

mainNames, 18, 28, 113, 118, 155, 172, 190
makeExonRanks, 119
makeORFNames, 119
makeSummarizedExperimentFromBam, 120
mapToGRanges, 42, 118, 121, 127, 180,

184–186, 199, 202
matchColors, 122
matchNaming, 122
matchSeqStyle, 123
metaWindow, 39, 123, 162, 213

nrow,experiment-method, 125
numCodons, 125
numExonsPerGroup, 126

optimizeReads, 17, 30, 53, 59, 67, 68, 85,
126, 144, 145

orfID, 42, 118, 122, 127, 180, 184–186, 199,
202

ORFik (ORFik-package), 7
ORFik-package, 7
ORFik.template.experiment, 16, 40, 51, 62,

114, 127, 131, 132, 142, 160, 208

220 INDEX

ORFikQC, 32, 128
orfScore, 25, 27, 31, 46, 47, 50, 80, 82–84,

101, 102, 106, 107, 110, 129, 142,
158, 159, 182, 183, 188, 198

organism.df, 16, 40, 51, 62, 114, 128, 130,
132, 142, 160, 208

outputLibs, 16, 40, 51, 62, 114, 128, 131,
131, 142, 160, 208

pasteDir, 132
percentage_to_ratio, 133
plotHelper, 133
pmapFromTranscriptF, 134
pmapToTranscriptF, 135
prettyScoring, 136
pSitePlot, 36, 136, 161, 211

QC_count_tables, 141
QCplots, 129, 137, 139, 140
QCreport, 138, 138, 140
QCstats, 128, 129, 138, 139, 139
QCstats.plot, 140

rankOrder, 25, 27, 31, 46, 47, 50, 80, 82–84,
101, 102, 106, 107, 110, 130, 141,
158, 159, 182, 183, 188, 198

read.experiment, 16, 40, 51, 62, 114, 128,
131, 132, 142, 160, 208

readBam, 17, 30, 53, 59, 67, 68, 85, 127, 143,
145

readWidths, 144
readWig, 17, 30, 53, 59, 67, 68, 85, 127, 144,

145
reassignTSSbyCage, 14, 146, 148
reassignTxDbByCage, 14, 147, 147
reduce, 150
reduceKeepAttr, 15, 37, 60, 61, 149, 190,

201, 212
remakeTxdbExonIds, 150
remove.experiments, 151
remove.file_ext, 151
removeMetaCols, 152
removeORFsWithinCDS, 8, 66, 152, 153, 154,

205
removeORFsWithSameStartAsCDS, 8, 66, 152,

153, 153, 154, 205
removeORFsWithSameStopAsCDS, 8, 66, 152,

153, 153, 154, 205
removeORFsWithStartInsideCDS, 8, 66, 152,

153, 154, 205
removeTxdbExons, 154
removeTxdbTranscripts, 155
repNames, 18, 28, 113, 119, 155, 172, 190

restrictTSSByUpstreamLeader, 156
reverseMinusStrandPerGroup, 156
ribosomeReleaseScore, 25, 27, 31, 46, 47,

50, 80, 82–84, 101, 102, 106, 107,
110, 130, 142, 157, 159, 182, 183,
188, 198

ribosomeStallingScore, 25, 27, 31, 46, 47,
50, 80, 82–84, 101, 102, 106, 107,
110, 130, 142, 158, 158, 182, 183,
188, 198

rnaNormalize, 159

save.experiment, 16, 40, 51, 62, 114, 128,
131, 132, 142, 160, 208

savePlot, 36, 137, 160, 211
scaledWindowPositions, 39, 124, 161, 213
scoreSummarizedExperiment, 162
seqlevelsStyle, 67, 85, 117, 123, 132, 143,

145
seqnamesPerGroup, 163
shiftFootprints, 19, 44, 163, 166
shiftFootprintsByExperiment, 19, 44, 164,

165
shiftPlots, 167
shifts.load, 168
show,experiment-method, 168
simpleLibs, 169
sort.GenomicRanges, 170
sortPerGroup, 60, 61, 170
splitIn3Tx, 171
stageNames, 18, 28, 113, 119, 155, 172, 190
STAR.align.folder, 88, 103, 172, 176–180
STAR.align.single, 88, 103, 174, 174,

177–180
STAR.index, 88, 103, 174, 176, 176, 178–180
STAR.install, 88, 103, 174, 176, 177, 178,

179, 180
STAR.multiQC, 88, 103, 174, 176–178, 179,

180
STAR.remove.crashed.genome, 88, 103, 174,

176–179, 179
startCodons, 42, 118, 122, 127, 180, 181,

184–186, 199, 202
startDefinition, 69, 70, 72–74, 76, 77, 181,

186
startRegion, 25, 27, 31, 46, 47, 50, 80,

82–84, 101, 102, 106, 107, 110, 130,
142, 158, 159, 181, 183, 188, 198

startRegionCoverage, 25, 27, 31, 46, 47, 50,
80, 82–84, 101, 102, 106, 107, 110,
130, 142, 158, 159, 182, 182, 188,
198

startRegionString, 183

INDEX 221

startSites, 42, 118, 122, 127, 180, 184, 185,
186, 199, 202

stopCodons, 42, 118, 122, 127, 180, 184, 185,
186, 199, 202

stopDefinition, 69, 70, 72–74, 76, 77, 181,
185

stopSites, 42, 118, 122, 127, 180, 184, 185,
186, 199, 202

strandBool, 187
strandPerGroup, 187
subsetCoverage, 25, 27, 31, 46, 47, 50, 80,

82–84, 101, 102, 106, 107, 110, 130,
142, 158, 159, 182, 183, 188, 198

subsetToFrame, 189
SummarizedExperiment, 51, 121, 128, 138

tile1, 15, 37, 60, 61, 150, 189, 201, 212
tissueNames, 18, 28, 113, 119, 155, 172, 190
TOP.Motif.ecdf, 190
topMotif, 192
transcriptWindow, 193, 196, 197
transcriptWindow1, 194, 195, 197
transcriptWindowPer, 194, 196, 196
translationalEff, 25, 27, 31, 46, 47, 50, 80,

82–84, 101, 102, 106, 107, 110, 130,
142, 158, 159, 182, 183, 188, 197

trim_detection, 198
TxDb, 45, 102
txNames, 42, 118, 122, 127, 180, 184–186,

199, 202
txNamesToGeneNames, 200
txSeqsFromFa, 15, 37, 60, 61, 150, 190, 201,

212

uniqueGroups, 42, 118, 122, 127, 180,
184–186, 199, 201, 202

uniqueOrder, 42, 118, 122, 127, 180,
184–186, 199, 202, 202

unlistGrl, 203
uORFSearchSpace, 8, 66, 152–154, 204
updateTxdbRanks, 205
updateTxdbStartSites, 206
upstreamFromPerGroup, 12, 13, 48, 49, 206,

207
upstreamOfPerGroup, 12, 13, 48, 49, 206,

207, 207

validateExperiments, 16, 40, 51, 62, 114,
128, 131, 132, 142, 160, 207

validGRL, 19, 20, 104, 105, 208, 209
validSeqlevels, 19, 20, 104, 105, 208, 208

widthPerGroup, 209

windowCoveragePlot, 36, 137, 161, 210
windowPerGroup, 15, 37, 60, 61, 150, 190,

201, 211
windowPerReadLength, 39, 124, 162, 212
windowPerTranscript, 214

xAxisScaler, 215

yAxisScaler, 215

	ORFik-package
	addCdsOnLeaderEnds
	addNewTSSOnLeaders
	allFeaturesHelper
	artificial.orfs
	assignAnnotations
	assignFirstExonsStartSite
	assignLastExonsStopSite
	assignTSSByCage
	asTX
	bamVarName
	bamVarNamePicker
	bedToGR
	cellLineNames
	changePointAnalysis
	checkRFP
	checkRNA
	codonSumsPerGroup
	collapse.by.scores
	collapseDuplicatedReads
	collapseDuplicatedReads,GAlignmentPairs-method
	collapseDuplicatedReads,GAlignments-method
	collapseDuplicatedReads,GRanges-method
	computeFeatures
	computeFeaturesCage
	conditionNames
	convertLibs
	convertToOneBasedRanges
	countOverlapsW
	countTable
	countTable_regions
	coverageByTranscriptW
	coverageGroupings
	coverageHeatMap
	coveragePerTiling
	coverageScorings
	create.experiment
	defineIsoform
	defineTrailer
	detectRibosomeShifts
	disengagementScore
	distToCds
	distToTSS
	downstreamFromPerGroup
	downstreamN
	downstreamOfPerGroup
	entropy
	experiment-class
	export.bed12
	export.bedo
	export.bedoc
	export.ofst
	export.ofst,GAlignmentPairs-method
	export.ofst,GAlignments-method
	export.ofst,GRanges-method
	export.wiggle
	extendLeaders
	extendsTSSexons
	extendTrailers
	filepath
	filterCage
	filterExtremePeakGenes
	filterTranscripts
	filterUORFs
	fimport
	findFa
	findFromPath
	findLibrariesInFolder
	findMapORFs
	findMaxPeaks
	findNewTSS
	findNGSPairs
	findORFs
	findORFsFasta
	findPeaksPerGene
	findUORFs
	firstEndPerGroup
	firstExonPerGroup
	firstStartPerGroup
	floss
	footprints.analysis
	fpkm
	fpkm_calc
	fractionLength
	fread.bed
	gcContent
	getGAlignments
	getGAlignmentsPairs
	getGenomeAndAnnotation
	getGRanges
	getNGenesCoverage
	getWeights
	groupGRangesBy
	groupings
	gSort
	hasHits
	heatMapL
	heatMapRegion
	heatMap_single
	import.bedo
	import.bedoc
	import.ofst
	importGtfFromTxdb
	initiationScore
	insideOutsideORF
	install.fastp
	is.grl
	is.gr_or_grl
	is.ORF
	is.range
	isInFrame
	isOverlapping
	isPeriodic
	kozakHeatmap
	kozakSequenceScore
	lastExonEndPerGroup
	lastExonPerGroup
	lastExonStartPerGroup
	libNames
	libraryTypes
	list.experiments
	loadRegion
	loadRegions
	loadTranscriptType
	loadTxdb
	longestORFs
	mainNames
	makeExonRanks
	makeORFNames
	makeSummarizedExperimentFromBam
	mapToGRanges
	matchColors
	matchNaming
	matchSeqStyle
	metaWindow
	nrow,experiment-method
	numCodons
	numExonsPerGroup
	optimizeReads
	orfID
	ORFik.template.experiment
	ORFikQC
	orfScore
	organism.df
	outputLibs
	pasteDir
	percentage_to_ratio
	plotHelper
	pmapFromTranscriptF
	pmapToTranscriptF
	prettyScoring
	pSitePlot
	QCplots
	QCreport
	QCstats
	QCstats.plot
	QC_count_tables
	rankOrder
	read.experiment
	readBam
	readWidths
	readWig
	reassignTSSbyCage
	reassignTxDbByCage
	reduceKeepAttr
	remakeTxdbExonIds
	remove.experiments
	remove.file_ext
	removeMetaCols
	removeORFsWithinCDS
	removeORFsWithSameStartAsCDS
	removeORFsWithSameStopAsCDS
	removeORFsWithStartInsideCDS
	removeTxdbExons
	removeTxdbTranscripts
	repNames
	restrictTSSByUpstreamLeader
	reverseMinusStrandPerGroup
	ribosomeReleaseScore
	ribosomeStallingScore
	rnaNormalize
	save.experiment
	savePlot
	scaledWindowPositions
	scoreSummarizedExperiment
	seqnamesPerGroup
	shiftFootprints
	shiftFootprintsByExperiment
	shiftPlots
	shifts.load
	show,experiment-method
	simpleLibs
	sortPerGroup
	splitIn3Tx
	stageNames
	STAR.align.folder
	STAR.align.single
	STAR.index
	STAR.install
	STAR.multiQC
	STAR.remove.crashed.genome
	startCodons
	startDefinition
	startRegion
	startRegionCoverage
	startRegionString
	startSites
	stopCodons
	stopDefinition
	stopSites
	strandBool
	strandPerGroup
	subsetCoverage
	subsetToFrame
	tile1
	tissueNames
	TOP.Motif.ecdf
	topMotif
	transcriptWindow
	transcriptWindow1
	transcriptWindowPer
	translationalEff
	trim_detection
	txNames
	txNamesToGeneNames
	txSeqsFromFa
	uniqueGroups
	uniqueOrder
	unlistGrl
	uORFSearchSpace
	updateTxdbRanks
	updateTxdbStartSites
	upstreamFromPerGroup
	upstreamOfPerGroup
	validateExperiments
	validGRL
	validSeqlevels
	widthPerGroup
	windowCoveragePlot
	windowPerGroup
	windowPerReadLength
	windowPerTranscript
	xAxisScaler
	yAxisScaler
	Index

