Package ‘GenomicFeatures’

October 17, 2020

Title Conveniently import and query gene models
Version 1.40.1
Encoding UTF-8

Author M. Carlson, H. Pages, P. Aboyoun, S. Falcon, M. Morgan,
D. Sarkar, M. Lawrence, V. Obenchain

License Artistic-2.0

Description A set of tools and methods for making and manipulating
transcript centric annotations. With these tools the user can
easily download the genomic locations of the transcripts, exons
and cds of a given organism, from either the UCSC Genome
Browser or a BioMart database (more sources will be supported
in the future). This information is then stored in a local
database that keeps track of the relationship between
transcripts, exons, cds and genes. Flexible methods are
provided for extracting the desired features in a convenient
format.

Maintainer Bioconductor Package Maintainer <maintainer@bioconductor.org>

Depends BiocGenerics (>= 0.1.0), S4Vectors (>= 0.17.29), IRanges (>=
2.13.23), GenomelnfoDb (>= 1.23.10), GenomicRanges (>=
1.31.17), AnnotationDbi (>= 1.41.4)

Imports methods, utils, stats, tools, DBI, RSQLite (>=2.0), RCurl,
XVector (>=0.19.7), Biostrings (>= 2.47.6), rtracklayer (>=
1.39.7), biomaRt (>= 2.17.1), Biobase (>= 2.15.1)

Suggests RMariaDB, org.Mm.eg.db, org.Hs.eg.db, BSgenome,
BSgenome.Hsapiens.UCSC.hg19 (>= 1.3.17),
BSgenome.Celegans.UCSC.ce2, BSgenome.Dmelanogaster. UCSC.dm3 (>=
1.3.17), mirbase.db, FDb.UCSC.tRNAs,
TxDb.Hsapiens.UCSC.hg19.knownGene,

TxDb.Dmelanogaster. UCSC.dm3.ensGene (>=2.7.1),
TxDb.Mmusculus.UCSC.mm10.knownGene (>= 3.4.7),
TxDb.Hsapiens.UCSC.hg19.lincRNAsTranscripts,
TxDb.Hsapiens.UCSC.hg38.knownGene (>= 3.4.6),
SNPlocs.Hsapiens.dbSNP144.GRCh38, Rsamtools, pasillaBamSubset
(>=0.0.5), GenomicAlignments (>= 1.15.7), ensembldb, RUnit,
BiocStyle, knitr

Collate utils.R TxDb-schema.R TxDb-SELECT-helpers.R UCSC-utils.R
Ensembl-utils.R findCompatibleMarts.R TxDb-class.R

1

2 R topics documented:

FeatureDb-class.R makeTxDb.R makeTxDbFromUCSC.R
makeTxDbFromBiomart.R makeTxDbFromEnsembl.R
makeTxDbFromGRanges.R makeTxDbFromGFF.R makeFeatureDbFromUCSC.R
mapldsToRanges.R id2name.R transcripts.R transcriptsBy.R
transcriptsByOverlaps.R transcriptLengths.R exonicParts.R

disjointExons.R features.R microRNAs.R extractTranscriptSeqs.R
extractUpstreamSeqs.R getPromoterSeq-methods.R

makeTxDbPackage.R select-methods.R nearest-methods.R
transcriptLocs2refLocs.R coordinate-mapping-methods.R
coverageByTranscript.R zzz.R

VignetteBuilder knitr

biocViews Genetics, Infrastructure, Annotation, Sequencing,
GenomeAnnotation

git_url https://git.bioconductor.org/packages/GenomicFeatures
git_branch RELEASE_3_11

git_last_commit ee9accf

git_last commit_date 2020-07-07

Date/Publication 2020-10-16

R topics documented:

as-format-methods L 3
coverageByTranscript 4
disjointExons L 7
exonicParts 9
extractTranscriptSeqs 12
extractUpstreamSeqs e e e e e e 16
FeatureDb-class 18
features L e e 19
getPromoterSeq oL e e e 20
d2name 21
makeFeatureDbFromUCSC 22
makeTxDb e 24
makeTxDbFromBiomart 27
makeTxDbFromEnsembl 32
makeTxDbFromGFF 34
makeTxDbFromGRanges 36
makeTxDbFromUCSC e 37
makeTxDbPackage 40
mapldsToRanges e 44
mapRangesTolds 45
mapToTranscripts e 46
mictoRNAS e 52
nearest-methods 53
select-methods 55
transcriptLengths L. e 56
transcriptLocs2reflLocs L 58
transcripts e e e e 60
transcriptsBy L 64

transcriptsByOverlapso 66

as-format-methods 3

TxDb-class e 68
Index 70
as-format-methods Coerce to file format structures
Description

These functions coerce a TxDb object to a GRanges object with metadata columns encoding tran-
script structures according to the model of a standard file format. Currently, BED and GFF models
are supported. If a TxDb is passed to export, when targeting a BED or GFF file, this coercion
occurs automatically.

Usage

S4 method for signature 'TxDb'
asBED(x)
S4 method for signature 'TxDb'
asGFF (x)

Arguments

X A TxDb object to coerce to a GRanges, structured as BED or GFF.

Value

For asBED, a GRanges, with the columns name, thickStart, thickEnd, blockStarts, blockSizes
added. The thick regions correspond to the CDS regions, and the blocks represent the exons. The
transcript IDs are stored in the name column. The ranges are the transcript bounds.

For asGFF, a GRanges, with columns type, Name, ID,, and Parent. The gene structures are ex-
pressed according to the conventions defined by the GFF3 spec. There are elements of each type
of feature: “gene”, “mRNA” “exon” and “cds”. The Name column contains the gene_id for genes,
tx_name for transcripts, and exons and cds regions are NA. The ID column uses gene_id and tx_id,
with the prefixes “GenelD” and “TxID” to ensure uniqueness across types. The exons and cds re-
gions have NA for ID. The Parent column contains the IDs of the parent features. A feature may
have multiple parents (the column is a CharacterList). Each exon belongs to one or more mRNAs,
and mRNAs belong to a gene.

Author(s)

Michael Lawrence

Examples

txdb_file <- system.file("extdata”, "hgl19_knownGene_sample.sqlite”,
package="GenomicFeatures")
txdb <- loadDb(txdb_file)

asBED(txdb)
asGFF (txdb)

4 coverageByTranscript

coverageByTranscript Compute coverage by transcript (or CDS) of a set of ranges

Description

coverageByTranscript computes the transcript (or CDS) coverage of a set of ranges.

pcoverageByTranscript is a version of coverageByTranscript that operates element-wise.

Usage

coverageByTranscript(x, transcripts, ignore.strand=FALSE)

pcoverageByTranscript(x, transcripts, ignore.strand=FALSE, ...)
Arguments
X An object representing a set of ranges (typically aligned reads). GRanges,

GRangesList, GAlignments, GAlignmentPairs, and GAlignmentsList objects
are supported.

More generally, for coverageByTranscript x can be any object for which
seginfo() and coverage() are supported (e.g. a BamFile object). Note that,
for such objects, coverage() is expected to return an RleList object whose
names are seqlevels(x)).

More generally, for pcoverageByTranscript x can be any object for which
grglist() is supported. It should have the length of transcripts or length 1.
If the latter, it is recycled to the length of transcripts.

transcripts A GRangesList object representing the exons of each transcript for which to
compute coverage. For each transcript, the exons must be ordered by ascending
rank, that is, by their position in the transcript. This means that, for a transcript
located on the minus strand, the exons should typically be ordered by descending
position on the reference genome. If transcripts was obtained with exonsBy,
then the exons are guaranteed to be ordered by ascending rank. See ?exonsBy
for more information.
Alternatively, transcripts can be a TxDDb object, or any TxDb-like object that
supports the exonsBy () extractor (e.g. an EnsDb object). In this case it is re-
placed with the GRangesList object returned by exonsBy (transcripts,by="tx",use.names=TRUE.
For pcoverageByTranscript, transcripts should have the length of x or
length 1. If the latter, it is recycled to the length of x.

ignore.strand TRUE or FALSE. If FALSE (the default) then the strand of a range in x and exon
in transcripts must be the same in order for the range to contribute coverage
to the exon. If TRUE then the strand is ignored.

Additional arguments passed to the internal call to grglist(). More precisely,
when x is not a GRanges or GRangesList object, pcoverageByTranscript re-
place it with the GRangesList object returned by grglist(x,...).

Value

An RleList object parallel to transcripts, that is, the i-th element in it is an integer-Rle represent-
ing the coverage of the i-th transcript in transcripts. Its lengths() is guaranteed to be identical
to sum(width(transcripts)). The names and metadata columns on transcripts are propagated
to it.

coverageByTranscript 5

Author(s)

Hervé Pages

See Also

e transcripts, transcriptsBy, and transcriptsByOverlaps, for extracting genomic fea-
ture locations from a TxDb-like object.

* transcriptlLengths for extracting the transcript lengths (and other metrics) from a TxDb
object.

* extractTranscriptSeqs for extracting transcript (or CDS) sequences from chromosome se-
quences.

* The RleList class defined and documented in the IRanges package.

* The GRangesList class defined and documented in the GenomicRanges package.
* The coverage methods defined in the GenomicRanges package.

* The exonsBy function for extracting exon ranges grouped by transcript.

* findCompatibleOverlaps in the GenomicAlignments package for finding which reads are
compatible with the splicing of which transcript.

Examples

B =
1. A SIMPLE ARTIFICIAL EXAMPLE WITH ONLY ONE TRANSCRIPT
e

Get some transcripts:
library(TxDb.Dmelanogaster.UCSC.dm3.ensGene)

txdb <- TxDb.Dmelanogaster.UCSC.dm3.ensGene
dm3_transcripts <- exonsBy(txdb, by="tx", use.names=TRUE)
dm3_transcripts

Let's pick up the 1st transcript: FBtr@300689. It as 2 exons and 1
intron:
my_transcript <- dm3_transcripts["FBtre300689"]

Let's create 3 artificial aligned reads. We represent them as a
GRanges object of length 3 that contains the genomic positions of
the 3 reads. Note that these reads are simple alignments i.e. each
of them can be represented with a single range. This would not be
the case if they were junction reads.
my_reads <- GRanges(c("chr2L:7531-7630",

"chr2L:8101-8200",

"chr2L:8141-8240"))

The coverage of the 3 reads on the reference genome is:
coverage(my_reads)

As you can see, all the genomic positions in the 3 ranges participate
to the coverage. This can be confirmed by comparing:
sum(coverage(my_reads))

with:

sum(width(my_reads))

They should always be the same.

coverageByTranscript

When computing the coverage on a transcript, only the part of the
read that overlaps with the transcript participates to the coverage.
Let's look at the individual coverage of each read on transcript

FBtro300689:

The 1st read is fully contained within the 1st exon:
coverageByTranscript(my_reads[1], my_transcript)

Note that the length of the Rle (1880) is the length of the transcript.

The 2nd and 3rd reads overlap the 2 exons and the intron. Only the
parts that overlap the exons participate to coverage:
coverageByTranscript(my_reads[2], my_transcript)
coverageByTranscript(my_reads[3], my_transcript)

The coverage of the 3 reads together is:
coverageByTranscript(my_reads, my_transcript)

Note that this is the sum of the individual coverages. This can be
checked with:
stopifnot(all(
coverageByTranscript(my_reads, my_transcript)
Reduce("+", lapply(seq_along(my_reads),
function(i) coverageByTranscript(my_reads[i], my_transcript)), oL)

)

Bt e
2. COMPUTE THE FULL TRANSCRIPTOME COVERAGE OF A SET OF ALIGNED READS
B = e

Load the aligned reads:
library(pasillaBamSubset)
library(GenomicAlignments)
reads <- readGAlignments(untreatedl_chr4())

Compute the full transcriptome coverage by calling

coverageByTranscript() on 'dm3_transcripts':

tx_cvg <- coverageByTranscript(reads, dm3_transcripts, ignore.strand=TRUE)
tx_cvg

A sanity check:
stopifnot(identical(lengths(tx_cvg), sum(width(dm3_transcripts))))

We can also use pcoverageByTranscript() to compute 'tx_cvg'.

For this we first create a GAlignmentsList object "parallel” to
'dm3_transcripts' where the i-th list element contains the aligned
reads that overlap with the i-th transcript:

hits <- findOverlaps(reads, dm3_transcripts, ignore.strand=TRUE)
tx2reads <- setNames(as(t(hits), "List"”), names(dm3_transcripts))
reads_by_tx <- extractlList(reads, tx2reads) # GAlignmentsList object
reads_by_tx

Call pcoverageByTranscript():

tx_cvg2 <- pcoverageByTranscript(reads_by_tx, dm3_transcripts,
ignore.strand=TRUE)

stopifnot(identical (tx_cvg, tx_cvg2))

disjointExons 7

A more meaningful coverage is obtained by counting for each

transcript only the reads that are *compatible* with its splicing:
compat_hits <- findCompatibleOverlaps(reads, dm3_transcripts)

tx2reads <- setNames(as(t(compat_hits), "List"”), names(dm3_transcripts))
compat_reads_by_tx <- extractList(reads, tx2reads)

tx_compat_cvg <- pcoverageByTranscript(compat_reads_by_tx,
dm3_transcripts,
ignore.strand=TRUE)

A sanity check:

stopifnot(all(all(tx_compat_cvg <= tx_cvg)))

e
3. COMPUTE CDS COVERAGE OF A SET OF ALIGNED READS
Bt e

coverageByTranscript() can also be used to compute CDS coverage:
cds <- cdsBy(txdb, by="tx", use.names=TRUE)

cds_cvg <- coverageByTranscript(reads, cds, ignore.strand=TRUE)
cds_cvg

A sanity check:
stopifnot(identical (lengths(cds_cvg), sum(width(cds))))

e
4. ALTERNATIVELY, THE CDS COVERAGE CAN BE OBTAINED FROM THE
TRANSCRIPT COVERAGE BY TRIMMING THE 5' AND 3' UTRS

tx_lens <- transcriptLengths(txdb, with.utr5_len=TRUE, with.utr3_len=TRUE)
stopifnot(identical(tx_lens$tx_name, names(tx_cvg))) # sanity

Keep the rows in 'tx_lens' that correspond to a list element in

'cds_cvg' and put them in the same order as in 'cds_cvg':

m <- match(names(cds_cvg), names(tx_cvg))

tx_lens <- tx_lens[m,]

utr5_width <- tx_lens$utr5_len

utr3_width <- tx_lens$utr3_len

cds_cvg2 <- windows(tx_cvg[m], start=1L+utr5_width, end=-1L-utr3_width)

A sanity check:
stopifnot(identical (cds_cvg2, cds_cvg))

disjointExons Extract non-overlapping exon parts from an object

Description

disjointExons extracts the non-overlapping exon parts from a TxDb object or any other supported
object.

WARNING: disjointExons is superseded by exonicParts and will be deprecated soon. Please
use improved exonicParts instead.

8 disjointExons

Usage
disjointExons(x, ...)

S4 method for signature 'TxDb'
disjointExons(x, aggregateGenes=FALSE,
includeTranscripts=TRUE, ...)

Arguments
X A TxDDb object or any other supported object.
Arguments to be passed to methods.

aggregateGenes For disjointExons : A logical. When FALSE (default) exon fragments that
overlap multiple genes are dropped. When TRUE, all fragments are kept and the
gene_id metadata column includes all gene ids that overlap the exon fragment.

includeTranscripts

For disjointExons : A logical. When TRUE (default) a tx_name metadata
column is included that lists all transcript names that overlap the exon fragment.

Details
disjointExons creates a GRanges of non-overlapping exon parts with metadata columns of gene_id
and exonic_part. Exon parts that overlap more than 1 gene can be dropped with aggregateGenes=FALSE.

When includeTranscripts=TRUE a tx_name metadata column is included that lists all transcript

names that overlap the exon fragment. This function replaces prepareAnnotationForDEXSeq in
the DEXSeq package.

Value

A GRanges object.

Author(s)

disjointExons was originally implemented by Mike Love and Alejandro Reyes and then moved
(and adapted) to GenomicFeatures by Valerie Obenchain.

See Also

exonicParts for an improved version of disjointExons.

Examples

TODO

exonicParts 9
exonicParts Extract non-overlapping exonic or intronic parts from a TxDb-like ob-
Jject
Description

exonicParts and intronicParts extract the non-overlapping (a.k.a. disjoint) exonic or intronic
parts from a TxDb-like object.

Usage

exonicParts(txdb, linked.to.single.gene.only=FALSE)
intronicParts(txdb, linked.to.single.gene.only=FALSE)

3 helper functions used internally by exonicParts() and intronicParts():
tidyTranscripts(txdb, drop.geneless=FALSE)

tidyExons(txdb, drop.geneless=FALSE)

tidyIntrons(txdb, drop.geneless=FALSE)

Arguments

txdb

A TxDb object, or any TxDb-like object that supports the transcripts() and
exonsBy () extractors (e.g. an EnsDb object).

linked.to.single.gene.only

drop.geneless

TRUE or FALSE.

If FALSE (the default), then the disjoint parts are obtained by calling disjoin()
on all the exons (or introns) in txdb, including on exons (or introns) not linked
to a gene or linked to more than one gene.

If TRUE, then the disjoint parts are obtained in 2 steps:

1. call disjoin() on the exons (or introns) linked to at least one gene,

2. then drop the parts linked to more than one gene from the set of exonic (or
intronic) parts obtained previously.

If FALSE (the default), then all the transcripts (or exons, or introns) get extracted
from the TxDb object.

If TRUE, then only the transcripts (or exons, or introns) that are linked to a gene
get extracted from the TxDb object.

Note that drop.geneless also impacts the order in which the features are re-
turned:

* Transcripts: If drop.geneless is FALSE then transcripts are returned in
the same order as with transcripts, which is expected to be by internal
transcript id (tx_id). Otherwise they are ordered first by gene id (gene_id),
then by internal transcript id.

* Exons: If drop.geneless is FALSE then exons are ordered first by internal
transcript id (tx_id), then by exon rank (exon_rank). Otherwise they are
ordered first by gene id (gene_id), then by internal transcript id, and then
by exon rank.

 Introns: If drop.geneless is FALSE then introns are ordered by internal
transcript id (tx_id). Otherwise they are ordered first by gene id (gene_id),
then by internal transcript id.

10 exonicParts

Value

exonicParts returns a disjoint and strictly sorted GRanges object with 1 range per exonic part
and with metadata columns tx_id, tx_name, gene_id, exon_id, exon_name, and exon_rank. If
linked.to.single.gene.only was set to TRUE, an additional exonic_part metadata column is
added that indicates the rank of each exonic part within all the exonic parts linked to the same gene.

intronicParts returns a disjoint and strictly sorted GRanges object with 1 range per intronic part
and with metadata columns tx_id, tx_name, and gene_id. If linked.to.single.gene.only was
set to TRUE, an additional intronic_part metadata column is added that indicates the rank of each
intronic part within all the intronic parts linked to the same gene.

tidyTranscripts returns a GRanges object with 1 range per transcript and with metadata columns
tx_id, tx_name, and gene_id.

tidyExons returns a GRanges object with 1 range per exon and with metadata columns tx_id,
tx_name, gene_id, exon_id, exon_name, and exon_rank.

tidyIntrons returns a GRanges object with 1 range per intron and with metadata columns tx_id,
tx_name, and gene_id.

Note

exonicParts is a replacement for disjointExons with the following differences/improvements:

* Argument linked.to.single.gene.only in exonicParts replaces argument aggregateGenes
indisjointExons, but has opposite meaning i.e. exonicParts(txdb,linked. to.single.gene.only=TRUE)
returns the same exonic parts as disjointExons(txdb, aggregateGenes=FALSE).

e Unlike disjointExons(txdb, aggregateGenes=TRUE), exonicParts(txdb,linked.to.single.gene.only=F/
does NOT discard exon parts that are not linked to a gene.

¢ exonicParts is almost 2x more efficient than disjointExons.

* exonicParts works out-of-the-box on any TxDb-like object that supports the transcripts()
and exonsBy () extractors (e.g. on an EnsDb object).

Author(s)

Hervé Pages

See Also
* disjoin in the IRanges package.

e transcripts, transcriptsBy, and transcriptsByOverlaps, for extracting genomic fea-
ture locations from a TxDb-like object.

* transcriptLengths for extracting the transcript lengths (and other metrics) from a TxDb
object.

* extractTranscriptSeqs for extracting transcript (or CDS) sequences from chromosome se-
quences.

* coverageByTranscript for computing coverage by transcript (or CDS) of a set of ranges.

¢ The TxDb class.

exonicParts 11

Examples

library(TxDb.Hsapiens.UCSC.hg19.knownGene)
txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene

B m o o
exonicParts()
B m o

exonic_parts] <- exonicParts(txdb)
exonic_partsi

Mapping from exonic parts to genes is many-to-many:

gene_id1 <- mcols(exonic_partsi1)$gene_id

gene_id1 # CharacterList object

table(lengths(gene_id1))

The number of known genes a Human exonic part can be linked to
varies from @ to 22!

exonic_parts2 <- exonicParts(txdb, linked.to.single.gene.only=TRUE)
exonic_parts2

Mapping from exonic parts to genes now is many-to-one:
gene_id2 <- mcols(exonic_parts2)$gene_id
gene_id2[1:20] # character vector

Select exonic parts for a given gene:
exonic_parts2[gene_id2 %in% "643837"]

Sanity checks:
stopifnot(isDisjoint(exonic_partsl), isStrictlySorted(exonic_parts1))
stopifnot(isDisjoint(exonic_parts2), isStrictlySorted(exonic_parts2))
stopifnot(all(exonic_parts2 %within% reduce(exonic_partsl1)))
stopifnot(identical(

lengths(gene_id1) == 1L,

exonic_parts1 %within% exonic_parts2

)

B — o
intronicParts()
B m o

intronic_partsl <- intronicParts(txdb)
intronic_partsi

Mapping from intronic parts to genes is many-to-many:
mcols(intronic_parts1)$gene_id
table(lengths(mcols(intronic_partsi1)$gene_id))

A Human intronic part can be linked to @ to 22 known genes!

intronic_parts2 <- intronicParts(txdb, linked.to.single.gene.only=TRUE)
intronic_parts2

Mapping from intronic parts to genes now is many-to-one:
class(mcols(intronic_parts2)$gene_id) # character vector

Sanity checks:

12 extractTranscriptSeqs

stopifnot(isDisjoint(intronic_partsl1), isStrictlySorted(intronic_partsi))
stopifnot(isDisjoint(intronic_parts2), isStrictlySorted(intronic_parts2))
stopifnot(all(intronic_parts2 %within% reduce(intronic_parts1)))
stopifnot(identical(

lengths(mcols(intronic_parts1)$gene_id) == 1L,

intronic_partsl %within% intronic_parts2

)

B o m o mmm
Helper functions
R

tidyTranscripts(txdb) # Ordered by 'tx_id'.
tidyTranscripts(txdb, drop.geneless=TRUE) # Ordered first by 'gene_id',
then by 'tx_id'.

tidyExons(txdb) # Ordered first by 'tx_id',

then by 'exon_rank'.
tidyExons(txdb, drop.geneless=TRUE) # Ordered first by 'gene_id',

then by 'tx_id',

then by 'exon_rank'.
tidyIntrons(txdb) # Ordered by 'tx_id'.

tidyIntrons(txdb, drop.geneless=TRUE) # Ordered first by 'gene_id',
then by 'tx_id'.

extractTranscriptSeqs Extract transcript (or CDS) sequences from chromosome sequences

Description

extractTranscriptSeqs extracts transcript (or CDS) sequences from an object representing a
single chromosome or a collection of chromosomes.

Usage
extractTranscriptSeqs(x, transcripts, ...)

S4 method for signature 'DNAString'
extractTranscriptSeqs(x, transcripts, strand="+"

S4 method for signature 'ANY'

extractTranscriptSeqs(x, transcripts, ...)
Arguments
X An object representing a single chromosome or a collection of chromosomes.

More precisely, x can be a DNAString object (single chromosome), or a BSgenome
object (collection of chromosomes).

Other objects representing a collection of chromosomes are supported (e.g. FaFile
objects in the Rsamtools package) as long as seginfo and getSeq work on
them.

extractTranscriptSeqs 13

transcripts An object representing the exon ranges of each transcript to extract.
More precisely:

 If x is a DNAString object, then transcripts must be an IntegerRanges-
List object.

* If x is a BSgenome object or any object representing a collection of chromo-
somes, then transcripts must be a GRangesList object or any object for
which exonsBy is implemented (e.g. a TxDb or EnsDb object). If the latter,
then it’s first turned into a GRangesList object with exonsBy (transcripts,by="tx",...).

Note that, for each transcript, the exons must be ordered by ascending rank, that
is, by ascending position in the transcript (when going in the 5’ to 3’ direction).
This generally means (but not always) that they are also ordered from 5’ to 3’
on the reference genome. More precisely:

* For a transcript located on the plus strand, the exons will typically (but not
necessarily) be ordered by ascending position on the reference genome.

* For a transcript located on the minus strand, the exons will typically (but not
necessarily) be ordered by descending position on the reference genome.

If transcripts was obtained with exonsBy (see above), then the exons are
guaranteed to be ordered by ascending rank. See ?exonsBy for more informa-
tion.

Additional arguments, for use in specific methods.

For the default method, additional arguments are allowed only when transcripts
is not a GRangesList object, in which case they are passed to the internal call to
exonsBy (see above).

strand Only supported when x is a DNAString object.

Can be an atomic vector, a factor, or an Rle object, in which case it indicates the
strand of each transcript (i.e. all the exons in a transcript are considered to be
on the same strand). More precisely: it’s turned into a factor (or factor-Rle) that
has the "standard strand levels" (this is done by calling the strand function on
it). Then it’s recycled to the length of IntegerRangesList object transcripts if
needed. In the resulting object, the i-th element is interpreted as the strand of all
the exons in the i-th transcript.

strand can also be a list-like object, in which case it indicates the strand of
each exon, individually. Thus it must have the same shape as IntegerRangesList
object transcripts (i.e. same length plus strand[[i]] must have the same
length as transcripts[[i]] for all 1).

n_mn

strand can only contain "+" and/or values. "x" is not allowed.

Value

A DNAStringSet object parallel to transcripts, that is, the i-th element in it is the sequence of
the i-th transcript in transcripts.

Author(s)

Hervé Pages

See Also

* coverageByTranscript for computing coverage by transcript (or CDS) of a set of ranges.

14 extractTranscriptSeqs

* transcriptlLengths for extracting the transcript lengths (and other metrics) from a TxDb
object.

* The transcriptlLocs2reflLocs function for converting transcript-based locations into reference-
based locations.

* The available.genomes function in the BSgenome package for checking avaibility of BSgenome
data packages (and installing the desired one).

* The DNAString and DNAStringSet classes defined and documented in the Biostrings pack-
age.

* The translate function in the Biostrings package for translating DNA or RNA sequences
into amino acid sequences.

* The GRangesList class defined and documented in the GenomicRanges package.

* The IntegerRangesList class defined and documented in the IRanges package.

* The exonsBy function for extracting exon ranges grouped by transcript.

* The TxDb class.

Examples

HHE s
1. A TOY EXAMPLE
Bt e

library(Biostrings)

A chromosome of length 30:
X <= DNAString("ATTTAGGACACTCCCTGAGGACAAGACCCC")

2 transcripts on 'x':

tx1 <- IRanges(1, 8) # 1 exon

tx2 <- c(tx1, IRanges(12, 30)) # 2 exons
transcripts <- IRangesList(tx1=tx1, tx2=tx2)
extractTranscriptSeqs(x, transcripts)

By default, all the exons are considered to be on the plus strand.
We can use the 'strand' argument to tell extractTranscriptSeqs()
to extract them from the minus strand.

Extract all the exons from the minus strand:
extractTranscriptSeqs(x, transcripts, strand="-")

Note that, for a transcript located on the minus strand, the exons
should typically be ordered by descending position on the reference
genome in order to reflect their rank in the transcript:
extractTranscriptSeqs(x, IRangesList(tx1=tx1, tx2=rev(tx2)), strand="-")

Extract the exon of the 1st transcript from the minus strand:
extractTranscriptSeqs(x, transcripts, strand=c(”"-", "+"))

Extract the 2nd exon of the 2nd transcript from the minus strand:

extractTranscriptSeqs(x, transcripts, strand=list("-", c("+", "-")))

2. A REAL EXAMPLE
e

extractTranscriptSeqs

Load a genome:
library(BSgenome.Hsapiens.UCSC.hg19)
genome <- BSgenome.Hsapiens.UCSC.hg19

Load a TxDb object:

txdb_file <- system.file("extdata”, "hgl19_knownGene_sample.sqlite”,
package="GenomicFeatures")

txdb <- loadDb(txdb_file)

Check that 'txdb' is based on the hgl19 assembly:
txdb

Extract the exon ranges grouped by transcript from 'txdb':
transcripts <- exonsBy(txdb, by="tx", use.names=TRUE)

Extract the transcript sequences from the genome:
tx_seqs <- extractTranscriptSeqgs(genome, transcripts)
tx_seqs

A sanity check:
stopifnot(identical (width(tx_seqs), unname(sum(width(transcripts)))))

Note that 'tx_seqs' can also be obtained with:
extractTranscriptSeqs(genome, txdb, use.names=TRUE)

B m
3. USING extractTranscriptSeqs() TO EXTRACT CDS SEQUENCES
B oo

cds <- cdsBy(txdb, by="tx", use.names=TRUE)
cds_seqs <- extractTranscriptSeqs(genome, cds)
cds_seqs

A sanity check:
stopifnot(identical(width(cds_seqgs), unname(sum(width(cds)))))

Note that, alternatively, the CDS sequences can be obtained from the
transcript sequences by removing the 5' and 3' UTRs:
tx_lens <- transcriptLengths(txdb, with.utr5_len=TRUE, with.utr3_len=TRUE)
stopifnot(identical(tx_lens$tx_name, names(tx_seqs))) # sanity
Keep the rows in 'tx_lens' that correspond to a sequence in 'cds_seqgs'
and put them in the same order as in 'cds_seqgs':
m <- match(names(cds_seqs), names(tx_seqs))
tx_lens <- tx_lens[m,]
utr5_width <- tx_lens$utr5_len
utr3_width <- tx_lens$utr3_len
cds_seqs2 <- narrow(tx_seqs[m],

start=utr5_width+1L, end=-(utr3_width+1L))
stopifnot(identical(as.character(cds_seqs2), as.character(cds_segs)))

Bt e
4. TRANSLATE THE CDS SEQUENCES
HHE = m e

prot_seqs <- translate(cds_seqs, if.fuzzy.codon="solve")

15

16 extractUpstreamSeqs

Note that, by default, translate() uses The Standard Genetic Code to

translate codons into amino acids. However, depending on the organism,

a different genetic code might be needed to translate CDS sequences

located on the mitochodrial chromosome. For example, for vertebrates,

the following code could be used to correct 'prot_seqgs':

SGC1 <- getGeneticCode("SGC1")

chrM_idx <- which(all(segnames(cds) == "chrM"))

prot_seqgs[chrM_idx] <- translate(cds_seqs[chrM_idx], genetic.code=SGCT,
if.fuzzy.codon="solve")

extractUpstreamSeqs Extract sequences upstream of a set of genes or transcripts

Description

extractUpstreamSegs is a generic function for extracting sequences upstream of a supplied set of
genes or transcripts.

Usage

extractUpstreamSeqs(x, genes, width=1000, ...)
Dispatch is on the 2nd argument!

S4 method for signature 'GenomicRanges'
extractUpstreamSeqs(x, genes, width=1000)

S4 method for signature 'TxDb'
extractUpstreamSeqs(x, genes, width=1000, exclude.seqlevels=NULL)

Arguments

X An object containing the chromosome sequences from which to extract the up-
stream sequences. It can be a BSgenome, TwoBitFile, or FaFile object, or any
genome sequence container. More formally, x must be an object for which
seqinfo and getSeq are defined.

genes An object containing the locations (i.e. chromosome name, start, end, and
strand) of the genes or transcripts with respect to the reference genome. Only
GenomicRanges and TxDb objects are supported at the moment. If the latter, the
gene locations are obtained by calling the genes function on the TxDb object
internally.

width How many bases to extract upstream of each TSS (transcription start site).

Additional arguments, for use in specific methods.

exclude.seqlevels
A character vector containing the chromosome names (a.k.a. sequence levels)
to exclude when the genes are obtained from a TxDb object.

extractUpstreamSeqs 17

Value

A DNAStringSet object containing one upstream sequence per gene (or per transcript if genes is a
GenomicRanges object containing transcript ranges).

More precisely, if genes is a GenomicRanges object, the returned object is parallel to it, that is,
the i-th element in the returned object is the upstream sequence corresponding to the i-th gene (or
transcript) in genes. Also the names on the GenomicRanges object are propagated to the returned
object.

If genes is a TxDb object, the names on the returned object are the gene IDs found in the TxDb
object. To see the type of gene IDs (i.e. Entrez gene ID or Ensembl gene ID or ...), you can display
genes with show(genes).

In addition, the returned object has the following metadata columns (accessible with mcols) that
provide some information about the gene (or transcript) corresponding to each upstream sequence:
* gene_segnames: the chromosome name of the gene (or transcript);
* gene_strand: the strand of the gene (or transcript);

* gene_TSS: the transcription start site of the gene (or transcript).

Note

IMPORTANT: Always make sure to use a TxDb package (or TxDb object) that contains a gene
model compatible with the genome sequence container x, that is, a gene model based on the exact
same reference genome as Xx.

See http://bioconductor.org/packages/release/BiocViews.html#___TxDb for the list of

TxDb packages available in the current release of Bioconductor. Note that you can make your
own custom TxDb object from various annotation resources by using one of the makeTxDbF romx ()
functions listed in the "See also" section below.

Author(s)

Hervé Pages

See Also

* makeTxDbFromUCSC, makeTxDbFromBiomart, and makeTxDbFromEnsembl, for making a TxDb
object from online resources.

* makeTxDbFromGRanges and makeTxDbFromGFF for making a TxDb object from a GRanges
object, or from a GFF or GTF file.

* The available.genomes function in the BSgenome package for checking avaibility of BSgenome
data packages (and installing the desired one).

* The BSgenome, TwoBitFile, and FaFile classes, defined and documented in the BSgenome,
rtracklayer, and Rsamtools packages, respectively.

* The TxDb class.

* The genes function for extracting gene ranges from a TxDb object.

* The GenomicRanges class defined and documented in the GenomicRanges package.
» The DNAStringSet class defined and documented in the Biostrings package.

* The seqinfo getter defined and documented in the GenomeInfoDb package.

* The getSeq function for extracting subsequences from a sequence container.

http://bioconductor.org/packages/release/BiocViews.html#___TxDb

18 FeatureDb-class

Examples

Load a genome:
library(BSgenome.Dmelanogaster.UCSC.dm3)
genome <- BSgenome.Dmelanogaster.UCSC.dm3
genome

Use a TxDb object:
library(TxDb.Dmelanogaster.UCSC.dm3.ensGene)
txdb <- TxDb.Dmelanogaster.UCSC.dm3.ensGene
txdb # contains Ensembl gene IDs

Because the chrU and chrUextra sequences are made of concatenated

scaffolds (see http://genome.ucsc.edu/cgi-bin/hgGateway?db=dm3),

extracting the upstream sequences for genes located on these

scaffolds is not reliable. So we exclude them:

exclude <- c("chrU”, "chrUextra")

up1000seqs <- extractUpstreamSeqgs(genome, txdb, width=1000,
exclude.seglevels=exclude)

up1000seqs # the names are Ensembl gene IDs

mcols(up1000@seqs)

Upstream sequences for genes close to the chromosome bounds can be
shorter than 1000 (note that this does not happen for circular

chromosomes like chrM):

table(width(up1000seqs))

mcols(up1000seqs) [width(up1000seqs) != 1000,]

FeatureDb-class FeatureDb objects

Description

The FeatureDb class is a generic container for storing genomic locations of an arbitrary type of
genomic features.

See ?TxDb for a container for storing transcript annotations.

See ?makeFeatureDbFromUCSC for a convenient way to make FeatureDb objects from BioMart
online resources.

Methods

In the code snippets below, x is a FeatureDb object.

metadata(x): Return x’s metadata in a data frame.

Author(s)

Marc Carlson

features 19

See Also

* The TxDb class for storing transcript annotations.

* makeFeatureDbFromUCSC for a convenient way to make a FeatureDb object from UCSC on-
line resources.

* saveDb and loadDb for saving and loading the database content of a FeatureDb object.

» features for how to extract genomic features from a FeatureDb object.

Examples

fdb_file <- system.file("extdata”, "FeatureDb.sqlite",
package="GenomicFeatures")

fdb <- loadDb(fdb_file)

fdb

features Extract simple features from a FeatureDb object

Description

Generic function to extract genomic features from a FeatureDb object.

Usage
features(x)
S4 method for signature 'FeatureDb'
features(x)

Arguments

X A FeatureDb object.

Value

a GRanges object

Author(s)
M. Carlson

See Also
FeatureDb

Examples

fdb <- loadDb(system.file("extdata"”, "FeatureDb.sqlite",
package="GenomicFeatures"))
features(fdb)

20 getPromoterSeq

getPromoterSeq Get gene promoter sequences

Description

Extract sequences for the genes or transcripts specified in the query (aGRanges or GRangesList
object) from a BSgenome object or an FaFile.

Usage
S4 method for signature 'GRangeslList'
getPromoterSeq(query, subject, upstream=2000, downstream=200, ...)
S4 method for signature 'GRangesList'
getPromoterSeq(query, subject, upstream=2000, downstream=200, ...)
S4 method for signature 'GRanges'
getPromoterSeq(query, subject, upstream=2000, downstream=200, ...)
Arguments
query A GRanges or GRangesList object containing genes grouped by transcript.
subject A BSgenome object or a FaFile from which the sequences will be taken.
upstream The number of DNA bases to include upstream of the TSS (transcription start
site)
downstream The number of DNA bases to include downstream of the TSS (transcription start
site)

Additional arguments

Details

getPromoterSeq is an overloaded method dispatching on query, which is either a GRanges or a
GRangesList. It is a wrapper for the promoters and getSeq functions. The purpose is to allow
sequence extraction from either a BSgenome or FaFile.

Default values for upstream and downstream were chosen based on our current understanding of
gene regulation. On average, promoter regions in the mammalian genome are 5000 bp upstream
and downstream of the transcription start site.

Value
A DNAStringSet or DNAStringSetList instance corresponding to the GRanges or GRangesList
supplied in the query.

Author(s)

Paul Shannon

See Also

intra-range-methods ## promoters method for IntegerRanges objects intra-range-methods ## pro-
moters method for GenomicRanges objects getSeq

id2name 21

Examples

library(TxDb.Hsapiens.UCSC.hg19.knownGene)
library(BSgenome.Hsapiens.UCSC.hg19)

e2f3 <- "1871" # entrez genelD for a cell cycle control transcription
factor, chr6 on the plus strand

transcriptCoordsByGene.GRangeslList <-
transcriptsBy (TxDb.Hsapiens.UCSC.hgl19.knownGene, by = "gene") [e2f3]
a GrangesList of length one, describing three transcripts

promoter.seqs <- getPromoterSeq (transcriptCoordsByGene.GRangeslList,
Hsapiens, upstream=10, downstream=0)
DNAStringSetList of length 1
[["1871"]]1 GCTTCCTGGA GCTTCCTGGA CGGAGCCAGG

id2name Map internal ids to external names for a given feature type

Description

Utility function for retrieving the mapping from the internal ids to the external names of a given
feature type.

Usage

id2name(txdb, feature.type=c("tx", "exon", "cds"))

Arguments

txdb A TxDb object.

feature. type The feature type for which the mapping must be retrieved.

Details

Transcripts, exons and CDS in a TxDb object are stored in seperate tables where the primary key is
an integer called feature internal id. This id is stored in the "tx_id" column for transcripts, in the
"exon_id" column for exons, and in the "cds_id" column for CDS. Unlike other commonly used
ids like Entrez Gene IDs or Ensembl IDs, this internal id was generated at the time the TxDb object
was created and has no meaning outside the scope of this object.

The id2name function can be used to translate this internal id into a more informative id or name
called feature external name. This name is stored in the "tx_name"” column for transcripts, in the
"exon_name"” column for exons, and in the "cds_name"” column for CDS.

Note that, unlike the feature internal id, the feature external name is not guaranteed to be unique or
even defined (the column can contain NAs).

Value

A named character vector where the names are the internal ids and the values the external names.

22 makeFeatureDbFromUCSC

Author(s)

Hervé Pages

See Also

* transcripts, transcriptsBy, and transcriptsByOverlaps, for how to extract genomic
features from a TxDb object.

¢ The TxDb class.

Examples

txdb1_file <- system.file("extdata”, "hgl19_knownGene_sample.sqlite”,
package="GenomicFeatures")

txdb1 <- loadDb(txdb1_file)

id2name(txdb1, feature.type="tx")[1:4]

id2name(txdb1, feature.type="exon")[1:4]

id2name(txdb1, feature.type="cds")[1:4]

txdb2_file <- system.file("extdata”, "Biomart_Ensembl_sample.sqlite”,
package="GenomicFeatures")

txdb2 <- loadDb(txdb2_file)

id2name(txdb2, feature.type="tx")[1:4]

id2name(txdb2, feature.type="exon")[1:4]

id2name(txdb2, feature.type="cds")[1:4]

makeFeatureDbFromUCSC Making a FeatureDb object from annotations available at the UCSC
Genome Browser

Description

The makeFeatureDbFromUCSC function allows the user to make a FeatureDb object from simple
annotation tracks at UCSC. The tracks in question must (at a minimum) have a start, end and a
chromosome affiliation in order to be made into a FeatureDb. This function requires a precise dec-
laration of its first three arguments to indicate which genome, track and table wish to be imported.
There are discovery functions provided to make this process go smoothly.

Usage

supportedUCSCFeatureDbTracks(genome)
supportedUCSCFeatureDbTables(genome, track)

UCSCFeatureDbTableSchema(genome,
track,
tablename)

makeFeatureDbFromUCSC(
genome,
track,
tablename,
columns = UCSCFeatureDbTableSchema(genome, track, tablename),

makeFeature DbFromUCSC 23

url="http://genome.ucsc.edu/cgi-bin/",
goldenPath.url=getOption(”"UCSC.goldenPath.url"),
chromCol,

chromStartCol,

chromgndCol,

taxonomyId=NA)

Arguments

genome genome abbreviation used by UCSC and obtained by ucscGenomes()[,"db"].
For example: "hg18".

track name of the UCSC track. Use supportedUCSCFeatureDbTracks to get the list
of available tracks for a particular genome

tablename name of the UCSC table containing the annotations to retrieve. Use the supportedUCSCFeatureDbTal
utility function to get the list of supported tables for a track.

columns a named character vector to list out the names and types of the other columns

that the downloaded track should have. Use UCSCFeatureDbTableSchema to
retrieve this information for a particular table.

url,goldenPath.url
use to specify the location of an alternate UCSC Genome Browser.

chromCol If the schema comes back and the *chrom’ column has been labeled something
other than ’chrom’, use this argument to indicate what that column has been
labeled as so we can properly designate it. This could happen (for example)
with the knownGene track tables, which has no ’chromStart’ or ’chromEnd’
columns, but which DOES have columns that could reasonably substitute for
these columns under particular circumstances. Therefore we allow these three
columns to have arguments so that their definition can be re-specified

chromStartCol Same thing as chromCol, but for renames of ’chromStart’
chromEndCol Same thing as chromCol, but for renames of ’chromEnd’

taxonomyId By default this value is NA and the organism inferred will be used to look up the
correct value for this. But you can use this argument to override that and supply
your own valid taxId here.

Details

makeFeatureDbFromUCSC is a convenience function that builds a tiny database from one of the
UCSC track tables. supportedUCSCFeatureDbTracks a convenience function that returns potential
track names that could be used to make FeatureDb objects supportedUCSCFeatureDbTables a
convenience function that returns potential table names for FeatureDb objects (table names go with
a track name) UCSCFeatureDbTableSchema A convenience function that creates a named vector of
types for all the fields that can potentially be supported for a given track. By default, this will be
called on your specified tablename to include all of the fields in a track.

Value
A FeatureDb object for makeFeatureDbFromUCSC. Or in the case of supportedUCSCFeatureDbTracks
and UCSCFeatureDbTableSchema a named character vector

Author(s)
M. Carlson

24 makeTxDb

See Also

ucscGenomes,

Examples

Display the list of genomes available at UCSC:
library(GenomicFeatures)

library(rtracklayer)

ucscGenomes()[, "db"]

Display the list of Tracks supported by makeFeatureDbFromUCSC():
supportedUCSCFeatureDbTracks("mm10")

Display the list of tables supported by your track:
supportedUCSCFeatureDbTables(genome="mm10",
track="gPCR Primers")

Display fields that could be passed in to colnames:
UCSCFeatureDbTableSchema(genome="mm10",
track="gPCR Primers",
tablename="gPcrPrimers")

Retrieving a full transcript dataset for Mouse from UCSC:
fdb <- makeFeatureDbFromUCSC(genome="mm10",
track="gPCR Primers”,
tablename="qPcrPrimers")
fdb

makeTxDb Making a TxDb object from user supplied annotations

Description

makeTxDb is a low-level constructor for making a TxDb object from user supplied transcript anno-
tations.

Note that the end user will rarely need to use makeTxDb directly but will typically use one of the
high-level constructors makeTxDbFromUCSC, makeTxDbFromEnsembl, or makeTxDbFromGFF.
Usage

makeTxDb(transcripts, splicings, genes=NULL,
chrominfo=NULL, metadata=NULL,

reassign.ids=FALSE, on.foreign.transcripts=c("error”, "drop"))
Arguments
transcripts Data frame containing the genomic locations of a set of transcripts.
splicings Data frame containing the exon and CDS locations of a set of transcripts.
genes Data frame containing the genes associated to a set of transcripts.
chrominfo Data frame containing information about the chromosomes hosting the set of

transcripts.

makeTxDb 25

metadata 2-column data frame containing meta information about this set of transcripts

like organism, genome, UCSC table, etc... The names of the columns must be
"name” and "value" and their type must be character.

reassign.ids TRUE or FALSE. Controls how internal ids should be assigned for each type of

feature i.e. for transcripts, exons, and CDS. For each type, if reassign.ids is
FALSE (the default) and if the ids are supplied, then they are used as the internal
ids, otherwise the internal ids are assigned in a way that is compatible with the
order defined by ordering the features first by chromosome, then by strand, then
by start, and finally by end.

on.foreign.transcripts

Details

Controls what to do when the input contains foreign transcripts i.e. transcripts
that are on sequences not in chrominfo. If set to "error” (the default)

The transcripts (required), splicings (required) and genes (optional) arguments must be data
frames that describe a set of transcripts and the genomic features related to them (exons, CDS
and genes at the moment). The chrominfo (optional) argument must be a data frame containing
chromosome information like the length of each chromosome.

transcripts must have 1 row per transcript and the following columns:

tx_id: Transcript ID. Integer vector. No NAs. No duplicates.
tx_chrom: Transcript chromosome. Character vector (or factor) with no NAs.

tx_strand: Transcript strand. Character vector (or factor) with no NAs where each element

n_n

is either "+" or "-".
tx_start, tx_end: Transcript start and end. Integer vectors with no NAs.

tx_name: [optional] Transcript name. Character vector (or factor). NAs and/or duplicates are
ok.

tx_type: [optional] Transcript type (e.g. mRNA, ncRNA, snoRNA, etc...). Character vector
(or factor). NAs and/or duplicates are ok.

gene_id: [optional] Associated gene. Character vector (or factor). NAs and/or duplicates are
ok.

Other columns, if any, are ignored (with a warning).

splicings must have N rows per transcript, where N is the nb of exons in the transcript. Each row
describes an exon plus, optionally, the CDS contained in this exon. Its columns must be:

tx_id: Foreign key that links each row in the splicings data frame to a unique row in the
transcripts data frame. Note that more than 1 row in splicings can be linked to the same
row in transcripts (many-to-one relationship). Same type as transcripts$tx_id (integer
vector). No NAs. All the values in this column must be present in transcripts$tx_id.

exon_rank: The rank of the exon in the transcript. Integer vector with no NAs. (tx_id,
exon_rank) pairs must be unique.

exon_id: [optional] Exon ID. Integer vector with no NAs.

exon_name: [optional] Exon name. Character vector (or factor). NAs and/or duplicates are
ok.

exon_chrom: [optional] Exon chromosome. Character vector (or factor) with no NAs. If
missing then transcripts$tx_chrom is used. If present then exon_strand must also be
present.

26

makeTxDb

exon_strand: [optional] Exon strand. Character vector (or factor) with no NAs. If missing
then transcripts$tx_strand is used and exon_chrom must also be missing.

exon_start, exon_end: Exon start and end. Integer vectors with no NAs.

cds_id: [optional] CDS ID. Integer vector. If present then cds_start and cds_end must also
be present. NAs are allowed and must match those in cds_start and cds_end.

cds_name: [optional] CDS name. Character vector (or factor). If present then cds_start and
cds_end must also be present. NAs and/or duplicates are ok. Must contain NAs at least where
cds_start and cds_end contain them.

cds_start, cds_end: [optional] CDS start and end. Integer vectors. If one of the 2 columns
is missing then all cds_* columns must be missing. NAs are allowed and must occur at the
same positions in cds_start and cds_end.

cds_phase: [optional] CDS phase. Integer vector. If present then cds_start and cds_end
must also be present. NAs are allowed and must match those in cds_start and cds_end.

Other columns, if any, are ignored (with a warning).

genes should not be supplied if transcripts has a gene_id column. If supplied, it must have N
rows per transcript, where N is the nb of genes linked to the transcript (N will be 1 most of the
time). Its columns must be:

tx_id: [optional] genes must have either a tx_id or a tx_name column but not both. Like
splicings$tx_id, this is a foreign key that links each row in the genes data frame to a unique
row in the transcripts data frame.

tx_name: [optional] Can be used as an alternative to the genes$tx_id foreign key.

gene_id: Gene ID. Character vector (or factor). No NAs.

Other columns, if any, are ignored (with a warning).

chrominfo must have 1 row per chromosome and the following columns:

chrom: Chromosome name. Character vector (or factor) with no NAs and no duplicates.
length: Chromosome length. Integer vector with either all NAs or no NAs.

is_circular: [optional] Chromosome circularity flag. Logical vector. NAs are ok.

Other columns, if any, are ignored (with a warning).

Value

A TxDb object.

Author(s)

Hervé Pages

See Also

makeTxDbFromUCSC, makeTxDbFromBiomart, and makeTxDbFromEnsembl, for making a TxDb
object from online resources.

makeTxDbFromGRanges and makeTxDbFromGFF for making a TxDb object from a GRanges
object, or from a GFF or GTF file.

The TxDb class.

saveDb and loadDb in the AnnotationDbi package for saving and loading a TxDb object as
an SQLite file.

makeTxDbFromBiomart 27

Examples

transcripts <- data.frame(
tx_id=1:3,
tx_chrom="chr1",
tx_strand=c("-", "+", "+"),
tx_start=c(1, 2001, 2001),
tx_end=c(999, 2199, 2199))

splicings <- data.frame(
tx_id=c(1L, 2L, 2L, 2L, 3L, 3L),
exon_rank=c(1, 1, 2, 3, 1, 2),
exon_start=c(1, 2001, 2101, 2131, 2001, 2131),
exon_end=c(999, 2085, 2144, 2199, 2085, 2199),
cds_start=c(1, 2022, 2101, 2131, NA, NA),
cds_end=c(999, 2085, 2144, 2193, NA, NA),
cds_phase=c(@, 0, 2, 0, NA, NA))

txdb <- makeTxDb(transcripts, splicings)

makeTxDbFromBiomart Make a TxDb object from annotations available on a BioMart
database

Description

The makeTxDbFromBiomart function allows the user to make a TxDb object from transcript anno-
tations available on a BioMart database.

Note that makeTxDbFromBiomart is being phased out in favor of makeTxDbFromEnsembl.

Usage

makeTxDbFromBiomart(biomart="ENSEMBL_MART_ENSEMBL",
dataset="hsapiens_gene_ensembl"”,
transcript_ids=NULL,
circ_seqs=NULL,
filter=NULL,
id_prefix="ensembl_",
host="www.ensembl.org",
port=80,
taxonomyId=NA,
miRBaseBuild=NA)

getChromInfoFromBiomart (biomart="ENSEMBL_MART_ENSEMBL",
dataset="hsapiens_gene_ensembl"”,
id_prefix="ensembl_",
host="www.ensembl.org",
port=80)

Arguments

biomart which BioMart database to use. Get the list of all available BioMart databases
with the 1istMarts function from the biomaRt package. See the details section
below for a list of BioMart databases with compatible transcript annotations.

28 makeTxDbFromBiomart

dataset which dataset from BioMart. For example: "hsapiens_gene_ensembl”, "mmusculus_gene_ensemb
"dmelanogaster_gene_ensembl”, "celegans_gene_ensembl”, "scerevisiae_gene_ensembl”,
etc in the ensembl database. See the examples section below for how to discover
which datasets are available in a given BioMart database.

transcript_ids optionally, only retrieve transcript annotation data for the specified set of tran-
script ids. If this is used, then the meta information displayed for the resulting
TxDb object will say "Full dataset: no’. Otherwise it will say ’Full dataset: yes’.

circ_seqs a character vector to list out which chromosomes should be marked as circular.

filter Additional filters to use in the BioMart query. Must be a named list. An example
is filter=1list(source="entrez")

id_prefix Specifies the prefix used in BioMart attributes. For example, some BioMarts
may have an attribute specified as "ensembl_transcript_id"” whereas others
have the same attribute specified as "transcript_id". Defaults to "ensembl_".

host The host URL of the BioMart. Defaults to www.ensembl.org.
port The port to use in the HTTP communication with the host.
taxonomyId By default this value is NA and the dataset selected will be used to look up the

correct value for this. But you can use this argument to override that and supply
your own taxId here (which will be independently checked to make sure its a
real taxonomy id). Normally you should never need to use this.

miRBaseBuild specify the string for the appropriate build Information from mirbase.db to use
for microRNAs. This can be learned by calling supportedMiRBaseBuildValues.
By default, this value will be set to NA, which will inactivate the microRNAs ac-
CESSOr.

Details

makeTxDbFromBiomart is a convenience function that feeds data from a BioMart database to the
lower level makeTxDb function. See ?makeTxDbFromUCSC for a similar function that feeds data from
the UCSC source.

Here is a list of datasets known to be compatible with makeTxDbFromBiomart (list updated on
September 18, 2017):
1. All the datasets in the main Ensembl database. Get the list with:

mart <- biomaRt::useMart(biomart="ENSEMBL_MART_ENSEMBL",
host="www.ensembl.org")
biomaRt::listDatasets(mart)

2. All the datasets in the Ensembl Fungi database. Get the list with:

mart <- biomaRt::useMart(biomart="fungi_mart",
host="fungi.ensembl.org")
biomaRt::listDatasets(mart)

3. All the datasets in the Ensembl Metazoa database. Get the list with:

mart <- biomaRt::useMart(biomart="metazoa_mart"”,
host="metazoa.ensembl.org")
biomaRt::listDatasets(mart)

4. All the datasets in the Ensembl Plants database. Get the list with:

mart <- biomaRt::useMart(biomart="plants_mart",
host="plants.ensembl.org")
biomaRt::1listDatasets(mart)

makeTxDbFromBiomart 29

5. All the datasets in the Ensembl Protists database. Get the list with:

mart <- biomaRt::useMart(biomart="protists_mart”,
host="protists.ensembl.org")
biomaRt::listDatasets(mart)

6. All the datasets in the Gramene Mart. Get the list with:

mart <- biomaRt::useMart(biomart="ENSEMBL_MART_PLANT",
host="ensembl.gramene.org")
biomaRt::listDatasets(mart)

Note that BioMart is not currently available for Ensembl Bacteria.

Also please note that not all these datasets have CDS information.

Value

A TxDb object for makeTxDbFromBiomart.

A data frame with 1 row per chromosome (or scaffold) and with columns chrom and length for
getChromInfoFromBiomart.

Author(s)
M. Carlson and H. Pages

See Also
* makeTxDbFromUCSC and makeTxDbFromEnsembl for making a TxDb object from other online
resources.

* makeTxDbFromGRanges and makeTxDbFromGFF for making a TxDb object from a GRanges
object, or from a GFF or GTF file.

* The listMarts, useMart, listDatasets, and listFilters functions in the biomaRt pack-
age.

* The supportedMiRBaseBuildValues function for listing all the possible values for the miRBaseBuild

argument.
¢ The TxDb class.

* makeTxDb for the low-level function used by the makeTxDbFrom* functions to make the TxDb
object returned to the user.

Examples

e
A. BASIC USAGE
HHE =

We can use listDatasets() from the biomaRt package to list the

datasets available in the "ENSEMBL_MART_ENSEMBL" BioMart database:
library(biomaRt)

listMarts(host="www.ensembl.org")

mart <- useMart(biomart="ENSEMBL_MART_ENSEMBL", host="www.ensembl.org")
datasets <- listDatasets(mart)

head(datasets)

subset(datasets, grepl(”elegans”, dataset, ignore.case=TRUE))

30

makeTxDbFromBiomart

Retrieve the full transcript dataset for Worm:
txdb1 <- makeTxDbFromBiomart(dataset="celegans_gene_ensembl")
txdb1

Retrieve an incomplete transcript dataset for Human:
transcript_ids <- c¢(

"ENST00000013894",

"ENST00000268655",

"ENST00000313243",

"ENST00000435657",

"ENST00000384428",

"ENST0Q0000478783"

if (interactive()) {
txdb2 <- makeTxDbFromBiomart(dataset="hsapiens_gene_ensembl”,
transcript_ids=transcript_ids)
txdb2 # note that these annotations match the GRCh38 genome assembly
3

B = oo
B. ACCESSING THE EnsemblGenomes MARTS
e
library(biomaRt)

Note that BioMart is not currently available for Ensembl Bacteria.

Hf —mmmm oo
--- Ensembl Fungi ---

mart <- useMart(biomart="fungi_mart"”, host="fungi.ensembl.org")

datasets <- listDatasets(mart)

datasets$dataset

yeast_txdb <- makeTxDbFromBiomart(biomart="fungi_mart",
dataset="scerevisiae_eg_gene",
host="fungi.ensembl.org")

yeast_txdb

Note that the dataset for Yeast on Ensembl Fungi is not necessarily
the same as on the main Ensembl database:

yeast_txdb@ <- makeTxDbFromBiomart(dataset="scerevisiae_gene_ensembl"”)
all(transcripts(yeast_txdb@) %in% transcripts(yeast_txdb))
all(transcripts(yeast_txdb) %in% transcripts(yeast_txdb@))

--- Ensembl Metazoa ---

The metazoa mart is slow and at the same time it doesn't seem to

support requests that take more than 1 min at the moment. So a call to
biomaRt::getBM() will fail with a "Timeout was reached” error if the
requested data takes more than 1 min to download. This unfortunately
happens with the example below so we don't try to run it for now.

Not run:
mart <- useMart(biomart="metazoa_mart"”, host="metazoa.ensembl.org")
datasets <- listDatasets(mart)

makeTxDbFromBiomart

datasets$dataset

worm_txdb <- makeTxDbFromBiomart(biomart="metazoa_mart",
dataset="celegans_eg_gene",
host="metazoa.ensembl.org")

worm_txdb

Note that even if the dataset for Worm on Ensembl Metazoa contains
the same transcript as on the main Ensembl database, the transcript
type might be annotated with slightly different terms (e.g. antisense
vs antisense_RNA):

filter <- list(tx_name="Y71G12B.44")

transcripts(worm_txdb, filter=filter, columns=c("tx_name"”, "tx_type"))
transcripts(txdb1, filter=filter, columns=c(”"tx_name", "tx_type"))

End(Not run)
B —mmmmmmmm oo
--- Ensembl Plants ---

Like the metazoa mart (see above), the plants mart is also slow and
doesn't seem to support requests that take more than 1 min either.
So we don't try to run the example below for now.

Not run:

mart <- useMart(biomart="plants_mart”, host="plants.ensembl.org")

datasets <- listDatasets(mart)

datasets[, 1:2]

athaliana_txdb <- makeTxDbFromBiomart(biomart="plants_mart"”,
dataset="athaliana_eg_gene",
host="plants.ensembl.org")

athaliana_txdb

End(Not run)
H —mmm oo
--- Ensembl Protists ---

mart <- useMart(biomart="protists_mart”, host="protists.ensembl.org")

datasets <- listDatasets(mart)

datasets$dataset

tgondii_txdb <- makeTxDbFromBiomart(biomart="protists_mart”,
dataset="tgondii_eg_gene",
host="protists.ensembl.org")

tgondii_txdb

e
C. USING AN Ensembl MIRROR
e

You can use the 'host' argument to access the "ENSEMBL_MART_ENSEMBL"
BioMart database at a mirror (e.g. at uswest.ensembl.org). A gotcha
when doing this is that the name of the database on the mirror might
be different! We can check this with listMarts() from the biomaRt

package:

listMarts(host="useast.ensembl.org")

Therefore in addition to setting 'host' to "uswest.ensembl.org” we
might also need to specify the 'biomart' argument:
if (interactive()) {

32

makeTxDbFromEnsembl
txdb3 <- makeTxDbFromBiomart(biomart="ENSEMBL_MART_ENSEMBL",
dataset="hsapiens_gene_ensembl”,
transcript_ids=transcript_ids,
host="useast.ensembl.org")
txdb3
3
B m oo o
D. USING FILTERS
B m oo

We can use listFilters() from the biomaRt package to get valid filter
names:
mart <- useMart(biomart="ENSEMBL_MART_ENSEMBL",
dataset="hsapiens_gene_ensembl”,
host="www.ensembl.org")
head(listFilters(mart))

Retrieve transcript dataset for Ensembl gene ENSG00000011198:
my_filter <- list(ensembl_gene_id="ENSG00000011198")

if (interactive()) {
txdb4 <- makeTxDbFromBiomart(dataset="hsapiens_gene_ensembl"”,
filter=my_filter)

txdb4
transcripts(txdb4, columns=c("tx_id", "tx_name”, "gene_id"))
transcriptlLengths(txdb4)
3
B =
E. RETRIEVING CHROMOSOME INFORMATION ONLY
e

chrominfo <- getChromInfoFromBiomart(dataset="celegans_gene_ensembl"”)
chrominfo

makeTxDbFromEnsembl Make a TxDb object from an Ensembl database

Description

The makeTxDbFromEnsembl function creates a TxDb object for a given organism by importing the
genomic locations of its transcripts, exons, CDS, and genes from an Ensembl database.

Note that it uses the RMariaDB package internally so make sure that this package is installed.

Usage

makeTxDbFromEnsembl (organism="Homo sapiens”,
release=NA,
circ_seqs=NULL,
server="ensembldb.ensembl.org”,
username="anonymous”, password=NULL, port=0L,
tx_attrib=NULL)

makeTxDbFromEnsembl 33

Arguments

organism

release

circ_seqs

server

username
password
port
tx_attrib

Value

A TxDb object.

Note

The scientific name (i.e. genus and species, or genus and species and subspecies)
of the organism for which to import the data. Case is not sensitive. Underscores
can be used instead of white spaces e.g. "homo_sapiens” is accepted.

The Ensembl release to query e.g. 89. If set to NA (the default), the current
release is used.

A character vector to list out which chromosomes should be marked as circular.

The name of the MySQL server to query. See https://www.ensembl.org/
info/data/mysql.html for the list of Ensembl public MySQL servers. Make
sure to use the server nearest to you. It can make a big difference!

Login username for the MySQL server.
Login password for the MySQL server.
Port of the MySQL server.

If not NULL, only select transcripts with an attribute of the given code, a string,
like "gencode_basic".

makeTxDbFromEnsembl tends to be faster and more reliable than makeTxDbFromBiomart.

Author(s)
H. Pages

See Also

* makeTxDbFromUCSC and makeTxDbFromBiomart for making a TxDb object from other online

resources.

* makeTxDbFromGRanges and makeTxDbFromGFF for making a TxDb object from a GRanges
object, or from a GFF or GTF file.

¢ The TxDb class.

* makeTxDb for the low-level function used by the makeTxDbFrom* functions to make the TxDb
object returned to the user.

Examples

Not run:

txdb <- makeTxDbFromEnsembl("”Saccharomyces cerevisiae”,

txdb

End(Not run)

server="useastdb.ensembl.org")

https://www.ensembl.org/info/data/mysql.html
https://www.ensembl.org/info/data/mysql.html

34

makeTxDbFromGFF

makeTxDbFromGFF

Make a TxDb object from annotations available as a GFF3 or GTF
file

Description

The makeTxDbFromGFF function allows the user to make a TxDb object from transcript annotations
available as a GFF3 or GTF file.

Usage

makeTxDbFromGFF (file,
format=c("auto”, "gff3", "gtf"),
dataSource=NA,
organism=NA,
taxonomyId=NA,
circ_seqs=NULL,
chrominfo=NULL,
miRBaseBuild=NA,
metadata=NULL,
dbxrefTag)

Arguments

file Input GFF3 or GTF file. Can be a path to a file, or an URL, or a connection
object, or a GFF3File or GTFFile object.

format Format of the input file. Accepted values are: "auto” (the default) for auto-
detection of the format, "gff3", or "gtf"”. Use "gff3"” or "gtf" only if auto-
detection failed.

dataSource A single string describing the origin of the data file. Please be as specific as
possible.

organism What is the Genus and species of this organism. Please use proper scientific
nomenclature for example: "Homo sapiens" or "Canis familiaris” and not "hu-
man" or "my fuzzy buddy". If properly written, this information may be used
by the software to help you out later.

taxonomyId By default this value is NA and the organism provided will be used to look up
the correct value for this. But you can use this argument to override that and
supply your own taxonomy id here (which will be separately validated). Since
providing a valid taxonomy id will not require us to look up one based on your
organism: this is one way that you can loosen the restrictions about what is and
isn’t a valid value for the organism.

circ_seqs A character vector to list out which chromosomes should be marked as circular.

chrominfo Data frame containing information about the chromosomes. Will be passed to
the internal call to makeTxDb. See ?makeTxDb for more information. Alterna-
tively, can be a Seqinfo object.

miRBaseBuild Specify the string for the appropriate build Information from mirbase.db to use

for microRNAs. This can be learned by calling supportedMiRBaseBuildValues.
By default, this value will be set to NA, which will inactivate the microRNAs ac-
CEesSOr.

makeTxDbFromGFF 35

metadata A 2-column data frame containing meta information to be included in the TxDb
object. See ?makeTxDb for more information about the format of metadata.

dbxrefTag If not missing, the values in the Dbxref attribute with the specified tag (like
“GenelD”) are used for the feature names.

Details

makeTxDbFromGFF is a convenience function that feeds data from the parsed file to the makeTxDbF romGRanges
function.

Value

A TxDb object.

Author(s)
M. Carlson and H. Pages

See Also

* makeTxDbFromGRanges, which makeTxDbFromGFF is based on, for making a TxDb object
from a GRanges object.

* The import function in the rtracklayer package (also used by makeTxDbFromGFF internally).

* makeTxDbFromUCSC, makeTxDbFromBiomart, and makeTxDbFromEnsembl, for making a TxDb
object from online resources.

* The supportedMiRBaseBuildValues function for listing all the possible values for the miRBaseBuild
argument.

e The TxDb class.

* makeTxDb for the low-level function used by the makeTxDbFromx functions to make the TxDb
object returned to the user.

Examples

TESTING GFF3
gffFile <- system.file("extdata”,"GFF3_files”,"a.gff3", package="GenomicFeatures")
txdb <- makeTxDbFromGFF (file=gffFile,
dataSource="partial gtf file for Tomatoes for testing”,
organism="Solanum lycopersicum”)

TESTING GTF, this time specifying the chrominfo
gtfFile <- system.file("extdata”,"GTF_files","Aedes_aegypti.partial.gtf”,
package="GenomicFeatures")
chrominfo <- data.frame(chrom = c('supercontl.1', 'supercontl.2'),
length=c(5220442, 5300000),
is_circular=c(FALSE, FALSE))
metadata <- data.frame(name="Resource URL",
value=paste@("ftp://ftp.ensemblgenomes.org/pub/metazoa/"”,
"release-13/gtf/aedes_aegypti/"))
txdb2 <- makeTxDbFromGFF (file=gtfFile,
chrominfo=chrominfo,
dataSource="ensemblgenomes”,
organism="Aedes aegypti”,
metadata=metadata)

36 makeTxDbFromGRanges

makeTxDbFromGRanges Make a TxDb object from a GRanges object

Description

The makeTxDbFromGRanges function allows the user to extract gene, transcript, exon, and CDS
information from a GRanges object structured as GFF3 or GTF, and to return that information in a
TxDb object.

Usage

makeTxDbFromGRanges(gr, drop.stop.codons=FALSE, metadata=NULL, taxonomyId=NA)

Arguments

gr A GRanges object structured as GFF3 or GTF, typically obtained with rtracklayer: :import().

drop.stop.codons
TRUE or FALSE. If TRUE, then features of type stop_codon are ignored. Oth-
erwise (the default) the stop codons are considered to be part of the CDS and
merged to them.

metadata A 2-column data frame containing meta information to be included in the TxDb
object. This data frame is just passed to makeTxDb, which makeTxDbFromGRanges
calls at the end to make the TxDb object from the information extracted from
gr. See ?makeTxDb for more information about the format of metadata.

taxonomyId By default this value is NA which will result in an NA field since there is no
reliable way to infer this from a GRanges object. But you can use this argument
to supply your own valid taxId here and if you do, then the Organism can be
filled in as well

Value

A TxDb object.

Author(s)

Hervé Pages

See Also

* makeTxDbFromUCSC, makeTxDbFromBiomart, and makeTxDbFromEnsembl, for making a TxDb
object from online resources.

* makeTxDbFromGFF for making a TxDb object from a GFF or GTF file.

* The import function in the rtracklayer package.

* The asGFF method for TxDb objects (asGFF, TxDb-method) for the reverse of makeTxDbFromGRanges,
that is, for turning a TxDb object into a GRanges object structured as GFF.

¢ The TxDb class.

* makeTxDb for the low-level function used by the makeTxDbFromx functions to make the TxDb
object returned to the user.

makeTxDbFromUCSC 37

Examples

library(rtracklayer) # for the import() function

B oo

WITH A GRanges OBJECT STRUCTURED AS GFF3

HHE m o

GFF3_files <- system.file("extdata”, "GFF3_files",
package="GenomicFeatures")

path <- file.path(GFF3_files, "a.gff3")
gr <- import(path)

txdb <- makeTxDbFromGRanges(gr)

txdb

Reverse operation:
gr2 <- asGFF(txdb)

Sanity check (asGFF() does not propagate the CDS phase at the moment):
target <- as.list(txdb)

target$splicings$cds_phase <- NULL

stopifnot(identical(target, as.list(makeTxDbFromGRanges(gr2))))

e
WITH A GRanges OBJECT STRUCTURED AS GTF

B oo
GTF_files <- system.file("extdata”, "GTF_files"”, package="GenomicFeatures")

testl.gtf was grabbed from http://mblab.wustl.edu/GTF22.html (5 exon
gene with 3 translated exons):

path <- file.path(GTF_files, "testl.gtf")

gr <- import(path)

txdb <- makeTxDbFromGRanges(gr)

txdb

path <- file.path(GTF_files, "Aedes_aegypti.partial.gtf")
gr <- import(path)
txdb <- makeTxDbFromGRanges(gr)

txdb
makeTxDbFromUCSC Make a TxDb object from annotations available at the UCSC Genome
Browser
Description

The makeTxDbFromUCSC function allows the user to make a TxDb object from transcript annotations
available at the UCSC Genome Browser.

Note that it uses the RMariaDB package internally so make sure that this package is installed.

Usage

makeTxDbFromUCSC(genome="hg19", tablename="knownGene",
transcript_ids=NULL,

38 makeTxDbFromUCSC

circ_seqs=NULL,
url="http://genome.ucsc.edu/cgi-bin/",
goldenPath.url=getOption("UCSC.goldenPath.url"),
taxonomyId=NA,

miRBaseBuild=NA)

supportedUCSCtables(genome="hg19", url="http://genome.ucsc.edu/cgi-bin/")

browseUCSCtrack(genome="hg19", tablename="knownGene",
url="http://genome.ucsc.edu/cgi-bin/")

Arguments
genome The name of a UCSC genome assembly e.g. "hg19"” or "panTro6”. You can
use rtracklayer: :ucscGenomes()[,"db"] to obtain the current list of valid
UCSC genome assemblies.
tablename The name of the UCSC table containing the transcript genomic locations to re-

trieve. Use the supportedUCSCtables utility function to get the list of tables
known to work with makeTxDbFromUCSC.

transcript_ids Optionally, only retrieve transcript locations for the specified set of transcript
ids. If this is used, then the meta information displayed for the resulting TxDb
object will say "Full dataset: no’. Otherwise it will say ’Full dataset: yes’.

circ_seqgs Like GRanges objects, SummarizedExperiment objects, and many other objects
in Bioconductor, the TxDb object returned by makeTxDbFromUCSC contains a
seqinfo component that can be accessed with seqinfo(). This component con-
tains various sequence-level information like the sequence names, lengths, and
circularity flag for the genome assembly of the TxDb object.
As far as we know the information of which sequences are circular is not avail-
able in the UCSC Genome Browser. However, for the most commonly used
UCSC genome assemblies makeTxDbFromUCSC will get this information from a
knowledge database stored in the GenomeInfoDb package (see ?registered_UCSC_genomes).
For less commonly used UCSC genome assemblies, makeTxDbFromUCSC will
make a guess based on the chromosome names (e.g. chrM or 2micron will be
assumed to be circular). Even though this works most of the time, it is not
guaranteed to work all the time. So in this case a warning is issued. If you think
the guess is incorrect then you can supply your own list of circular sequences
(as a character vector) via the circ_seqs argument.

url,goldenPath.url
Use to specify the location of an alternate UCSC Genome Browser.

taxonomyId By default this value is NA and the organism inferred will be used to look up the
correct value for this. But you can use this argument to supply your own valid
taxId here.

miRBaseBuild Specify the string for the appropriate build information from mirbase.db to use
for microRNAs. This can be learned by calling supportedMiRBaseBuildValues.
By default, this value will be set to NA, which will inactivate the microRNAs ac-
Ccessor.

Details

makeTxDbFromUCSC is a convenience function that feeds data from the UCSC source to the lower
level makeTxDb function. See ?makeTxDbFromEnsembl for a similar function that feeds data from
an Ensembl database.

makeTxDbFromUCSC 39

Value

For makeTxDbFromUCSC: A TxDb object.

For supportedUCSCtables: A data frame with 3 columns (tablename, track, and subtrack) and
1 row per table known to work with makeTxDbFromUCSC. IMPORTANT NOTE: In the returned data
frame, the set of tables associated with a track with subtracks might contain tables that don’t exist
for the specified genome.

Author(s)
M. Carlson and H. Pages

See Also

* makeTxDbFromEnsembl and makeTxDbFromBiomart for making a TxDb object from other
online resources.

* makeTxDbFromGRanges and makeTxDbFromGFF for making a TxDb object from a GRanges
object, or from a GFF or GTF file.

* ucscGenomes in the rtracklayer package.

* The supportedMiRBaseBuildValues function for listing all the possible values for the miRBaseBuild
argument.

¢ The TxDb class.

* makeTxDb for the low-level function used by the makeTxDbFrom* functions to make the TxDb
object returned to the user.

Examples

Not run:

H#f ——
A. BASIC USAGE

i —mm e e

Use ucscGenomes() from the rtracklayer package to display the list of
genomes available at UCSC:

library(rtracklayer)

ucscGenomes ()L , "db"]

Display the list of tables known to work with makeTxDbFromUCSC():
supportedUCSCtables("hg38")

supportedUCSCtables("hg19")

Open the UCSC track page for a given organism/table:
browseUCSCtrack("hg38"”, tablename="knownGene")
browseUCSCtrack("hg19"”, tablename="knownGene")

browseUCSCtrack("hg38"”, tablename="ncbiRefSeqSelect")
browseUCSCtrack("hg19", tablename="ncbiRefSeqSelect”)

browseUCSCtrack("hg19"”, tablename="pseudoYale60")
browseUCSCtrack("sacCer3"”, tablename="ensGene")

Retrieve a full transcript dataset for Yeast from UCSC:
txdb1 <- makeTxDbFromUCSC("sacCer3", tablename="ensGene")

40

makeTxDbPackage

txdb1

Retrieve an incomplete transcript dataset for Mouse from UCSC (only
transcripts linked to Entrez Gene ID 22290):
transcript_ids <- c(
"uceQ9uzf.1",
"uc@9uzg.1",
"uce9uzh.1",
"uclQ9uzi.1",
"uclQ9uzj.1"
)

txdb2 <- makeTxDbFromUCSC("mm1@", tablename="knownGene",
transcript_ids=transcript_ids)
txdb2

O
B. IMPORTANT NOTE ABOUT supportedUCSCtables()
B

In the data frame returned by supportedUCSCtables(), the set of

tables associated with a track with subtracks might contain tables
that don't exist for the specified genome:
supportedUCSCtables("mm10")

browseUCSCtrack("mm1@"”, tablename="ncbiRefSeqSelect”) # no such table

End(Not run)

makeTxDbPackage Making a TxDb package from annotations available at the UCSC
Genome Browser, biomaRt or from another source.

Description

A TxDb package is an annotation package containing a TxDb object.

The makeTxDbPackageFromUCSC function allows the user to make a TxDb package from transcript
annotations available at the UCSC Genome Browser.

The makeTxDbPackageFromBiomart function allows the user to do the same thing as makeTxDbPackageF romUCSC

except that the annotations originate from biomaRt.

Finally, the makeTxDbPackage function allows the user to make a TxDb package directly from a
TxDb object.

Usage

makeTxDbPackageFromUCSC(
version=,
maintainer,
author,
destDir=".",
license="Artistic-2.0",
genome="hg19",
tablename="knownGene",

makeTxDbPackage

transcript_ids=NULL,

circ_seqs=NULL,
url="http://genome.ucsc.edu/cgi-bin/",
goldenPath.url=getOption("UCSC.goldenPath.url"),
taxonomyId=NA,

miRBaseBuild=NA)

makeFDbPackageFromUCSC(
version,
maintainer,
author,
destDir=".",
license="Artistic-2.0",
genome="hg19",
track="tRNAs",
tablename="tRNAs",
columns = UCSCFeatureDbTableSchema(genome, track, tablename),
url="http://genome.ucsc.edu/cgi-bin/",
goldenPath.url=getOption("UCSC.goldenPath.url"),
chromCol=NULL,
chromStartCol=NULL,
chromEndCol=NULL,
taxonomyId=NA)

makeTxDbPackageFromBiomart (
version,
maintainer,
author,
destDir=".",
license="Artistic-2.0",
biomart="ENSEMBL_MART_ENSEMBL",
dataset="hsapiens_gene_ensembl”,
transcript_ids=NULL,
circ_seqs=NULL,
filter=NULL,
id_prefix="ensembl_",
host="www.ensembl.org",
port=80,
taxonomyId=NA,
miRBaseBuild=NA)

makeTxDbPackage (txdb,
version,
maintainer,
author,
destDir=".",
license="Artistic-2.0",
pkgname=NULL,
provider=NULL,
providerVersion=NULL)

supportedMiRBaseBuildValues()

42 makeTxDbPackage

makePackageName (txdb)

Arguments

version What is the version number for this package?

maintainer Who is the package maintainer? (must include email to be valid). Should be a
person object, or something coercible to one, like a string. May be omitted if
the author argument is a person containing someone with the maintainer role.

author Who is the creator of this package? Should be a person object, or something
coercible to one, like a character vector of names. The maintainer argument
will be merged into this list.

destDir A path where the package source should be assembled.

license What is the license (and it’s version)

biomart which BioMart database to use. Get the list of all available BioMart databases
with the 1istMarts function from the biomaRt package. See the details section
below for a list of BioMart databases with compatible transcript annotations.

dataset which dataset from BioMart. For example: "hsapiens_gene_ensembl”, "mmusculus_gene_ensemb
"dmelanogaster_gene_ensembl”, "celegans_gene_ensembl”, "scerevisiae_gene_ensembl”,
etc in the ensembl database. See the examples section below for how to discover
which datasets are available in a given BioMart database.

genome genome abbreviation used by UCSC and obtained by ucscGenomes()[,"db"].
For example: "hg18".

track name of the UCSC track. Use supportedUCSCFeatureDbTracks to get the list
of available tracks for a particular genome

tablename name of the UCSC table containing the transcript annotations to retrieve. Use

the supportedUCSCtables utility function to get the list of tables known to
work with makeTxDbFromUCSC.

transcript_ids optionally, only retrieve transcript annotation data for the specified set of tran-
script ids. If this is used, then the meta information displayed for the resulting
TxDb object will say "Full dataset: no’. Otherwise it will say ’Full dataset: yes’.

circ_seqs a character vector to list out which chromosomes should be marked as circular.

filter Additional filters to use in the BioMart query. Must be a named list. An example
is filter=as.list(c(source="entrez"))

host The host URL of the BioMart. Defaults to www.ensembl.org.

port The port to use in the HTTP communication with the host.

id_prefix Specifies the prefix used in BioMart attributes. For example, some BioMarts

may have an attribute specified as "ensembl_transcript_id"” whereas others
have the same attribute specified as "transcript_id". Defaults to "ensembl_".

columns a named character vector to list out the names and types of the other columns
that the downloaded track should have. Use UCSCFeatureDbTableSchema to
retrieve this information for a particular table.

url,goldenPath.url
use to specify the location of an alternate UCSC Genome Browser.

chromCol If the schema comes back and the *chrom’ column has been labeled something

other than ’chrom’, use this argument to indicate what that column has been
labeled as so we can properly designate it. This could happen (for example)

makeTxDbPackage 43

with the knownGene track tables, which has no ’chromStart’ or ’chromEnd’
columns, but which DOES have columns that could reasonably substitute for
these columns under particular circumstances. Therefore we allow these three
columns to have arguments so that their definition can be re-specified

chromStartCol Same thing as chromCol, but for renames of ’chromStart’

chromEndCol Same thing as chromCol, but for renames of ’chromEnd’

txdb A TxDb object that represents a handle to a transcript database. This object type
is what is returned by makeTxDbFromUCSC, makeTxDbFromUCSC or makeTxDb

taxonomyId By default this value is NA and the organism provided (or inferred) will be used

to look up the correct value for this. But you can use this argument to override
that and supply your own valid taxId here
miRBaseBuild specify the string for the appropriate build Information from mirbase.db to use
for microRNAs. This can be learned by calling supportedMiRBaseBuildValues.
By default, this value will be set to NA, which will inactivate the microRNAs ac-
Ccessor.
pkgname By default this value is NULL and does not need to be filled in (a package name
will be generated for you). But if you override this value, then the package and
it’s object will be instead named after this value. Be aware that the standard rules
for package names will apply, (so don’t include spaces, underscores or dashes)
provider If not given, a default is taken from the *Data source’ field of the metadata table.
providerVersion
If not given, a default is taken from one of "UCSC table’, ’BioMart version’ or
’Data source’ fields of the metadata table.

Details

makeTxDbPackageFromUCSC is a convenience function that calls both the makeTxDbFromUCSC and
the makeTxDbPackage functions. The makeTxDbPackageFromBiomart follows a similar pattern and
calls the makeTxDbFromBiomart and makeTxDbPackage functions. supportedMiRBaseBuildValues
is a convenience function that will list all the possible values for the miRBaseBuild argument.
makePackageName creates a package name from a TxDb object. This function is also used by
OrganismDbi.

Value

A TxDb object.

Author(s)
M. Carlson

See Also

makeTxDbFromUCSC, makeTxDbFromBiomart, makeTxDb, ucscGenomes

Examples

First consider relevant helper/discovery functions:
Get the list of tables known to work with makeTxDbPackageFromUCSC():
supportedUCSCtables(genome="hg19")

Can also list all the possible values for the miRBaseBuild argument:

44 mapldsToRanges

supportedMiRBaseBuildValues()

Next are examples of actually building a package:
Not run:
Makes a transcript package for Yeast from the ensGene table at UCSC:
makeTxDbPackageFromUCSC(version="0.01",
maintainer="Some One <so@someplace.org>",
author="Some One <so@someplace.com>",
genome="sacCer2",
tablename="ensGene")

Makes a transcript package from Human by using biomaRt and limited to a
small subset of the transcripts.
transcript_ids <- c(

"ENST00000400839",

"ENST00000400840" ,

"ENSTQ0000478783",

"ENST00000435657",

"ENSTQ0000268655" ,

"ENSTQ0000313243",

"ENSTQ0000341724")

makeTxDbPackageFromBiomart(version="0.01",
maintainer="Some One <so@someplace.org>",
author="Some One <so@someplace.com>",
transcript_ids=transcript_ids)

End(Not run)

mapIldsToRanges Map IDs to Genomic Ranges

Description

Map IDs to Genomic Ranges

Usage
mapIdsToRanges(x, ...)
S4 method for signature 'TxDb'

mapIdsToRanges(x, keys, type = c("cds”, "exon"”, "tx",
"gene"), columns = NULL)

Arguments
X Database to use for mapping
keys Values to lookup, passed to transcripts et. al.
type Types of feature to return
columns Additional metadata columns to include in the output

Additional arguments passed to methods

mapRangesTolds 45

Value

GRangesList corresponding to the keys

Methods (by class)

e TxDb: TxDb method

Examples

fl <- system.file(package = "GenomicFeatures”, "extdata”, "sample_ranges.rds")
txdb <- makeTxDbFromGRanges(readRDS(f1))

keys <- list(tx_name = c("ENSTQ0000371582", "ENSTQ0000371588",
"ENSTQ0000494752", "ENSTQ0000614008", "ENSTQ0000496771"))
mapIdsToRanges(txdb, keys = keys, type = "tx")

mapRangesToIds Map Genomic Ranges to IDs

Description

Map Genomic Ranges to IDs

Usage

mapRangesToIds(x, ...)

S4 method for signature 'TxDb'

mapRangesTolds(x, ranges, type = c("cds”, "exon", "tx",
"gene"), columns = NULL, ...)
Arguments
X Database to use for mapping
ranges range object used to subset
type of feature to return
columns additional metadata columns to include in the output.

Additional arguments passed to findOverlaps

Value

DataFrame of mcols from the database.

Methods (by class)

e TxDb: TxDb method

46 mapToTranscripts

Examples

fl <- system.file(package = "GenomicFeatures”, "extdata”, "sample_ranges.rds")
txdb <- makeTxDbFromGRanges(readRDS(f1))

keys <- list(tx_name = c("ENST0Q000371582", "ENST0Q0000371588",

"ENST00000494752", "ENSTQ0000614008", "ENSTQ0000496771"))
res <- mapIldsToRanges(txdb, keys = keys, type = "tx")
mapRangesTolds(txdb, res, "tx")

mapToTranscripts Map range coordinates between transcripts and genome space

Description

Map range coordinates between features in the transcriptome and genome (reference) space.

See ?mapToAlignments in the GenomicAlignments package for mapping coordinates between
reads (local) and genome (reference) space using a CIGAR alignment.

Usage

mapping to transcripts
S4 method for signature 'GenomicRanges,GenomicRanges'
mapToTranscripts(x, transcripts,

ignore.strand = FALSE)
S4 method for signature 'GenomicRanges,GRangesList'
mapToTranscripts(x, transcripts,

ignore.strand = FALSE, intronJunctions=FALSE)
S4 method for signature 'ANY,TxDb'
mapToTranscripts(x, transcripts, ignore.strand = FALSE,

extractor.fun = GenomicFeatures::transcripts, ...)
S4 method for signature 'GenomicRanges,GRangeslList'
pmapToTranscripts(x, transcripts,

ignore.strand = FALSE)

mapping from transcripts
S4 method for signature 'GenomicRanges,GRangesList'
mapFromTranscripts(x, transcripts,

ignore.strand = FALSE)
S4 method for signature 'GenomicRanges,GRangesList'
pmapFromTranscripts(x, transcripts,

ignore.strand = FALSE)
S4 method for signature 'IntegerRanges,GRangesList'
pmapFromTranscripts(x, transcripts)

Arguments

X GenomicRanges object of positions to be mapped. The seqnames of x are used
in mapFromTranscripts, i.e., when mapping from transcripts to the genome. In
the case of pmapFromTranscripts, x can be an IntegerRanges object.

mapToTranscripts 47

transcripts A named GenomicRanges or GRangesList object used to map between x and the
result. The ranges can be any feature in the transcriptome extracted from a TxDb
(e.g., introns, exons, cds regions). See 7transcripts and ?transcriptsBy for
a list of extractor functions.

The transcripts object must have names. When mapping from transcripts to
the genome, they are used to determine mapping pairs; in the reverse direction
they become the seqlevels of the output object.

ignore.strand When ignore.strand is TRUE, strand is ignored in overlaps operations (i.e.,
all strands are considered "+") and the strand in the output is **’.

When ignore. strand is FALSE strand in the output is taken from the transcripts
argument. When transcripts is a GRangesList, all inner list elements of a
common list element must have the same strand or an error is thrown.

Mapped position is computed by counting from the transcription start site (T'SS)
and is not affected by the value of ignore.strand.

intronJunctions
Logical to indicate if intronic ranges in x should be reported.
This argument is only supported in mapToTranscripts when transcripts is
a GRangesList. When transcripts is a GRangesList, individual ranges can be
thought of as exons and the spaces between the ranges as introns.

When intronJunctions=TRUE, ranges that fall completely "within" an intron
are reported as a zero-width range (start and end are taken from the ranges they
fall between). A metadata column called "intronic" is returned with the GRanges
and marked as TRUE for these ranges. By default, intronJunctions=FALSE and
these ranges are not mapped.

Ranges that have either the start or end in an intron are considered "non hits"

and are never mapped. Ranges that span introns are always mapped. Neither of

these range types are controlled by the intronJunctions argument.
extractor.fun Function to extract genomic features from a TxDb object.

This argument is only applicable to mapToTranscripts when transcriptsisa
TxDb object. The extractor should be the name of a function (not a character())
described on the ?transcripts, ?transcriptsBy, or ?microRNAs man page.

Valid extractor functions:

e transcripts ## default

* exons

* cds

* genes

* promoters

* exonicParts

* intronicParts

* transcriptsBy

* exonsBy

* cdsBy

* intronsByTranscript
 fiveUTRsByTranscript
¢ threeUTRsByTranscript
* microRNAs

* tRNAs

Additional arguments passed to extractor. fun functions.

48 mapToTranscripts

Details

In GenomicFeatures >= 1.21.10, the default for ignore.strand was changed to FALSE for consis-
tency with other methods in the GenomicRanges and GenomicAlignments packages. Addition-
ally, the mapped position is computed from the TSS and does not depend on the ignore.strand
argument. See the section on ignore.strand for details.

* mapToTranscripts, pmapToTranscripts The genomic range in x is mapped to the local
position in the transcripts ranges. A successful mapping occurs when x is completely
within the transcripts range, equivalent to:

findOverlaps(..., type="within")

Transcriptome-based coordinates start counting at 1 at the beginning of the transcripts
range and return positions where x was aligned. The seqlevels of the return object are taken
from the transcripts object and should be transcript names. In this direction, mapping is
attempted between all elements of x and all elements of transcripts.

mapToTranscripts uses findOverlaps to map ranges in x to ranges in transcripts. This
method does not return unmapped ranges.

pmapToTranscripts maps the i-th range in x to the i-th range in transcripts. Recycling
is supported for both x and transcripts when either is length == 1L; otherwise the lengths
must match. Ranges in x that do not map (out of bounds or strand mismatch) are returned as
zero-width ranges starting at 0. These ranges are given the seqname of "UNMAPPED".

* mapFromTranscripts, pmapFromTranscripts The transcript-based position in x is mapped
to genomic coordinates using the ranges in transcripts. A successful mapping occurs when
the following is TRUE:

width(transcripts) >= start(x) + width(x)

x is aligned to transcripts by moving in start(x) positions in from the beginning of the
transcripts range. The seqlevels of the return object are chromosome names.

mapFromTranscripts uses the seqname of x and the names of transcripts to determine
mapping pairs (vs attempting to match all possible pairs). Name matching is motivated by use
cases such as differentially expressed regions where the expressed regions in x would only be
related to a subset of regions in transcripts. This method does not return unmapped ranges.

pmapFromTranscripts maps the i-th range in x to the i-th range in transcripts and therefore
does not use name matching. Recycling is supported in pmapFromTranscripts when either
x or transcripts is length == 1L; otherwise the lengths must match. Ranges in x that do not
map (out of bounds or strand mismatch) are returned as zero-width ranges starting at 0. These
ranges are given the seqname of "UNMAPPED".

Value

pmapToTranscripts returns a GRanges the same length as x.

pmapFromTranscripts returns a GRanges when transcripts is a GRanges and a GRangesList
when transcripts is a GRangesList. In both cases the return object is the same length as x. The
rational for returning the GRangesList is to preserve exon structure; ranges in a list element that
are not overlapped by x are returned as a zero-width range. The GRangesList return object will
have no seqlevels called "UNMAPPED"; those will only occur when a GRanges is returned.

mapToTranscripts and mapFromTranscripts return GRanges objects that vary in length similar to
a Hits object. The result contains mapped records only; strand mismatch and out of bound ranges

mapToTranscripts 49

are not returned. xHits and transcriptsHits metadata columns (similar to the queryHits and
subjectHits of a Hits object) indicate elements of x and transcripts used in the mapping.

When intronJunctions is TRUE, mapToTranscripts returns an extra metdata column named
intronic to identify the intron ranges.

When mapping to transcript coordinates, seqlevels of the output are the names on the transcripts
object and most often these will be transcript names. When mapping to the genome, seqlevels of
the output are the seqlevels of transcripts which are usually chromosome names.

Author(s)
V. Obenchain, M. Lawrence and H. Pages

See Also

* ?mapToAlignments in the GenomicAlignments package for methods mapping between reads
and genome space using a CIGAR alignment.

Examples

o
A. Basic Use: Conversion between CDS and Exon coordinates and the genome
e e e

Gene "Dgkb" has ENTREZID "217480":
library(org.Mm.eg.db)
Dgkb_geneid <- get("Dgkb", org.Mm.egSYMBOL2EG)

The gene is on the positive strand, chromosome 12:
library(TxDb.Mmusculus.UCSC.mm10.knownGene)

txdb <- TxDb.Mmusculus.UCSC.mm1@.knownGene

tx_by_gene <- transcriptsBy(txdb, by="gene")

Dgkb_transcripts <- tx_by_gene[[Dgkb_geneid]]

Dgkb_transcripts # all 7 Dgkb transcripts are on chri12, positive strand

To map coordinates from local CDS or exon space to genome
space use mapFromTranscripts().

When mapping CDS coordinates to genome space the 'transcripts'’

argument is the collection of CDS regions by transcript.

coord <- GRanges("chri12"”, IRanges(4, width=1))

Get the names of the transcripts in the gene:

Dgkb_tx_names <- mcols(Dgkb_transcripts)$tx_name

Dgkb_tx_names

Use these names to isolate the region of interest:

cds_by_tx <- cdsBy(txdb, "tx", use.names=TRUE)

Dgkb_cds_by_tx <- cds_by_tx[intersect(Dgkb_tx_names, names(cds_by_tx))]
Dgkb_cds_by_tx # Dgkb CDS grouped by transcript (no-CDS transcripts omitted)
lengths(Dgkb_cds_by_tx) # nb of CDS per transcript

A requirement for mapping from transcript space to genome space

is that segnames in 'x' match the names in 'transcripts'.

names (Dgkb_cds_by_tx) <- rep(segnames(coord), length(Dgkb_cds_by_tx))
There are 6 results, one for each transcript.
mapFromTranscripts(coord, Dgkb_cds_by_tx)

To map exon coordinates to genome space the 'transcripts'

50

mapToTranscripts

argument is the collection of exon regions by transcript.

coord <- GRanges("chri12"”, IRanges(100, width=1))

ex_by_tx <- exonsBy(txdb, "tx", use.names=TRUE)

Dgkb_ex_by_tx <- ex_by_tx[Dgkb_tx_names]

names(Dgkb_ex_by_tx) <- rep(segnames(coord), length(Dgkb_ex_by_tx))
Again the output has 6 results, one for each transcript.
mapFromTranscripts(coord, Dgkb_ex_by_tx)

To go the reverse direction and map from genome space to
local CDS or exon space, use mapToTranscripts().

Genomic position 37981944 maps to CDS position 4:
coord <- GRanges("chr12", IRanges(37981944, width=1))
mapToTranscripts(coord, Dgkb_cds_by_tx)

Genomic position 37880273 maps to exon position 100:
coord <- GRanges("chri12", IRanges(37880273, width=1))
mapToTranscripts(coord, Dgkb_ex_by_tx)

The following examples use more than 2GB of memory, which is more
than what 32-bit Windows can handle:

is_32bit_windows <- .Platform$0S.type == "windows" &%&

.Platform$r_arch == "i386"
if (!'is_32bit_windows) {
e
B. Map sequence locations in exons to the genome
T

NAGNAG alternative splicing plays an essential role in biological processes
and represents a highly adaptable system for posttranslational regulation
of gene function. The majority of NAGNAG studies largely focus on messenger
RNA. A study by Sun, Lin, and Yan

(http://www.hindawi.com/journals/bmri/2014/736798/) demonstrated that

NAGNAG splicing is also operative in large intergenic noncoding RNA

(1incRNA).

One finding of interest was that 1inc-POLR3G-10 exhibited two NAGNAG
acceptors located in two distinct transcripts: TCONS_00010012 and
TCONS_00010010.

Extract the exon coordinates of TCONS_00010012 and TCONS_00010010:
lincrna <- c("TCONS_00010012", "TCONS_00010010")
library(TxDb.Hsapiens.UCSC.hg19.1incRNAsTranscripts)

txdb <- TxDb.Hsapiens.UCSC.hg19.1lincRNAsTranscripts

exons <- exonsBy(txdb, by="tx", use.names=TRUE)[lincrna]

exons

The two NAGNAG acceptors were identified in the upstream region of
the fourth and fifth exons located in TCONS_00010012.

Extract the sequences for transcript TCONS_00010012:
library(BSgenome.Hsapiens.UCSC.hg19)

genome <- BSgenome.Hsapiens.UCSC.hg19

exons_seq <- getSeq(genome, exons[[1]1])

TCONS_00010012 has 4 exons:
exons_seq

mapToTranscripts 51

The most common triplet among the 1incRNA sequences was CAG. Identify
the location of this pattern in all exons.
cag_loc <- vmatchPattern(”CAG", exons_seq)

Convert the first occurance of CAG in each exon back to genome coordinates.
first_loc <- do.call(c, sapply(cag_loc, "[", 1, simplify=TRUE))
pmapFromTranscripts(first_loc, exons[[1]])

C. Map dbSNP variants to CDS or cDNA coordinates
e e

The GIPR gene encodes a G-protein coupled receptor for gastric inhibitory
polypeptide (GIP). Originally GIP was identified to inhibited gastric acid
secretion and gastrin release but was later demonstrated to stimulate

insulin release in the presence of elevated glucose.

In this example 5 SNPs located in the GIPR gene are mapped to cDNA
coordinates. A list of SNPs in GIPR can be downloaded from dbSNP or NCBI.
rsids <- c("rs4803846", "rs139322374", "rs7250736", "rs7250754", "rs9749185")

Extract genomic coordinates with a SNPlocs package.
library(SNPlocs.Hsapiens.dbSNP144.GRCh38)
snps <- snpsById(SNPlocs.Hsapiens.dbSNP144.GRCh38, rsids)

Gene regions of GIPR can be extracted from a TxDb package of compatible
build. The TxDb package uses Entrez gene identifiers and GIPR is a gene
symbol. Let's first lookup its Entrez gene ID.

library(org.Hs.eg.db)

GIPR_geneid <- get("GIPR", org.Hs.egSYMBOL2EG)

The transcriptsBy() extractor returns a range for each transcript that
includes the UTR and exon regions (i.e., cDNA).
library(TxDb.Hsapiens.UCSC.hg38.knownGene)

txdb <- TxDb.Hsapiens.UCSC.hg38.knownGene

tx_by_gene <- transcriptsBy(txdb, "gene")

GIPR_transcripts <- tx_by_gene[GIPR_geneid]

GIPR_transcripts # all 8 GIPR transcripts are on chr19, positive strand

Before mapping, the chromosome names (seqlevels) in the two
objects must be harmonized. The style is NCBI for 'snps' and
UCSC for 'GIPR_transcripts'.

seqlevelsStyle(snps)

seqlevelsStyle(GIPR_transcripts)

Modify the style and genome in 'snps' to match 'GIPR_transcripts'.
seqlevelsStyle(snps) <- seqlevelsStyle(GIPR_transcripts)
genome(snps) <- genome(GIPR_transcripts)

The 'GIPR_transcripts' object is a GRangesList of length 1. This single
list element contains the cDNA range for 8 different transcripts. To map
to each transcript individually 'GIPR_transcripts' must be unlisted

before mapping.

Map all 5 SNPS to all 8 transcripts:
mapToTranscripts(snps, unlist(GIPR_transcripts))

52

microRNAs

Map the first SNP to transcript "ENSTQ0000590918.5" and the second to
"ENSTQ0000263281.7".
pmapToTranscripts(snps[1:2], unlist(GIPR_transcripts)[1:2])

The cdsBy() extractor returns coding regions by gene or by transcript.
Extract the coding regions for transcript "ENST00000263281.7".

cds <- cdsBy(txdb, "tx", use.names=TRUE)["ENST00000263281.7"]

cds

The 'cds' object is a GRangesList of length 1 containing all CDS ranges
for the single transcript "ENST00000263281.7".

To map to the concatenated group of ranges leave 'cds' as a GRangesList.
mapToTranscripts(snps, cds)

Only the second SNP could be mapped. Unlisting the 'cds' object maps the
SNPs to the individual cds ranges (vs the concatenated range).
mapToTranscripts(snps[2], unlist(cds))

The location is the same because the SNP hit the first CDS range. If the
transcript were on the "-" strand the difference in concatenated vs
non-concatenated position would be more obvious.

Change strand:

strand(cds) <- strand(snps) <- "-"
mapToTranscripts(snps[2], unlist(cds))
3

microRNAs Extract microRNA or tRNA genomic ranges from an object

Description

Generic functions to extract microRNA or tRNA genomic ranges from an object. This page docu-
ments the methods for TxDb objects only.

Usage

microRNAs(x)
S4 method for signature 'TxDb'
microRNAs(x)

tRNAs (x)
S4 method for signature 'TxDb'
tRNAs (x)

Arguments

X A TxDb object.

Value

A GRanges object.

nearest-methods 53

Author(s)
M. Carlson

See Also

* transcripts, transcriptsBy, and transcriptsByOverlaps for the core genomic features
extractors.

e The TxDb class.

Examples

Not run: library(TxDb.Hsapiens.UCSC.hg19.knownGene)
library(mirbase.db)
microRNAs (TxDb.Hsapiens.UCSC.hg19.knownGene)

End(Not run)

nearest-methods Finding the nearest genomic range neighbor in a TxDb

Description

The distance methods for TxDb objects and subclasses.

Usage

S4 method for signature 'GenomicRanges,TxDb'
distance(x, y, ignore.strand=FALSE,
., id, type=c("gene”, "tx", "exon”, "cds"))

Arguments
X The query GenomicRanges instance.
y For distance, a TxDb instance. The id is used to extract ranges from the TxDb
which are then used to compute the distance from x.
id A character vector the same length as x. The id must be identifiers in the
TxDb object. type indicates what type of identifier id is.
type A character (1) describing the id. Must be one of ‘gene’, ‘tx’, ‘exon’ or ‘cds’.

ignore.strand A logical indicating if the strand of the ranges should be ignored. When TRUE,
strand is setto '+'.

Additional arguments for methods.

Details

* distance: Returns the distance for each range in x to the range extracted from the TxDb object
y. Values in id are matched to one of ‘gene_id’, ‘tx_id’, ‘exon_id’ or ‘cds_id’ identifiers in
the TxDb and the corresponding ranges are extracted. The type argument specifies which
identifier is represented in id. The extracted ranges are used in the distance calculation with
the ranges in x.

54 nearest-methods

The method returns NA values when the genomic region defined by id cannot be collapsed
into a single range (e.g., when a gene spans multiple chromosomes) or if the id is not found
iny.

The behavior of distance with respect to zero-width ranges has changed in Bioconductor
2.12. See the man page ?distance in IRanges for details.

Value

For distance, an integer vector of distances between the ranges in x and y.

Author(s)

Valerie Obenchain <vobencha@fhcrc.org>

See Also

* nearest-methods man page in IRanges.

* nearest-methods man page in GenomicRanges.

Examples

B m o e
distance()
T e e

library(TxDb.Dmelanogaster.UCSC.dm3.ensGene)
txdb <- TxDb.Dmelanogaster.UCSC.dm3.ensGene
gr <- GRanges(c("chr2L", "chr2r"),
IRanges(c (100000, 200000), width=100))
distance(gr, txdb, id=c("FBgn@259717", "FBgn0261501"), type="gene")
distance(gr, txdb, id=c("”10000", "23000"), type="cds")

The id's must be in the appropriate order with respect to 'x'.

distance(gr, txdb, id=c("”4", "4097"), type="tx")

'id' "4" is on chr2L and "4097" is on chr2R.
transcripts(txdb, filter=list(tx_id=c("4", "4097")))

If we reverse the 'id' the chromosomes are incompatable with gr.
distance(gr, txdb, id=c("”4097", "4"), type="tx")

distance() compares each 'x' to the corresponding 'y'.
If an 'id' is not found in the TxDb 'y' will not

be the same lenth as 'x' and an error is thrown.

Not run:

distance(gr, txdb, id=c("FBgn0000ee8", "INVALID"), type="gene") ## will fail

End(Not run)

select-methods 55

select-methods Using the "select" interface on TxDb objects

Description

select, columns and keys can be used together to extract data from a TxDb object.

Details

In the code snippets below, x is a TxDb object.

keytypes(x): allows the user to discover which keytypes can be passed in to select or keys and
the keytype argument.

keys(x,keytype,pattern,column, fuzzy): Return keys for the database contained in the TxDb
object .

The keytype argument specifies the kind of keys that will be returned. By default keys will
return the "GENEID" keys for the database.

If keys is used with pattern, it will pattern match on the keytype.

But if the column argument is also provided along with the pattern argument, then pattern
will be matched against the values in column instead.

And if keys is called with column and no pattern argument, then it will return all keys that
have corresponding values in the column argument.

Thus, the behavior of keys all depends on how many arguments are specified.

Use of the fuzzy argument will toggle fuzzy matching to TRUE or FALSE. If pattern is not
used, fuzzy is ignored.

columns(x): Show which kinds of data can be returned for the TxDb object.

select(x,keys,columns,keytype): When all the appropriate arguments are specified select
will retrieve the matching data as a data.frame based on parameters for selected keys and
columns and keytype arguments.

Author(s)

Marc Carlson

See Also

* AnnotationDb-class for more descriptsion of methods select,keytypes,keys and columns.

* transcripts, transcriptsBy, and transcriptsByOverlaps, for other ways to extract ge-
nomic features from a TxDb object.

¢ The TxDb class.

Examples

txdb_file <- system.file("extdata”, "Biomart_Ensembl_sample.sqlite”,
package="GenomicFeatures")

txdb <- loadDb(txdb_file)

txdb

find key types
keytypes(txdb)

56 transcriptLengths

list IDs that can be used to filter
head(keys(txdb, "GENEID"))
head(keys(txdb, "TXID"))
head(keys(txdb, "TXNAME"))

list columns that can be returned by select
columns (txdb)

call select

res <- select(txdb, head(keys(txdb, "GENEID")),
columns=c("GENEID","TXNAME"),
keytype="GENEID")

head(res)

transcriptlLengths Extract the transcript lengths (and other metrics) from a TxDb object

Description

The transcriptlLengths function extracts the transcript lengths from a TxDb object. It also returns
the CDS and UTR lengths for each transcript if the user requests them.

Usage
transcriptLengths(txdb, with.cds_len=FALSE,
with.utr5_len=FALSE, with.utr3_len=FALSE, ...)
Arguments
txdb A TxDb object.

with.cds_len, with.utr5_len, with.utr3_len
TRUE or FALSE. Whether or not to also extract and return the CDS, 5° UTR, and
3’ UTR lengths for each transcript.

Additional arguments used by transcripts and other accessor functions.

Details

All the lengths are counted in number of nucleotides.

The length of a processed transcript is just the sum of the lengths of its exons. This should not be
confounded with the length of the stretch of DNA transcribed into RNA (a.k.a. transcription unit),
which can be obtained with width(transcripts(txdb)).

Value

A data frame with 1 row per transcript. The rows are guaranteed to be in the same order as the
elements of the GRanges object returned by transcripts(txdb). The data frame has between 5
and 8 columns, depending on what the user requested via the with.cds_len, with.utr5_len, and
with.utr3_len arguments.

The first 3 columns are the same as the metadata columns of the object returned by

transcripts(txdb, columns=c("tx_id", "tx_name”, "gene_id"))

transcriptLengths 57

that is:

tx_id: The internal transcript ID. This ID is unique within the scope of the TxDb object.
It is not an official or public ID (like an Ensembl or FlyBase ID) or an Accession number,
so it cannot be used to lookup the transcript in public data bases or in other TxDb objects.
Furthermore, this ID could change when re-running the code that was used to make the TxDb
object.

tx_name: An official/public transcript name or ID that can be used to lookup the transcript in
public data bases or in other TxDb objects. This column is not guaranteed to contain unique
values and it can contain NAs.

gene_id: The official/public ID of the gene that the transcript belongs to. Can be NA if the
gene is unknown or if the transcript is not considered to belong to a gene.

The other columns are quantitative:

nexon: The number of exons in the transcript.

tx_len: The length of the processed transcript.

cds_len: [optional] The length of the CDS region of the processed transcript.
utr5_len: [optional] The length of the 5° UTR region of the processed transcript.
utr3_len: [optional] The length of the 3° UTR region of the processed transcript.

Author(s)

Hervé Pages

See Also

transcripts, transcriptsBy, and transcriptsByOverlaps, for extracting genomic fea-
ture locations from a TxDb-like object.

exonicParts and intronicParts for extracting non-overlapping exonic or intronic parts
from a TxDb-like object.

extractTranscriptSegs for extracting transcript (or CDS) sequences from chromosome se-
quences.

coverageByTranscript for computing coverage by transcript (or CDS) of a set of ranges.

makeTxDbFromUCSC, makeTxDbFromBiomart, and makeTxDbFromEnsembl, for making a TxDb
object from online resources.

makeTxDbFromGRanges and makeTxDbFromGFF for making a TxDb object from a GRanges
object, or from a GFF or GTF file.

The TxDb class.

Examples

library(TxDb.Dmelanogaster.UCSC.dm3.ensGene)
txdb <- TxDb.Dmelanogaster.UCSC.dm3.ensGene
dm3_txlens <- transcriptLengths(txdb)
head(dm3_txlens)

dm3_txlens <- transcriptLengths(txdb, with.cds_len=TRUE,

with.utr5_len=TRUE,
with.utr3_len=TRUE)

head(dm3_txlens)

58 transcriptLocs2refLocs

When cds_len is @ (non-coding transcript), utr5_len and utr3_len
must also be 0:

non_coding <- dm3_txlens[dm3_txlens$cds_len == 0@,]
stopifnot(all(non_coding[6:8] == 0@))

When cds_len is not @ (coding transcript), cds_len + utr5_len +
utr3_len must be equal to tx_len:

coding <- dm3_txlens[dm3_txlens$cds_len != 0@,]
stopifnot(all(rowSums(coding[6:8]) == coding[[5]]1))

A sanity check:
stopifnot(identical(dm3_txlens$tx_id, mcols(transcripts(txdb))$tx_id))

transcriptlLocs2reflocs
Converting transcript-based locations into reference-based locations

Description

transcriptlLocs2reflLocs converts transcript-based locations into reference-based (aka chromosome-
based or genomic) locations.

transcriptWidths computes the lengths of the transcripts (called the "widths" in this context)
based on the boundaries of their exons.

Usage

transcriptlLocs2reflocs(tlocs,
exonStarts=list(), exonEnds=1list(), strand=character(@),
decreasing.rank.on.minus.strand=FALSE, error.if.out.of.bounds=TRUE)

transcriptWidths(exonStarts=1list(), exonEnds=list())

Arguments

tlocs A list of integer vectors of the same length as exonStarts and exonEnds. Each
element in tlocs must contain transcript-based locations.
exonStarts, exonEnds
The starts and ends of the exons, respectively.
Each argument can be a list of integer vectors, an IntegerList object, or a charac-
ter vector where each element is a comma-separated list of integers. In addition,
the lists represented by exonStarts and exonEnds must have the same shape
i.e. have the same lengths and have elements of the same lengths. The length of
exonStarts and exonEnds is the number of transcripts.
strand A character vector of the same length as exonStarts and exonEnds specifying
the strand ("+" or "-") from which the transcript is coming.
decreasing.rank.on.minus.strand
TRUE or FALSE. Describes the order of exons in transcripts located on the minus
strand: are they ordered by increasing (default) or decreasing rank?
error.if.out.of.bounds
TRUE or FALSE. Controls how out of bound tlocs are handled: an error is thrown
(default) or NA is returned.

transcriptLocs2refLocs 59

Value

For transcriptLocs2reflocs: A list of integer vectors of the same shape as tlocs.

For transcriptWidths: An integer vector with one element per transcript.

Author(s)

Hervé Pages

See Also

* extractTranscriptSegs for extracting transcript (or CDS) sequences from chromosomes.

* coverageByTranscript for computing coverage by transcript (or CDS) of a set of ranges.

Examples

#H -

GOING FROM TRANSCRIPT-BASED TO REFERENCE-BASED LOCATIONS

-

library(BSgenome.Hsapiens.UCSC.hg19) # load the genome

genome <- BSgenome.Hsapiens.UCSC.hg19

txdb_file <- system.file("extdata”, "hgl19_knownGene_sample.sqlite”,
package="GenomicFeatures")

txdb <- loadDb(txdb_file)

transcripts <- exonsBy(txdb, by="tx", use.names=TRUE)

tx_seqs <- extractTranscriptSeqgs(genome, transcripts)

Get the reference-based locations of the first 4 (5' end)
and last 4 (3' end) nucleotides in each transcript:
tlocs <- lapply(width(tx_segs), function(w) c(1:4, (w-3):w))
tx_strand <- sapply(strand(transcripts), runValue)
Note that, because of how we made them, 'tlocs', 'start(exbytx)',
'end(exbytx)' and 'tx_strand' have the same length, and, for any
valid positional index, elements at this position are corresponding
to each other. This is how transcriptLocs2refLocs() expects them
to be!
rlocs <- transcriptlLocs2reflLocs(tlocs,

start(transcripts), end(transcripts),

tx_strand, decreasing.rank.on.minus.strand=TRUE)

HH -
EXTRACTING WORM TRANSCRIPTS ZC101.3 AND F37B1.1

#H# -
Transcript ZC101.3 (is on + strand):

Exons starts/ends relative to transcript:

rstartsl <- c(1, 488, 654, 996, 1365, 1712, 2163, 2453)

rends1 <- c(137, 578, 889, 1277, 1662, 1870, 2410, 2561)

Exons starts/ends relative to chromosome:

starts1l <- 14678410 + rstarts]

ends1 <- 14678410 + rendsl

Transcript F37B1.1 (is on - strand):

Exons starts/ends relative to transcript:
rstarts2 <- c(1, 325)

rends2 <- c(139, 815)

Exons starts/ends relative to chromosome:

60 transcripts

starts2 <- 13611188 - rends2
ends2 <- 13611188 - rstarts2

exon_starts <- list(as.integer(startsl), as.integer(starts2))
exon_ends <- list(as.integer(endsl1), as.integer(ends2))
transcripts <- IRangeslList(start=exon_starts, end=exon_ends)

library(BSgenome.Celegans.UCSC.ce2)

Both transcripts are on chrlI:

chrII <- Celegans$chrllI

tx_seqs <- extractTranscriptSeqs(chrII, transcripts, strand=c("+","-"))

Same as 'width(tx_seqgs)':
transcriptWidths(exonStarts=exon_starts, exonEnds=exon_ends)

transcriptLocs2reflocs(list(c(1:6, 135:140, 1555:1560),
c(1:6, 137:142, 625:630)),
exonStarts=exon_starts,
exonEnds=exon_ends,
strand=c("+","-"))

A sanity check:

ref_locs <- transcriptlLocs2reflocs(list(1:1560, 1:630),
exonStarts=exon_starts,
exonEnds=exon_ends,
strand=c("+","-"))

stopifnot(chrIIfref_locs[[1]]1] == tx_seqs[[1]1])

stopifnot(complement(chrII)[ref_locs[[2]]1] == tx_seqs[[2]1])

transcripts Extract genomic features from a TxDb-like object

Description

Generic functions to extract genomic features from a TxDb-like object. This page documents the
methods for TxDb objects only.

Usage
transcripts(x, ...)
S4 method for signature 'TxDb'
transcripts(x, columns=c("tx_id", "tx_name"), filter=NULL, use.names=FALSE)
exons(x, ...)

S4 method for signature 'TxDb'
exons(x, columns="exon_id", filter=NULL, use.names=FALSE)

cds(x, ...)
S4 method for signature 'TxDb'
cds(x, columns="cds_id"”, filter=NULL, use.names=FALSE)

genes(x, ...)
S4 method for signature 'TxDb'

transcripts 61

genes(x, columns="gene_id", filter=NULL, single.strand.genes.only=TRUE)

S4 method for signature 'TxDb'

promoters(x, upstream=2000, downstream=200, use.names=TRUE, ...)
Arguments
X A TxDb object.

For the transcripts, exons, cds, and genes generic functions: arguments to
be passed to methods.

For the promoters method for TxDb objects: arguments to be passed to the
internal call to transcripts.

columns Columns to include in the output. Must be NULL or a character vector as given
by the columns method. With the following restrictions:

e "TXCHROM" and "TXSTRAND" are not allowed for transcripts.
e "EXONCHROM" and "EXONSTRAND" are not allowed for exons.
e "CDSCHROM" and "CDSSTRAND" are not allowed for cds.

If the vector is named, those names are used for the corresponding column in
the element metadata of the returned object.
filter Either NULL or a named list of vectors to be used to restrict the output. Valid

non

names for this list are: "gene_id", "tx_id", "tx_name”, "tx_chrom"”, "tx_strand",

non non

"exon_id", "exon_name", "exon_chrom”, "exon_strand”, "cds_id", "cds_name",

n o n

"cds_chrom”, "cds_strand” and "exon_rank".

use.names TRUE or FALSE. If TRUE, the feature names are set as the names of the returned
object, with NAs being replaced with empty strings.
single.strand.genes.only
TRUE or FALSE. If TRUE (the default), then genes are returned in a GRanges object
and those genes that cannot be represented by a single genomic range (because
they have exons located on both strands of the same reference sequence or on
more than one reference sequence) are dropped with a message.

If FALSE, then all the genes are returned in a GRangesList object with the columns
specified thru the columns argument set as top level metadata columns. (Please
keep in mind that the fop level metadata columns of a GRangesList object are
not displayed by the show() method.)

upstream For promoters: An integer (1) value indicating the number of bases upstream
from the transcription start site. For additional details see ? *promoters, GRanges-method*.

downstream For promoters : An integer (1) value indicating the number of bases down-
stream from the transcription start site. For additional details see ? *promoters,GRanges-method*.

Details

These are the main functions for extracting transcript information from a TxDb-like object. These
methods can restrict the output based on categorical information. To restrict the output based on
interval information, use the transcriptsByOverlaps, exonsByOverlaps, and cdsByOverlaps
functions.

The promoters function computes user-defined promoter regions for the transcripts in a TxDb-like
object. The return object is a GRanges of promoter regions around the transcription start site the
span of which is defined by upstream and downstream. For additional details on how the promoter
range is computed and the handling of + and - strands see ? *promoters,GRanges-method".

62 transcripts

Value

A GRanges object. The only exception being when genes is used with single.strand.genes.only=FALSE,
in which case a GRangesList object is returned.

Author(s)
M. Carlson, P. Aboyoun and H. Pages

See Also
e transcriptsBy and transcriptsByOverlaps for more ways to extract genomic features
from a TxDb-like object.

* transcriptLengths for extracting the transcript lengths (and other metrics) from a TxDb
object.

* exonicParts and intronicParts for extracting non-overlapping exonic or intronic parts
from a TxDb-like object.

* extractTranscriptSegs for extracting transcript (or CDS) sequences from reference se-
quences.

* coverageByTranscript for computing coverage by transcript (or CDS) of a set of ranges.

* select-methods for how to use the simple "select" interface to extract information from a TxDb
object.

* microRNAs and tRNAs for extracting microRNA or tRNA genomic ranges from a TxDb object.
* id2name for mapping TxDb internal ids to external names for a given feature type.
e The TxDb class.

Examples

txdb_file <- system.file("extdata”, "hg19_knownGene_sample.sqlite”,
package="GenomicFeatures")
txdb <- loadDb(txdb_file)

et
transcripts()
B — o o

tx1 <- transcripts(txdb)
tx1

transcripts(txdb, use.names=TRUE)
transcripts(txdb, columns=NULL, use.names=TRUE)

filter <- list(tx_chrom = c("chr3”, "chr5"), tx_strand = "+"
tx2 <- transcripts(txdb, filter=filter)
tx2

Sanity checks:

stopifnot(

identical(mcols(tx1)$tx_id, seg_along(tx1)),

identical(tx2, txl1[segnames(tx1) == "chr3" & strand(tx1) == "+"])
)

transcripts

#it
#it

exons()

exons(txdb, columns=c(”"EXONID", "TXNAME"),

filter=list(exon_id=1))

exons(txdb, columns=c(”"EXONID", "TXNAME"),

#i#
#it
#it

filter=list(tx_name="uc@@9vip.1"))

genes()

genes(txdb) # a GRanges object
cols <- c("tx_id", "tx_chrom”, "tx_strand”,

"exon_id", "exon_chrom”, "exon_strand")

By default, genes are returned in a GRanges object and those that
cannot be represented by a single genomic range (because they have
exons located on both strands of the same reference sequence or on

#it

more than one reference sequence) are dropped with a message:

single_strand_genes <- genes(txdb, columns=cols)

#it
#it
#it

Because we've returned single strand genes only, the "tx_chrom”
and "exon_chrom” metadata columns are guaranteed to match
'seqnames(single_strand_genes)':

stopifnot(identical(as.character(segnames(single_strand_genes)),

as.character(mcols(single_strand_genes)$tx_chrom)))

stopifnot(identical(as.character(segnames(single_strand_genes)),

#i#
#it

as.character(mcols(single_strand_genes)$exon_chrom)))

and also the "tx_strand” and "exon_strand” metadata columns are
guaranteed to match 'strand(single_strand_genes)':

stopifnot(identical(as.character(strand(single_strand_genes)),

as.character(mcols(single_strand_genes)$tx_strand)))

stopifnot(identical(as.character(strand(single_strand_genes)),

as.character(mcols(single_strand_genes)$exon_strand)))

all_genes <- genes(txdb, columns=cols, single.strand.genes.only=FALSE)
all_genes # a GRangesList object

multiple_strand_genes <- all_genes[elementNROWS(all_genes) >= 2]
multiple_strand_genes

mcols(multiple_strand_genes)

#it
#it
#it

promoters()

This:
promoters(txdb, upstream=100, downstream=50)

#it

is equivalent to:

promoters(transcripts(txdb, use.names=TRUE), upstream=100, downstream=50)

Extra arguments are passed to transcripts(). So this:
columns <- c("tx_name"”, "gene_id")
promoters(txdb, upstream=100, downstream=50, columns=columns)

#it

is equivalent to:

promoters(transcripts(txdb, columns=columns, use.names=TRUE),

upstream=100, downstream=50)

63

64 transcriptsBy

transcriptsBy Extract and group genomic features of a given type from a TxDb-like
object

Description

Generic functions to extract genomic features of a given type grouped based on another type of
genomic feature. This page documents the methods for TxDb objects only.

Usage
transcriptsBy(x, by=c("gene"”, "exon", "cds"), ...)
S4 method for signature 'TxDb'
transcriptsBy(x, by=c("gene”, "exon"”, "cds"), use.names=FALSE)
exonsBy(x, by=c("tx", "gene"), ...)

S4 method for signature 'TxDb'
exonsBy(x, by=c("tx", "gene"), use.names=FALSE)

cdsBy(x, by=c("tx", "gene"), ...)
S4 method for signature 'TxDb'
cdsBy(x, by=c("tx", "gene"), use.names=FALSE)

intronsByTranscript(x, ...)
S4 method for signature 'TxDb'
intronsByTranscript(x, use.names=FALSE)

fiveUTRsByTranscript(x, ...)
S4 method for signature 'TxDb'
fiveUTRsByTranscript(x, use.names=FALSE)

threeUTRsByTranscript(x, ...)
S4 method for signature 'TxDb'
threeUTRsByTranscript(x, use.names=FALSE)

Arguments
X A TxDb object.
Arguments to be passed to or from methods.
by One of "gene”, "exon"”, "cds” or "tx". Determines the grouping.
use.names Controls how to set the names of the returned GRangesList object. These func-

tions return all the features of a given type (e.g. all the exons) grouped by an-
other feature type (e.g. grouped by transcript) in a GRangesList object. By
default (i.e. if use.names is FALSE), the names of this GRangesList object (aka
the group names) are the internal ids of the features used for grouping (aka the
grouping features), which are guaranteed to be unique. If use.names is TRUE,
then the names of the grouping features are used instead of their internal ids.
For example, when grouping by transcript (by="tx"), the default group names
are the transcript internal ids ("tx_id"). But, if use.names=TRUE, the group
names are the transcript names ("tx_name"). Note that, unlike the feature ids,

transcriptsBy 65

the feature names are not guaranteed to be unique or even defined (they could
be all NAs). A warning is issued when this happens. See ?id2name for more in-
formation about feature internal ids and feature external names and how to map
the formers to the latters.

Finally, use.names=TRUE cannot be used when grouping by gene by="gene".
This is because, unlike for the other features, the gene ids are external ids (e.g.
Entrez Gene or Ensembl ids) so the db doesn’t have a "gene_name" column for
storing alternate gene names.

Details
These functions return a GRangesList object where the ranges within each of the elements are
ordered according to the following rule:

When using exonsBy or cdsBy with by = "tx", the returned exons or CDS are ordered by ascending
rank for each transcript, that is, by their position in the transcript. In all other cases, the ranges will
be ordered by chromosome, strand, start, and end values.

Value

A GRangesList object.

Author(s)
M. Carlson, P. Aboyoun and H. Pages

See Also
* transcripts and transcriptsByOverlaps for more ways to extract genomic features from
a TxDb-like object.

* transcriptLengths for extracting the transcript lengths (and other metrics) from a TxDb
object.

* exonicParts and intronicParts for extracting non-overlapping exonic or intronic parts
from a TxDb-like object.

* extractTranscriptSeqs for extracting transcript (or CDS) sequences from chromosome se-
quences.

* coverageByTranscript for computing coverage by transcript (or CDS) of a set of ranges.

* select-methods for how to use the simple "select" interface to extract information from a TxDb
object.

* id2name for mapping TxDb internal ids to external names for a given feature type.
e The TxDb class.

Examples

txdb_file <- system.file("extdata”, "hgl9_knownGene_sample.sqlite”,
package="GenomicFeatures")
txdb <- loadDb(txdb_file)

Get the transcripts grouped by gene:
transcriptsBy(txdb, "gene")

Get the exons grouped by gene:
exonsBy(txdb, "gene")

66 transcriptsByOverlaps

Get the CDS grouped by transcript:

cds_by_tx0 <- cdsBy(txdb, "tx")

With more informative group names:

cds_by_tx1 <- cdsBy(txdb, "tx", use.names=TRUE)

Note that 'cds_by_tx1' can also be obtained with:

names(cds_by_tx0@) <- id2name(txdb, feature.type="tx")[names(cds_by_tx@)]
stopifnot(identical(cds_by_tx@, cds_by_tx1))

Get the introns grouped by transcript:
intronsByTranscript(txdb)

Get the 5' UTRs grouped by transcript:
fiveUTRsByTranscript(txdb)
fiveUTRsByTranscript(txdb, use.names=TRUE) # more informative group names

transcriptsByOverlaps Extract genomic features from a TxDb-like object based on their ge-
nomic location

Description

Generic functions to extract genomic features for specified genomic locations. This page documents
the methods for TxDb objects only.

Usage
transcriptsByOverlaps(x, ranges,
maxgap = -1L, minoverlap = 0oL,
type = c("any"”, "start”, "end"), ...)

S4 method for signature 'TxDb'
transcriptsByOverlaps(x, ranges,

maxgap = -1L, minoverlap = 0oL,
type = c("any”, "start"”, "end"),
columns = c("tx_id", "tx_name"))
exonsByOverlaps(x, ranges,
maxgap = -1L, minoverlap = 0oL,
type = c("any"”, "start”, "end"), ...)
S4 method for signature 'TxDb'
exonsByOverlaps(x, ranges,
maxgap = -1L, minoverlap = oL,
type = c("any"”, "start”, "end"),
columns = "exon_id")
cdsByOverlaps(x, ranges,
maxgap = -1L, minoverlap = 0L,
type = c("any"”, "start”, "end"), ...)

S4 method for signature 'TxDb'
cdsByOverlaps(x, ranges,
maxgap = -1L, minoverlap = 0OL,
type = c("any”, "start"”, "end"),
columns = "cds_id")

transcriptsByOverlaps 67

Arguments
X A TxDb object.
ranges A GRanges object to restrict the output.

maxgap,minoverlap, type
Used in the internal call to findOverlaps() to detect overlaps. See ?findOverlaps
in the IRanges package for a description of these arguments.

Arguments to be passed to or from methods.

columns Columns to include in the output. See ?transcripts for the possible values.

Details

These functions subset the results of transcripts, exons, and cds function calls with using the
results of findOverlaps calls based on the specified ranges.

Value

a GRanges object

Author(s)

P. Aboyoun

See Also
* transcripts and transcriptsBy for more ways to extract genomic features from a TxDb-
like object.

* transcriptLengths for extracting the transcript lengths (and other metrics) from a TxDb
object.

* exonicParts and intronicParts for extracting non-overlapping exonic or intronic parts
from a TxDb-like object.

* extractTranscriptSeqgs for extracting transcript (or CDS) sequences from chromosome se-
quences.

* coverageByTranscript for computing coverage by transcript (or CDS) of a set of ranges.

* select-methods for how to use the simple "select" interface to extract information from a TxDb
object.

* id2name for mapping TxDb internal ids to external names for a given feature type.

e The TxDb class.

Examples

txdb <- loadDb(system.file("extdata”, "hgl19_knownGene_sample.sqlite”,
package="GenomicFeatures"))
gr <- GRanges(Rle("chr1”, 2),
IRanges(c(500,10500), c(10000,30000)),
strand = Rle("-", 2))
transcriptsByOverlaps(txdb, gr)

68

TxDb-class

TxDb-class TxDb objects

Description

The TxDb class is a container for storing transcript annotations.

See ?FeatureDb for a more generic container for storing genomic locations of an arbitrary type of
genomic features.

Methods

In the code snippets below, x is a TxDb object.

metadata(x): Return x’s metadata in a data frame.

seqlevels@(x): Get the sequence levels originally in x. This ignores any change the user might
have made to the sequence levels with the seqlevels setter.

seqlevels(x), seqlevels(x) <-value: Get or set the sequence levels in x.

seqinfo(x), seqinfo(x) <-value: Get or set the information about the underlying sequences.
Note that, for now, the setter only supports replacement of the sequence names, i.e., except
for their sequence names (accessed with seqnames(value) and segnames(seqinfo(x)), re-
spectively), Seqinfo objects value (supplied) and seqinfo(x) (current) must be identical.

isActiveSeq(x): Return the currently active sequences for this txdb object as a named logical
vector. Only active sequences will be tapped when using the supplied accessor methods.
Inactive sequences will be ignored. By default, all available sequences will be active.

isActiveSeq(x) <-value: Allows the user to change which sequences will be actively accessed
by the accessor methods by altering the contents of this named logical vector.

seqlevelsStyle(x), seqlevelsStyle(x) <-value: Get or set the seqname style for x. See the
seqlevelsStyle generic getter and setter in the GenomeInfoDb package for more information.

as.list(x): Dump the entire db into a list of data frames, say txdb_dump, that can then be used
to recreate the original db with do.call(makeTxDb, txdb_dump) with no loss of information
(except possibly for some of the metadata). Note that the transcripts are dumped in the same
order in all the data frames.

Author(s)

Hervé Pages, Marc Carlson

See Also

* makeTxDbFromUCSC, makeTxDbFromBiomart, and makeTxDbFromEnsembl, for making a TxDb
object from online resources.

* makeTxDbFromGRanges and makeTxDbFromGFF for making a TxDb object from a GRanges
object, or from a GFF or GTF file.

* saveDb and loadDb in the AnnotationDbi package for saving and loading a TxDb object as
an SQLite file.

* transcripts, transcriptsBy, and transcriptsByOverlaps, for extracting genomic fea-
ture locations from a TxDb-like object.

TxDb-class 69

* transcriptlLengths for extracting the transcript lengths (and other metrics) from a TxDb
object.

* select-methods for how to use the simple "select" interface to extract information from a TxDb
object.

* The FeatureDb class for storing genomic locations of an arbitrary type of genomic features.

* The Seqinfo class in the GenomelnfoDb package.

Examples

txdb_file <- system.file("extdata”, "Biomart_Ensembl_sample.sqlite”,
package="GenomicFeatures")

txdb <- loadDb(txdb_file)

txdb

Use of seqinfo():

seqlevelsStyle(txdb)

seqginfo(txdb)

seqlevels(txdb)

seqlengths(txdb) # shortcut for 'seqlengths(seginfo(txdb))'
isCircular(txdb) # shortcut for 'isCircular(seqinfo(txdb))'
names(which(isCircular(txdb)))

You can set user-supplied seglevels on 'txdb' to restrict any further
operations to a subset of chromosomes:

seqlevels(txdb) <- c("Y", "6")

Then you can restore the seqlevels stored in the db:

seqlevels(txdb) <- seqlevels@(txdb)

Use of as.list():

txdb_dump <- as.list(txdb)

txdb_dump

txdb1 <- do.call(makeTxDb, txdb_dump)
stopifnot(identical(as.list(txdb1), txdb_dump))

Index

* classes
FeatureDb-class, 18
TxDb-class, 68

* manip
coverageByTranscript, 4
exonicParts, 9
extractTranscriptSegs, 12
extractUpstreamSegs, 16
getPromoterSeq, 20
transcriptlLengths, 56
transcriptlLocs2reflocs, 58

+* methods
disjointExons, 7
FeatureDb-class, 18
getPromotersSeq, 20
mapToTranscripts, 46
microRNAs, 52
select-methods, 55
transcripts, 60
transcriptsBy, 64
transcriptsByOverlaps, 66
TxDb-class, 68

+ utilities
mapToTranscripts, 46
nearest-methods, 53

AnnotationDb-class, 55
as-format-methods, 3
as.list,TxDb-method (TxDb-class), 68
asBED, TxDb-method (as-format-methods), 3
asGFF, TxDb-method, 36

asGFF, TxDb-method (as-format-methods), 3
available.genomes, 14, 17

BamFile, 4
browseUCSCtrack (makeTxDbFromuUCSsC), 37
BSgenome, 12, 13, 16, 17, 20

cds, 67

cds (transcripts), 60

cds, TxDb-method (transcripts), 60
cdsBy (transcriptsBy), 64

cdsBy, TxDb-method (transcriptsBy), 64
cdsByOverlaps, 61

70

cdsByOverlaps (transcriptsByOverlaps),
66

cdsByOverlaps, TxDb-method
(transcriptsByOverlaps), 66

class:FeatureDb (FeatureDb-class), 18

class:TxDb (TxDb-class), 68

columns, TxDb-method (select-methods), 55

coordinate-mapping (mapToTranscripts),
46

coverage, 4, 5

coverageByTranscript, 4, 10, 13, 57, 59, 62,
65, 67

DataFrame, 45

disjoin, 9, 10

disjointExons, 7, 10

disjointExons, TxDb-method
(disjointExons), 7

distance,GenomicRanges, TxDb-method
(nearest-methods), 53

DNAString, 12-14

DNAStringSet, 13, 14, 17, 20

DNAStringSetList, 20

EnsDb, 4, 9, 10, 13

exonicParts, 7, 8,9, 57,62, 65, 67

exons, 67

exons (transcripts), 60

exons, TxDb-method (transcripts), 60

exonsBy, 4, 5,9, 10, 13, 14

exonsBy (transcriptsBy), 64

exonsBy, TxDb-method (transcriptsBy), 64

exonsByOverlaps, 61

exonsByOverlaps
(transcriptsByOverlaps), 66

exonsByOverlaps, TxDb-method
(transcriptsByOverlaps), 66

export, 3

extractTranscriptSegs, 5, 10, 12, 57, 59,
62,65, 67

extractTranscriptSeqgs,ANY-method
(extractTranscriptSeqs), 12

extractTranscriptSeqs,DNAString-method
(extractTranscriptSeqs), 12

INDEX

extractUpstreamSegs, 16
extractUpstreamSeqs,GenomicRanges-method
(extractUpstreamSeqs), 16
extractUpstreamSeqs,GRangesList-method
(extractUpstreamSeqgs), 16

extractUpstreamSeqs, TxDb-method
(extractUpstreamSeqgs), 16

FaFile, 12, 16, 17, 20
FeatureDb, 19, 22, 23, 68, 69
FeatureDb (FeatureDb-class), 18
FeatureDb-class, 18
features, 19, 19
features,FeatureDb-method (features), 19
findCompatibleOverlaps, 5
findOverlaps, 45, 67
fiveUTRsByTranscript (transcriptsBy), 64
fiveUTRsByTranscript, TxDb-method
(transcriptsBy), 64

GAlignmentPairs, 4

GAlignments, 4

GAlignmentsList, 4

genes, 16, 17

genes (transcripts), 60

genes, TxDb-method (transcripts), 60

GenomicRanges, 16, 17,46, 47, 53

getChromInfoFromBiomart
(makeTxDbFromBiomart), 27

getPromoterSeq, 20

getPromoterSeq, GRanges-method
(getPromoterSeq), 20

getPromoterSeq,GRangesList-method
(getPromoterSeq), 20

getSeq, 12, 16, 17, 20

GFF3File, 34

GRanges, 3, 4, 8, 10, 17, 20, 26, 29, 33, 35, 36,
38, 39, 52, 56, 57,61, 62, 67, 68

GRangeslList, 4, 5, 13, 14, 20,45, 47, 61, 62,
64, 65

grglist, 4

GTFFile, 34

id2name, 21, 62, 65, 67

import, 35, 36

IntegerList, 58

IntegerRanges, 46
IntegerRangeslist, 13, 14
intra-range-methods, 20
intronicParts, 57, 62, 65, 67
intronicParts (exonicParts), 9
intronsByTranscript (transcriptsBy), 64

71

intronsByTranscript, TxDb-method
(transcriptsBy), 64

isActiveSeq (TxDb-class), 68

isActiveSeq, TxDb-method (TxDb-class), 68

isActiveSeq<- (TxDb-class), 68

isActiveSeq<-, TxDb-method (TxDb-class),
68

keys, TxDb-method (select-methods), 55
keytypes, TxDb-method (select-methods),
55

listDatasets, 29
listFilters, 29
listMarts, 27, 29, 42
loadDb, 79, 26, 68

makeFDbPackageFromUCSC
(makeTxDbPackage), 40
makeFeatureDbFromUCSC, 18, 19, 22
makePackageName (makeTxDbPackage), 40
makeTxDb, 24, 28, 29, 33-36, 38, 39, 43
makeTxDbFromBiomart, 17, 26, 27, 33, 35, 36,
39,43,57,68
makeTxDbFromEnsembl, 17, 24, 26, 27, 29, 32,
35, 36, 38, 39, 57, 68
makeTxDbFromGFF, 17, 24, 26, 29, 33, 34, 36,
39,57, 68
makeTxDbFromGRanges, 17, 26, 29, 33, 35, 36,
39,57, 68
makeTxDbFromUCSC, 17, 24, 26, 28, 29, 33, 35,
36,37,43,57, 68
makeTxDbPackage, 40, 43
makeTxDbPackageFromBiomart
(makeTxDbPackage), 40
makeTxDbPackageFromUCSC
(makeTxDbPackage), 40
mapFromTranscripts (mapToTranscripts),
46

mapFromTranscripts,GenomicRanges, GenomicRanges-method

(mapToTranscripts), 46

mapFromTranscripts,GenomicRanges, GRangesList-method

(mapToTranscripts), 46
mapIdsToRanges, 44
mapIdsToRanges, TxDb-method

(mapIdsToRanges), 44
mapRangesTolds, 45
mapRangesTolds, TxDb-method

(mapRangesTolds), 45
mapToAlignments, 46, 49
mapToTranscripts, 46
mapToTranscripts,ANY, TxDb-method

(mapToTranscripts), 46

72

INDEX

mapToTranscripts,GenomicRanges, GenomicRanges-sefibodtedMiRBaseBuildValues

(mapToTranscripts), 46

(makeTxDbPackage), 40

mapToTranscripts,GenomicRanges, GRangesList-mesbpportedUCSCFeatureDbTables

(mapToTranscripts), 46
mcols, 17
microRNAs, 52, 62
microRNAs, TxDb-method (microRNAs), 52

nearest-methods, 53, 54
organism, TxDb-method (TxDb-class), 68

pcoverageByTranscript
(coverageByTranscript), 4

person, 42

pmapFromTranscripts (mapToTranscripts),
46

(makeFeatureDbFromUCSC), 22
supportedUCSCFeatureDbTracks
(makeFeatureDbFromuCsC), 22
supportedUCSCtables, 42
supportedUCSCtables (makeTxDbFromUCSC),
37

threeUTRsByTranscript (transcriptsBy),
64

threeUTRsByTranscript, TxDb-method
(transcriptsBy), 64

tidyExons (exonicParts), 9

tidyIntrons (exonicParts), 9

tidyTranscripts (exonicParts), 9

pmapFromTranscripts,GenomicRanges, GenomicRangesamethoptlLengths, 5, 10, 14, 56, 62, 65, 67,

(mapToTranscripts), 46

69

pmapFromTranscripts,GenomicRanges,GRangeslListtmetbodiptLocs2reflocs, 14, 58

(mapToTranscripts), 46

transcripts, 5,9, 10, 22,44, 53, 55-57, 60,

pmapFromTranscripts,IntegerRanges, GenomicRanges-method), 67, 68

(mapToTranscripts), 46

transcripts, TxDb-method (transcripts),

pmapFromTranscripts, IntegerRanges,GRangesList-method 60

(mapToTranscripts), 46

pmapToTranscripts (mapToTranscripts), 46

transcriptsBy, 5, 10, 22, 53, 55, 57, 62, 64,
67, 68

pmapToTranscripts,GenomicRanges,GenomicRangestmethodiptsBy, TxDb-method

(mapToTranscripts), 46

(transcriptsBy), 64

pmapToTranscripts, GenomicRanges,GRangesList-metaoscriptsByOverlaps, 5, 10, 22, 53, 55,

(mapToTranscripts), 46

57,61, 62,65, 66, 68

pmapToTranscripts,GRangesList,GRangesList-methoanscriptsByOverlaps, TxDb-method

(mapToTranscripts), 46
promoters (transcripts), 60
promoters, TxDb-method (transcripts), 60

registered_UCSC_genomes, 38
Rle, 4, 13
RlelList, 4, 5

saveDb, 19, 26, 68

select, TxDb-method (select-methods), 55
select-methods, 55, 62, 65, 67, 69
Seqinfo, 34, 68, 69
seqinfo, 4, 12,16, 17, 38

seginfo, TxDb-method (TxDb-class), 68
seglevels@, TxDb-method (TxDb-class), 68
seglevels<-,TxDb-method (TxDb-class), 68
seqlevelsStyle, 68

show, TxDb-method (TxDb-class), 68
species, TxDb-method (TxDb-class), 68
strand, /3

SummarizedExperiment, 38
supportedMiRBaseBuildValues, 29, 35, 39

(transcriptsByOverlaps), 66

transcriptWidths
(transcriptLocs2reflocs), 58

translate, /4

tRNAs, 62

tRNAs (microRNAs), 52

tRNAs, TxDb-method (microRNAs), 52

TwoBitFile, 16, 17

TxDb, 3-5, 7-10, 13, 14, 16-19, 21, 22, 24,
26-29, 32-40, 42, 43, 52, 53, 55-57,
60-62, 64-69

TxDb (TxDb-class), 68

TxDb-class, 68

UCSCFeatureDbTableSchema

(makeFeatureDbFromUCsC), 22
ucscGenomes, 23, 24, 38, 39, 42, 43
useMart, 29

	as-format-methods
	coverageByTranscript
	disjointExons
	exonicParts
	extractTranscriptSeqs
	extractUpstreamSeqs
	FeatureDb-class
	features
	getPromoterSeq
	id2name
	makeFeatureDbFromUCSC
	makeTxDb
	makeTxDbFromBiomart
	makeTxDbFromEnsembl
	makeTxDbFromGFF
	makeTxDbFromGRanges
	makeTxDbFromUCSC
	makeTxDbPackage
	mapIdsToRanges
	mapRangesToIds
	mapToTranscripts
	microRNAs
	nearest-methods
	select-methods
	transcriptLengths
	transcriptLocs2refLocs
	transcripts
	transcriptsBy
	transcriptsByOverlaps
	TxDb-class
	Index

