
RNA-Seq Tutorial (EBI, October 2011)

Nicolas Delhomme

April 18, 2015

Contents

1 Introduction 2

2 Walk through a single sample use case 4
2.1 Reading the data . 5
2.2 Filtering the data . 10
2.3 Loading the annotation . 11
2.4 Summarizing read counts per feature 16
2.5 Conclusion . 18

3 Using easyRNASeq 19
3.1 easyRNASeq . 19

4 Advanced usage 22
4.1 Normalizing counts . 22
4.2 De-multiplexing samples . 23

5 Visualizing the data 23
5.1 exporting the coverage . 23
5.2 exporting the normalized exon counts 24
5.3 conclusion . 24

6 You are done, but still there is more to come... 26

7 Session Information 27

8 Final remarks 29

A Appendix A: Solutions 32

1

1 Introduction

This file describes a RNA-Seq analysis use-case. RNA-Seq [Mortazavi et al.,
2008] was introduced as a new method to perform Gene Expression Analysis,
using the advantages of the high throughput of Next-Generation Sequencing
(NGS) machines. The goal of this use-case is to generate a count table for
the selected genic features of interest, i.e. exons, transcripts, gene models,
etc.

In the first part, the data will be read in R using Bioconductor [Gentle-
man et al., 2004] ShortRead [Morgan et al., 2009], Rsamtools and Genomi-
cAlignments packages. Then, annotation will be retrieved using the biomaRt
[Durinck et al., 2005] and genomeIntervals packages. Finally the IRanges
and GenomicFeatures packages will be used to define the reads coverage,
and assign counts to genic features of interest.

In the second part, we will see how this process can be simplified by
the use of the easyRNASeq package [Delhomme et al., 2012] and how more
advanced pre-processing can be performed, such as de-multiplexing, RPKM
“correction” or normalization using the DESeq or edgeR packages.

Finally, the count information will be exported as bed and wig format-
ted file, to be visualized into the UCSC genome browser or a stand alone
genome browser like IGB.

The overall process is described in figure 1, page 3. First, the genomic
and genic annotation will be retrieved from the selected/preferred source
and converted into an appropriate object. In parallel, the sequenced reads’
information (e.g. chromosome, position, strand, etc.) will be retrieved from
the alignment file and, as well, converted to a similar object. Then, the
reads contained in the reads object are summarized per genic annotation
contained in the annotation object. This give raise to a count table that,
finally, can be normalized using additional R packages.

2

Figure 1: RNA-Seq Procedure Overview. The R packages used for the
different steps are emphasized in bold face.

3

2 Walk through a single sample use case

In this section, we will mainly look into the details of generating a count ta-
ble, i.e. how many sequencing reads can be assigned to given genic features.
An expressed genic feature can be anything from an exon to a gene-model
or, as recently published, enhancers [Kim et al., 2010]. In this section, you
will learn how to read “raw” data in, load the related annotations, calculate
the reads genomic coverage and deduce read counts per exons. But first, we
need to load the tutorial library and data.

> library(RnaSeqTutorial)

4

2.1 Reading the data

There are different ways to read in NGS data into R, depending on the
“raw” data format at hand. The next paragraphs will present three different
approaches, introducing the ShortRead , Rsamtools and GenomicAlignments
packages capabilities.

ShortRead ShortRead was the first NGS package developed to read in
NGS data and is able to read almost every sequencer’s manufacturer pro-
prietary formats (with the notable exception of ABI color-space). First, an
Illumina “export” file produced by a GenomeAnalyzer GAIIx will be read
in; and then the same data set, in BAM format.

Illumina export The export file is read in using the readAligned

function, and the resulting object displayed.

> library(ShortRead)

> aln<-readAligned(

+ system.file("extdata",package="RnaSeqTutorial"),

+ pattern="subset_export",type="SolexaExport")

> show(aln)

class: AlignedRead

length: 100000 reads; width: 36 cycles

chromosome: NM 1:0:0 ... chr2R chr2L

position: NA NA ... 20555556 13903608

strand: NA NA ... + -

alignQuality: NumericQuality

alignData varLabels: run lane ... filtering contig

N.B.: The system.file retrieves the file path where a package was
installed. Additional argument can be provided in a similar fashion to that
of file.path to access directories and files within the package.

The readAligned function returns an object of the AlignedRead class.
The main slots can be accessed using similarly named accessors as described
in the following code sample:

> chromosome(aln)

> levels(chromosome(aln))

> position(aln)[1:100]

> width(aln)[1:100]

5

> strand(aln)[1:100]

> sread(aln)

> quality(aln)

The Illumina “export” format contains every read sequenced on the plat-
form, as well as these coming from overlapping sequence clusters. These
sequences are flagged by the Illumina pipeline through a chastity filter. It is
important for processing such “raw” data to remove these reads. This will
be done in the next section: 2.2, page 10. First, we will just find out the
value of the chastity filter field (“Y” or “N” whether it passes the filter or
not) within the current object:

> alignData(aln)$filtering[1:100]

BAM The SAM/BAM format [Li et al., 2009] is becoming a de-facto
standard for storing NGS aligned data. As a consequence, the Rsamtools
was developed to import the samtools functionalities into the R environment.
Subsequently, the ShortRead package was extended to use Rsamtools to load
BAM files. SAM/BAM files can be sorted by chromosomal position, in which
case an index can be created that will improve the subsequent retrieval of
information within the BAM file. This can be done using the “samtools”
command in a terminal, or using the Rsamtools package that implements
in R most of the “samtools” and “bcftools” functionalities. In the following
example, you will first create an index for the BAM file and then read the
data into an AlignedRead class object.

> library(Rsamtools)

> file.copy(

+ system.file("extdata",

+ "subset.bam",

+ package="RnaSeqTutorial"),

+ getwd())

[1] TRUE

> indexFile <- indexBam("subset.bam")

> basename(indexFile)

[1] "subset.bam.bai"

> aln2 <- readAligned(getwd(),pattern="subset.bam$",type="BAM")

6

Q1: What differences exists between the aln and aln2 objects?

Answers are provided in the Appendix A, page 32.

Rsamtools A different, more flexible way to load BAM formatted files is
to directly use the scanBam function from the Rsamtools package.

> aln2b <- scanBam(

+ "subset.bam",

+ index="subset.bam"

+)

> names(aln2b[[1]])

[1] "qname" "flag" "rname" "strand" "pos" "qwidth" "mapq" "cigar"

[9] "mrnm" "mpos" "isize" "seq" "qual"

N.B. First, the index argument is the filename, i.e. the “.bai” extension
is ignored. Second, (scanBam) returns a list of list, with the first list having
a single element.

The inner lists contains an element per column of the BAM file formats,
with the optional fields being ignored. The scanBam function extends the
base R “scan” function. Additional parameters can be provided to select the
reads: see the scanBamParam argument for filtering the reads based on their
flag, cigar string, etc.; see the ScanBamParam to display which fields of the
BAM file are to be retrieved.

GenomicAlignments Finally, the last example to load data uses the Ge-
nomicAlignments package. With the increasing read length, it became possi-
ble to reliably map exon-exon junctions and therefore to report gapped align-
ments and alternative transcripts. Tools such as TopHat [Trapnell et al.,
2009] have especially been developed for that purpose. The GenomicAlign-
ments package was implemented to deal with this new kind of data. As of
today, most of the common aligners such as bowtie [Langmead et al., 2009],
bwa [Li and Durbin, 2009], novoalign [Novocraft.com, 2009] or GSNAP [Wu
and Nacu, 2010] supports gap alignments, an additional motivation to use
the GenomicAlignments package functionalities.

> library(GenomicAlignments)

> aln3 <- readGAlignments(

+ system.file("extdata",

7

+ "gapped.bam",

+ package="RnaSeqTutorial"))

The generated object of class GAlignments, is very different from the
AlignedRead class objects you have seen so far.

Q2 What are the most obvious differences?
Q3: Does the aln3 object contains evidence of exon-exon junctions?
Tip: use the cigar functionalities: cigar, cigarOpTable, etc.

Caveats Finally, before we go on with data filtering, a few caveats need
to be mentioned.

Illumina export The ShortRead package, when loading an export
file does not retrieve all the possible information; i.e. the id slot of the
AlignedRead object contains no valid information.

> head(id(aln))

A BStringSet instance of length 6

width seq

[1] 0

[2] 0

[3] 0

[4] 0

[5] 0

[6] 0

The withMultiplexIndex, withPairedReadNumber, withId and withAll ar-
guments offer the possibility to retrieve such information.

> aln4<-readAligned(

+ system.file("extdata",package="RnaSeqTutorial"),

+ pattern="subset_export",type="SolexaExport",

+ withId=TRUE)

> head(id(aln4))

A BStringSet instance of length 6

width seq

[1] 26 HWI-EAS225_90320:3:1:0:519

[2] 27 HWI-EAS225_90320:3:1:0:1860

8

[3] 27 HWI-EAS225_90320:3:1:0:1013

[4] 26 HWI-EAS225_90320:3:1:0:747

[5] 27 HWI-EAS225_90320:3:1:0:1512

[6] 26 HWI-EAS225_90320:3:1:0:990

BAM In a BAM file, the reads are stored as they are aligned against
the reference genome! Hence, these are not necessarily the “sequence” that
have been read by the sequencer. The ShortRead , when loading a BAM file
revert the reads to their original sequence.

> sel <- !is.na(strand(aln2)) & strand(aln2) %in% "-"

> aln2b[[1]]$seq[sel][1]

A DNAStringSet instance of length 1

width seq

[1] 36 AAAAAGTGGAGCCGCTCCTTTCCATTTTTGATTTCC

> sread(aln2[sel])[1]

A DNAStringSet instance of length 1

width seq

[1] 36 GGAAATCAAAAATGGAAAGGAGCGGCTCCACTTTTT

> reverseComplement(aln2b[[1]]$seq[sel][1])

A DNAStringSet instance of length 1

width seq

[1] 36 GGAAATCAAAAATGGAAAGGAGCGGCTCCACTTTTT

Conclusion In that section, we have seen three packages that allow load-
ing NGS data into R, as well as some caveats related to the format these
data can be in. Depending on the data format, this step might only be the
first one and some additional pre-processing might be necessary, as described
in the next paragraph.

9

2.2 Filtering the data

As one can see, many reads do not pass the chastity filter and many reads do
not align to the genome. In addition some of those reads do contain many
Ns; that is whenever Bustard, the Illumina base caller, could not perform
a valid base call. All the chastity flagged reads should be filtered out. The
N-containing reads can be filtered out according to the number of mismatch
you are willing to have in your data. Filtering for failed chastity calls is not
implemented in the ShortRead package, but is in the easyRNASeq package.
In the following example, several filters are combined to keep reads that
align to reference chromosomes, that do not have more than 2 Ns and that
pass the chastity filter.

> library(easyRNASeq)

> nFilt <- nFilter(2)

> chrFilt <- chromosomeFilter(regex="chr")

> cFilt <- chastityFilter()

> filt <- compose(nFilt,chrFilt,cFilt)

> aln <- aln[filt(aln)]

> show(aln)

We are now left with 56,883 “valid” reads, which we want to assign to
their respective exon. For this we need to get the proper genomic and genic
information.

Conclusion We’ve seen how to load in R the raw data (the aligned reads).
We therefore have the information where these reads are located in the
genome. Now, we want to discover if these loci covered by reads corresponds
to interesting genomic or genic features, e.g. exons, promoters, etc.. To
achieve this, we first need to load the genic/genomic annotation in R. This
will be the topic of the next subsection.

10

2.3 Loading the annotation

To assign reads to exons, we need to know the genome composition, i.e. how
many chromosomes, their names and sizes. In addition, we need to know
the genic information, i.e. where are exons located, which gene they belong
to, etc.

Genomic information The reads present in the “subset” file used previ-
ously, come from an RNA-Seq experiment conducted in Drosophila melanogaster.
First, the genomic information for that organism need to be retrieved. You
will use the BSgenome package for this.

> library(BSgenome.Dmelanogaster.UCSC.dm3)

> chrSizes <-seqlengths(Dmelanogaster)

> chrSizes

chr2L chr2R chr3L chr3R chr4 chrX chrU chrM

23011544 21146708 24543557 27905053 1351857 22422827 10049037 19517

chr2LHet chr2RHet chr3LHet chr3RHet chrXHet chrYHet chrUextra

368872 3288761 2555491 2517507 204112 347038 29004656

Genic information To retrieve the genic annotation, several solutions
are available:

� the biomaRt package to fetch information from “Mart” databases

� the genomeInterval package to read data in from “gff” annotation files
obtained from FlyBase [Tweedie et al., 2009], Ensembl [Flicek et al.,
2011], UCSC, or using proprietary annotations.

� the rtracklayer package to import “gff”, “bed” or “wig” files.

� the GenomicFeatures package to retrieve information from the UCSC
databases or from the “Mart” databases through the biomaRt package
interface.

These four methods have strengths and drawbacks and selecting the
most appropriate is essentially depending on your computing environment,
e.g. lots of memory vs. lots of disk space as well as on your computing pro-
ficiency. Shortly, the two first approaches will require the post-processing
of the obtained data into a RangedData or GRanges class object. The first
and last require an internet connection, at least for initially downloading

11

the data. Such data can be saved locally, not to have to download them
again and again. Having a local frozen copy is anyway a good practice to
ensure reproducibility. The last one requires to write an SQLite database
locally. The two last returns object that do not need post-processing; how-
ever the rtracklayer import function is not robust to incorrect gff files and
the GenomicFeatures is limited to the genomes available in its datasources.

biomaRt The biomaRt package remotely queries Mart services. To
get the Drosophila melanogaster genomic information, a connection is es-
tablished with the Ensembl fruit fly Mart database and queried for the in-
formation we need (gene ID, transcript ID, exon ID, position, etc.). To limit
the amount of data to be retrieved, a filter is set to select for the chromo-
somes of interest. The filters argument defines the criteria to use as filters
and the values’ one defines the values that are accepted for these criteria.

> library(biomaRt)

> ensembl <- useMart("ensembl",

+ dataset="dmelanogaster_gene_ensembl")

> exon.annotation<-getBM(

+ c("ensembl_gene_id",

+ "strand",

+ "ensembl_transcript_id",

+ "chromosome_name",

+ "ensembl_exon_id",

+ "exon_chrom_start",

+ "exon_chrom_end"),

+ mart=ensembl,

+ filters="chromosome_name",

+ values=c("2L","2R","3L","3R","4","X"))

As mentioned, the obtained data.frame needs to be converted into an
object of class RangedData or GRanges. Note that the chromosome names
retrieved from Ensembl, compliant with the FlyBase annotation are not
UCSC compliant and need to be converted; i.e. the “chr” string needs to be
prepended.

> exon.annotation$chromosome <- paste(

+ "chr",

+ exon.annotation$chromosome_name,

+ sep="")

12

> exon.range <- RangedData(

+ IRanges(

+ start=exon.annotation$exon_chrom_start,

+ end=exon.annotation$exon_chrom_end),

+ space=exon.annotation$chromosome,

+ strand=exon.annotation$strand,

+ transcript=exon.annotation$ensembl_transcript_id,

+ gene=exon.annotation$ensembl_gene_id,

+ exon=exon.annotation$ensembl_exon_id,

+ universe = "Dm3"

+)

This created a RangedData class object.

> show(exon.range)

Q4: How would you create a GRanges object?

genomeIntervals The readGff3 of the genomeIntervals is a robust
and efficient way to load Generic Feature Format (gff) file. The latest version
of that format: version 3 is used by most model organism websites, or similar
format have been derived from it, such as the Gene Transfer Format (gtf)
used among others by Ensembl. The readGff3 is flexible enough to cope
with gtf formatted files too.

> library(genomeIntervals)

> gInterval<-readGff3(system.file("extdata",

+ "annot.gff",

+ package="RnaSeqTutorial"))

As for biomaRt , post-processing the obtained object is necessary. The
gff file has been retrieved from FlyBase and filtered for the “exon” type. It
contains the gffAttributes ID, Name and Parent defining the “exon ID”, the
“gene ID” and the “transcript ID” respectively.

> exon.range2 <- RangedData(

+ IRanges(

+ start=gInterval[,1],

+ end=gInterval[,2]),

+ space=gInterval$seq_name,

+ strand=gInterval$strand,

13

+ transcript=as.vector(

+ getGffAttribute(gInterval,"Parent")),

+ gene=as.vector(

+ getGffAttribute(gInterval,"Name")),

+ exon=as.vector(

+ getGffAttribute(gInterval,"ID")),

+ universe = "Dm3"

+)

Q5: How would you create a GRanges object from the gInterval?
Q6: (optional) How would you export the “gAnnot.rda” file, present in

the “data” directory into a gff version 3 formatted file?

rtracklayer Importing a properly formatted “gff” file is straightfor-
ward.

> library(rtracklayer)

> exon.range3<-import.gff3(

+ system.file("extdata",

+ "annot.gff",

+ package="RnaSeqTutorial")

+)

GenomicFeatures The GenomicFeatures can retrieve data by con-
necting “UCSC” or by through the biomaRt package interface. The two
related functions are makeTranscriptDbFromUCSC and makeTranscript-

DbFromBiomart. It creates a TranscriptDb object that can be queried using
the transcript, exon and cds functions.

> library(GenomicFeatures)

> dm3.tx <- makeTranscriptDbFromUCSC(

+ genome="dm3",

+ tablename="refGene")

> exon.range4 <- exons(dm3.tx)

> exon.range4

As you can see a certain amount of warnings are raised and the actual
annotation looks different (somewhat less complete) than the previous ones.
To avoid downloading the annotation everytime they are needed, the anno-
tation object (dm3.tx in that case) can be saved to disk. This is actually a
good practice as well to ensure the reproducibility of your analyses.

14

Caveats All the previous steps help retrieve the necessary genomic
and genic information, however it is essential for the user to pay attention
that the proper annotation are gathered. The GenomicFeatures is under
very active development, so changes are to be expected. If your genome
is not in it,do not hesitate to post on the mailing list,to make the changes
happen! It is as well essential that you understand the content of your
annotation and its consequences on your analysis.I.e. most of the previously
described approaches will result in annotation containing some overlapping
genic feature, e.g. genes on opposite strand, exons shared by transcripts,
etc. Using them as is will results in counting some reads multiple times,
introducing some possible bias. It is obviously important to avoid such
behavior and this requires to check and validate you annotation.

15

2.4 Summarizing read counts per feature

Now that all the annotations have been retrieved (exon.range2 and chr-

Sizes) and the data loaded (aln), the read coverage can be extracted and
then summarized per feature of interest.

Calculating the coverage

> cover <- coverage(aln,width=chrSizes)

> show(cover)

> show(cover$chr2R)

RleList objects are clever way of encoding a coverage vector. Such a
vector, contains one value per bp and is therefore greedy. However many
successive bp might have the same coverage value and therefore could be
considered as intervals that have a given coverage value. This is exactly
what an Rle object does. It is constituted of “runs” that encode the length
of an interval together with its coverage value.

Q7: How would you get the actual bp coverage from an Rle class object?
Tip: select the “chr4” out of your cover RleList ; it is the smallest.
Q8: How would you access the “run” lengths and values?

The Rle class derives from the Sequence one and therefore has numerous
capabilities. The following example display some:

> runLength(cover$chr4)[1:3]

[1] 59510 36 2019

> runValue(cover$chr4)[1:3]

[1] 0 1 0

> r.start <- runLength(cover$chr4)[1]+1

> r.end <- sum(runLength(cover$chr4)[1:2])

> as.integer(cover$chr4)[r.start:r.end]

[1] 1

> as.integer(window(cover$chr4,r.start,r.end))

16

[1] 1

The previous example identifies a region covered by a single read and
retrieve the actual bp coverage from it. Note the use of the window function.
It significantly fastens such approaches; i.e. it works similarly to a Views.
Views is a general container for storing a set of “views” on an object; i.e.
a view simply records the position of interest on the object rather than
creating a copy of that object. For example, a view on a genomic sequence
such as a chromosome would simply register the start and the width rather
than the actual sequence.

Aggregating the coverage per exon Now to convert the genomic cov-
erage into an exonic one, we need to use the genic annotation retrieved
previously. The coverage object: cover we have generated earlier describes
the number of reads overlapping every bp in the genome. To summarize its
values per exon, the simplest approach is to average the coverage for all bp
covered by a given exon.

> exon.coverage<-aggregate(

+ cover[match(names(exon.range2),names(cover))],

+ ranges(exon.range2),

+ sum)

> exon.coverage <- ceiling(unlist(exon.coverage)/unique(width(aln)))

> names(exon.coverage) <- exon.range2$exon

> show(exon.coverage)

Tip Using Views actually make this approach much faster:

> viewSums(

+ Views(

+ cover[match(names(exon.range2),names(cover))],

+ ranges(exon.range2)))

Caveats Note the match that is done between the names(exon.range2)
and names(cover).

Q9: Why is it so essential?
Q10: List the possible drawback of this approach.
Q11: Use the countOverlaps to overcome some of these limitations.

17

2.5 Conclusion

Now, you are done with processing that single sample. If you were to do
this for many samples, it would be demanding and probably not ideally
fail-safe. Rationalizing and automating that task was our motivation to
build the easyRNASeq package. However, keep in mind that getting the
proper annotation for your analysis is an essential step, as well when using
the easyRNASeq package [Delhomme et al., 2012]. You’ll probably want to
avoid counting the same read multiple times, e.g. in overlapping exons.

18

3 Using easyRNASeq

Let us redo what was done in the previous sections. Note that most of
the RNAseq object slots are optional. However, it is advised to set them,
especially the readLength and the organismName; to help having a proper
documentation of your analysis. The organismName slot is actually manda-
tory if you want to get genomic annotation using biomaRt . In that case,
you need to provide the name as specified in the corresponding BSgenome
package, i.e. “Dmelanogaster” for the BSgenome.Dmelanogaster.UCSC.dm3
package.

3.1 easyRNASeq

> ## load the library

> library("easyRNASeq")

> library(BSgenome.Dmelanogaster.UCSC.dm3)

> count.table <- easyRNASeq(system.file(

+ "extdata",

+ package="RnaSeqTutorial"),

+ organism="Dmelanogaster",

+ chr.sizes=seqlengths(Dmelanogaster),

+ readLength=36L,

+ annotationMethod="rda",

+ annotationFile=system.file(

+ "data",

+ "gAnnot.rda",

+ package="RnaSeqTutorial"),

+ format="bam",

+ count="exons",

+ pattern="[A,C,T,G]{6}\\.bam$")

> head(count.table)

> dim(count.table)

That is all. In one command, you got the count table for your 4 samples!

Warnings As you could see when running the previous example, warnings
were emitted and quite rightly so.

1. about the annotation: The annotation we are using here is redundant
and this at two levels. First, some exons overlap. These are alterna-
tive exons from different transcript isoforms. Second, the annotation

19

contains the information about all the possible different transcript iso-
forms. This means that some exons are duplicated. Therefore counting
by exons or transcripts using these annotation will result in counting
some of the reads several times. There might be reasons one might
want to do that, but as it is probably not what you want when per-
forming an RNA-Seq analysis, the warning is emitted. As this can
be a very significant source of error, all the examples here will emit
this warning. The ideal solution is to provide an annotation object
that contains no overlapping features. The disjoin function from the
IRanges package offers a way to achieve this.

2. about potential naming issue in the input file: It is (sadly) very fre-
quent that the sequencing facilities use different naming conventions
for the chromosomes they report in the alignment files. It is therefore
very frequent that the annotation provided to easyRNASeq uses dif-
ferent chromosome names than the alignment file. These warnings are
there to inform you about this issue.

Details The easyRNASeq function currently accepts the following anno-

tationMethods:

� “biomaRt” use biomaRt to retrieve the annotation

� “env” use a RangedData class object present in the environment

� “gff” reads in a gff version 3 file

� “gtf” reads in a gtf file

� “rda” load an RData object. The object needs to be named gAnnot

and of class RangedData.

The reads can be read in from BAM files or any format supported by
ShortRead .

The reads can be summarized by:

� exons

� features (any features such as introns, enhancers, etc.)

� transcripts

20

� geneModels (a geneModel is the set of non overlapping loci (i.e. syn-
thetic exons) that represents all the possible exons and UTRs of a
gene. Such geneModels are essential when counting reads as they en-
sure that no reads will be accounted for several times. E.g., a gene
can have different isoforms, using different exons, overlapping exons,
in which case summarizing by exons might result in counting a read
several times, once per overlapping exon. N.B. Assessing differential
expression between transcripts, based on synthetic exons is something
possible since the release 2.14 of R, using the DEXSeq package avail-
able from Bioconductor.

The results can be exported in four different formats:

� count table (the default, a n (features) x m (samples) matrix).

� a DESeq [Anders and Huber, 2010] countDataSet class object. Useful
to perform further analyses using the DESeq package.

� an edgeR [Robinson et al., 2010] DGEList class object. Useful to
perform further analyses using the edgeR package.

� an RNAseq class object. Useful for performing additional pre-processing
without re-loading the reads and annotations.

For more details and a complete overview of the easyRNASeq package
capabilities, have a look at the easyRNASeq vignette.

> vignette("easyRNASeq")

The obtained results can optionally be normalized as Reads per Kilobase
of feature per Million reads in the library (RPKM, Mortazavi et al. [2008])
or using the DESeq or edgeR packages.

Q12: From the same input files and annotations, generate an object of
class RNAseq .
Q13: Summarize the counts per transcript and geneModels.

21

Finally... If you find easyRNASeq useful and apply it in the frame of your
research for a publication, please cite it:

easyRNASeq: a bioconductor package for processing RNA-Seq data
Nicolas Delhomme; Ismael Padioleau; Eileen E. Furlong; Lars M. Steinmetz
Bioinformatics 2012; doi: 10.1093/bioinformatics/bts477

4 Advanced usage

In this section we will discuss about more advanced RNA-Seq pre-processing,
such as de-multiplexing, normalizing or de novo identification of expressed
regions.

4.1 Normalizing counts

A common way to normalize reads is to convert them to RPKM. This implies
normalizing the read counts depending on the genic feature size (exon, tran-
script, gene model,...) and on the total number of reads sequenced for that
library. easyRNASeq count tables can be easily transformed into RPKM,
by using the RPKM method:

> feature.size = width(exon.range2)

> names(feature.size) = exon.range2$exon

> feature.size <- feature.size[!duplicated(names(feature.size))]

> lib.size=c("ACACTG.bam"=56643,

+ "ACTAGC.bam"=42698,

+ "ATGGCT.bam"=55414,

+ "TTGCGA.bam"=60740)

> head(RPKM(count.table,NULL,

+ lib.size=lib.size,

+ feature.size=feature.size))

Q14: Do the same for the object created at the Q12 and Q13 for every
possible counts.

Such a count normalization is suited for visualization, but sub-optimal for
further analyses . A better way of normalizing the data is to use either
the edgeR or DESeq packages, provided you have got enough (biological)
replicates. Refer to the easyRNASeq , the DESeq and the edgeR vignettes.

Q15: Perform the examples in the easyRNASeq vignette paragraph 3.7.

22

4.2 De-multiplexing samples

This part of the tutorial is now in the easyRNASeq vignette paragraph 4.
Q16: Perform the examples in the easyRNASeq vignette paragraph 4.

Q17: How would you access the barcode sequence in the alns object?

5 Visualizing the data

Before performing any more advanced analyses, it is crucial to be able to
visualize the data. Many technical or procedural problems can be identified
and resolved, making the residual filtered data of better quality.
The rtracklayer library provides the necessary functionalities to export data
stored in GenomicData and RangedData class objects.

5.1 exporting the coverage

A common technical problem in NGS data is PCR amplification biases.
These can be visualized quite easily by scanning the read coverage across
chromosomes in a Genome Browser. To achieve this, one needs to export
the coverage into a wig formatted file. The wig format expects constant
span and constant steps. This is problematic since, if you have a step of
50bp and want a span of 50 bp, you’d need a chromosome whose size is a
multiple of 50bp. Luckily the chromosome size is not enforced by Genome
Browsers, so a small hack (5th line) does it (actually it is useless here as the
chromosome 4 size is a natural multiple of the selected window size).

> library(rtracklayer)

> window.size <- 51

> rngs <- breakInChunks(length(cover[["chr4"]]),window.size)

> vals <- viewSums(Views(cover[["chr4"]],rngs))

> #width(rngs)[width(rngs) != width(rngs)[1]] <- width(rngs)[1]

> silent <- export(

+ RangedData(rngs,score=vals,universe="Dmelanogaster",space="chr4"),

+ con="chr4.wig"

+)

23

5.2 exporting the normalized exon counts

Depending on the kind of experiments, other criteria can be visually assessed.
For example, in the case of a gene over-expression in a sample, one could
visually check the score obtained for that gene.

> exon.RPKM <- easyRNASeq(system.file(

+ "extdata",

+ package="RnaSeqTutorial"),

+ organism="Dmelanogaster",

+ chr.sizes=seqlengths(Dmelanogaster),

+ readLength=36L,

+ annotationMethod="rda",

+ annotationFile=system.file(

+ "data",

+ "gAnnot.rda",

+ package="RnaSeqTutorial"),

+ format="aln",

+ count="exons",

+ normalize=TRUE,

+ pattern="subset_export",

+ type="SolexaExport",

+ filter=compose(

+ chastityFilter(),

+ nFilter(2),

+ chromosomeFilter(regex="chr")))

> exons <- exon.range2

> exons <- exons[!duplicated(exons$exon),]

> exons$score <- exon.RPKM[,1]

> exons$name <- rownames(exon.RPKM)

> exons <- exons[exons$score>0,]

> export(exons,con="exons.bed")

5.3 conclusion

In this section, we have seen how to export the data in a lightweight fashion
to be visualized in a Genome Browser. This step is an essential step for
validating the data. The QA processes run on the raw or aligned data might
reveal technical issues, but other biases might still be present in your data
and the best (only?) way to control for those is visual. For example, one
could compare replicates (in which case, biological replicates are best), by

24

plotting a scatterplot of both replicates and estimating their correlation.
Keeping in mind the design of the experiments, helps design the necessary
QA step one can do; i.e. In an RNA-Seq experiment, where a gene has been
over-expressed, you would expect to be able to visualize it when comparing
it to a control sample.

25

6 You are done, but still there is more to come...

New protocols, new packages are constantly being developed; making pre-
processing NGS data a moving target. For example, it is known that the
standard Illumina RNA-Seq protocol shows a bias in the first 12 nucleotides
of every read. It is still unclear where this bias comes from (fragmentation,
random hexamer priming, RNAseH sequence specificity), but there has been
a couple of publication recently that proposes corrections for that bias [Li
et al., 2010, Hansen et al., 2010].

Feedback and requests are very welcome. Just look at the Final Remarks
section 8, page 29. for contact details.

26

7 Session Information

The version number of R[R Development Core Team, 2009] and packages
loaded for generating the vignette were:

R version 3.2.0 (2015-04-16)

Platform: x86_64-unknown-linux-gnu (64-bit)

Running under: Ubuntu 14.04.2 LTS

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

[3] LC_TIME=en_US.UTF-8 LC_COLLATE=C

[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8

[7] LC_PAPER=en_US.UTF-8 LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:

[1] stats4 parallel stats graphics grDevices utils datasets

[8] methods base

other attached packages:

[1] genomeIntervals_1.24.0 intervals_0.15.0

[3] biomaRt_2.24.0 BSgenome.Dmelanogaster.UCSC.dm3_1.4.0

[5] BSgenome_1.36.0 rtracklayer_1.28.0

[7] ShortRead_1.26.0 GenomicAlignments_1.4.0

[9] Rsamtools_1.20.0 GenomicRanges_1.20.1

[11] GenomeInfoDb_1.4.0 Biostrings_2.36.0

[13] XVector_0.8.0 IRanges_2.2.0

[15] S4Vectors_0.6.0 BiocParallel_1.2.0

[17] BiocGenerics_0.14.0 RnaSeqTutorial_0.6.0

[19] easyRNASeq_2.4.0 locfit_1.5-9.1

loaded via a namespace (and not attached):

[1] RColorBrewer_1.1-2 futile.logger_1.4 bitops_1.0-6

[4] futile.options_1.0.0 tools_3.2.0 zlibbioc_1.14.0

[7] annotate_1.46.0 RSQLite_1.0.0 lattice_0.20-31

[10] DBI_0.3.1 DESeq_1.20.0 genefilter_1.50.0

[13] hwriter_1.3.2 grid_3.2.0 LSD_3.0

[16] Biobase_2.28.0 AnnotationDbi_1.30.0 XML_3.98-1.1

27

[19] survival_2.38-1 limma_3.24.0 latticeExtra_0.6-26

[22] geneplotter_1.46.0 lambda.r_1.1.7 edgeR_3.10.0

[25] splines_3.2.0 xtable_1.7-4 RCurl_1.95-4.5

28

8 Final remarks

RNA-Seq is still maturating and a lot of new developments are to be ex-
pected. If you have any questions, comments, feel free to contact me: del-
homme at embl dot de.
The author want to thank Gabriella Rustici for her time, comments and
patience, as well as for organizing the course.

29

References

Simon Anders and Wolfgang Huber. Differential expression analysis for
sequence count data. Genome Biology 2010 11:202, 11(10):R106, Oct
2010.

Nicolas Delhomme, Ismaël Padioleau, Eileen E Furlong, and Larsm Stein-
metz. easyrnaseq: a bioconductor package for processing rna-seq data.
Bioinformatics, Jul 2012. doi: 10.1093/bioinformatics/bts477.

Steffen Durinck et al. Biomart and bioconductor: a powerful link between
biological databases and microarray data analysis. Bioinformatics, 21(16):
3439–40, Aug 2005.

Paul Flicek et al. Ensembl 2011. Nucleic Acids Research, 39(Database issue):
D800–6, Jan 2011.

Robert C Gentleman et al. Bioconductor: open software development for
computational biology and bioinformatics. Genome Biology 2010 11:202,
5(10):R80, Jan 2004.

Kasper D Hansen, Steven E Brenner, and Sandrine Dudoit. Biases in il-
lumina transcriptome sequencing caused by random hexamer priming.
Nucleic Acids Research, Apr 2010.

Tae-Kyung Kim et al. Widespread transcription at neuronal activity-
regulated enhancers. Nature, 465(7295):182–7, May 2010.

Ben Langmead et al. Ultrafast and memory-efficient alignment of short dna
sequences to the human genome. Genome Biology 2010 11:202, 10(3):
R25, Jan 2009.

Heng Li and Richard Durbin. Fast and accurate short read alignment with
burrows-wheeler transform. Bioinformatics, 25(14):1754–60, Jul 2009.

Heng Li et al. The sequence alignment/map format and samtools. Bioin-
formatics, 25(16):2078–9, Aug 2009.

Jun Li, Hui Jiang, and Wing Hung Wong. Modeling non-uniformity in short-
read rates in rna-seq data. Genome Biology 2010 11:202, 11(5):R50, May
2010.

Martin Morgan et al. Shortread: a bioconductor package for input, quality
assessment and exploration of high-throughput sequence data. Bioinfor-
matics, 25(19):2607–8, Oct 2009.

30

Ali Mortazavi et al. Mapping and quantifying mammalian transcriptomes
by rna-seq. Nature Methods, 5(7):621–8, Jul 2008.

Novocraft.com. Novoalign. Novocraft.com, Selangor, Malaysia, 2009. URL
http://www.novocraft.com/main/index.php.

R Development Core Team. R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna, Austria,
2009. URL http://www.R-project.org. ISBN 3-900051-07-0.

Mark D Robinson et al. edger: a bioconductor package for differential ex-
pression analysis of digital gene expression data. Bioinformatics, 26(1):
139–40, Jan 2010.

C Trapnell et al. Tophat: discovering splice junctions with rna-seq. Bioin-
formatics, 25(9):1105–1111, May 2009.

Susan Tweedie et al. Flybase: enhancing drosophila gene ontology annota-
tions. Nucleic Acids Research, 37(Database issue):D555–9, Jan 2009.

Thomas D Wu and Serban Nacu. Fast and snp-tolerant detection of complex
variants and splicing in short reads. Bioinformatics, 26(7):873–81, Apr
2010.

31

A Appendix A: Solutions

� Q1: section 2.1, page 7: The aln and aln2 objects differs by their
number of reads. In the aln2, the chastity filtered reads have been
ignored.

� Q2: section 2.1, page 8: The aln3, of class GAlignments from the
GenomicAlignments package does not contain any sequence, quality
or id information.

� Q3: section 2.1, page 8: using the ngap function gives you the number
of alignment having a gap, but not the size of that gap. This can be
accessed using the cigarOpTable and cigar as in the example below:

> table(ngap(aln3))

> table(cigarOpTable(cigar(aln3))[,"N"])

� Q4: section 2.3, page 13: using the GRanges constructor as follow:

> exon.grange <- GRanges(

+ IRanges(

+ start=exon.annotation$exon_chrom_start,

+ end=exon.annotation$exon_chrom_end),

+ seqnames=Rle(exon.annotation$chromosome),

+ strand=Rle(exon.annotation$strand),

+ transcript=exon.annotation$ensembl_transcript_id,

+ gene=exon.annotation$ensembl_gene_id,

+ exon=exon.annotation$ensembl_exon_id,

+ seqlengths = chrSizes[

+ match(

+ unique(exon.annotation$chromosome),

+ names(chrSizes))]

+)

� Q5: section 2.3, page 14: using the GRanges constructor as follow:

> levels(gInterval$strand) <- c("-","+")

> exon.grange2 <- GRanges(

+ IRanges(

+ start=gInterval[,1],

+ end=gInterval[,2]),

+ seqnames=Rle(gInterval$seq_name),

32

+ strand=Rle(gInterval$strand),

+ transcript=as.vector(getGffAttribute(

+ gInterval,"Parent")),

+ gene=as.vector(getGffAttribute(

+ gInterval,"Name")),

+ exon=as.vector(getGffAttribute(

+ gInterval,"ID")),

+ seqlengths = chrSizes[

+ match(

+ unique(gInterval$seq_name),

+ names(chrSizes))]

+)

� Q6: section 2.3, page 14: using the rtracklayer package, specifically
the export.gff3 of export.gff or the export function as follow. The
only difference in using these functions is that the number of argument
you need to provide somewhat increases as the function becomes more
generic. The three following examples have the same results.

> library(rtracklayer)

> load(system.file("data",

+ "gAnnot.rda",

+ package="RnaSeqTutorial"))

> export.gff3(gAnnot,con="annot.gff")

> export.gff(gAnnot,con="annot.gff",version="3")

> export(gAnnot,con="annot.gff",version="3")

� Q7: section 2.4, page 16: simply coerce the Rle class object into an
integer.

> as.integer(cover$chr4)

� Q8: section 2.4, page 16: use the runLength and runValue functions

> runLength(cover$chr4)

> runValue(cover$chr4)

� Q9: section 2.4, page 17: The names are different for both objects. It
is therefore essential to make sure that there are ordered in the same
way to avoid unexpected results. In standard R, names are optional
for lists; that is the default behavior, so do not expect otherwise from
packages until you’ve tested it. Better safe than sorry.

33

> names(exon.range2)

> names(cover)

> match(names(exon.range2),names(cover))

� Q10: section 2.4, page 17: The main drawback is an edge effect; i.e.
reads that are spanning the exon boundaries, although valid will not
be taken entirely into account, only the proportion of these reads that
cover the exon will. In addition, as shown below, exons present in
different isoforms will be several times accounted for.

> exon.coverage <- unlist(exon.coverage)

> names(exon.coverage) <- exon.range2$exon

> head(

+ sort(

+ exon.coverage[!duplicated(names(exon.coverage))],

+ decreasing=TRUE))

� Q11: section 2.4, page 17:

> sel <- chromosome(aln) != "chrM"

> aln <- aln[sel]

> exon.counts <- countOverlaps(

+ exon.range2,

+ split(IRanges(

+ start=position(aln),

+ width=width(aln)),

+ chromosome(aln))

+)

We might want to compare that result with the former one, stored in
the exon.coverage.

> plot(

+ unlist(exon.coverage),

+ unlist(exon.counts),

+ log="xy",

+ main="countOverlap vs. aggregate",

+ xlab="aggregate",

+ ylab="CountOverlap",

+ pch="+",col=6)

> abline(0,1,lty=2,col="orange")

> table(unlist(exon.coverage) - unlist(exon.counts))

34

As you can see, the difference is not striking.

� Q12: section 3.1, page 21: as in the example, but add the output-

Format argument as follow:

> rnaSeq <- easyRNASeq(system.file(

+ "extdata",

+ package="RnaSeqTutorial"),

+ organism="Dmelanogaster",

+ chr.sizes=as.list(seqlengths(Dmelanogaster)),

+ readLength=36L,

+ annotationMethod="rda",

+ annotationFile=system.file(

+ "data",

+ "gAnnot.rda",

+ package="RnaSeqTutorial"),

+ format="bam",

+ count="exons",

+ pattern="bam$",

+ outputFormat="RNAseq")

> show(rnaSeq)

� Q13: section 3.1, page 21: use the transcriptCounts, geneCounts
to generate the counts and readCounts to access the results.

> rnaSeq <- transcriptCounts(rnaSeq)

> head(readCounts(rnaSeq,'transcripts'))

Summarizing by transcript introduces some complexity in the data
analysis, i.e. exons part of different isoforms introduce a bias in the
counts. For that reason, it might be better to have a first look at the
data, summarized by genes. This, however, requires to combine all
the alternative exons and UTRs present for every gene into a “gene
model”; i.e. overlapping exons are merged into “synthetic” ones. This
is what is performed when the arguments “count” and “summariza-
tion” are set to “genes” and “geneModels”, respectively. A caveat not
addressed by this procedure are genes overlapping on the same or op-
posite strands. If this occurs a warning will be emitted. If the reads
were summarized by “geneModels” and the “outputFormat” argument
was set to “RNAseq”, one can use the “geneModel” accessor on the ob-
tained object to access the computed gene models. They are stored in

35

an RangedData object and can be modified to address the caveat pre-
viously mentioned. To be strict, one would remove every overlapping
loci and conserve only the other ones. Such a modified annotation can
then be saved and used for the next easyRNASeq run.
It is not possible yet to summarize by“geneModels”using the geneCounts
function. A meaningful error message is thrown if the geneCounts is
used for that purpose.

> rnaSeq<-geneCounts(rnaSeq,summarization='geneModels')

This behavior will be corrected in the next release. At the moment,
this has to be done using the easyRNASeq function directly.

> rnaSeq2 <- easyRNASeq(system.file(

+ "extdata",

+ package="RnaSeqTutorial"),

+ organism="Dmelanogaster",

+ chr.sizes=as.list(seqlengths(Dmelanogaster)),

+ readLength=36L,

+ annotationMethod="rda",

+ annotationFile=system.file(

+ "data",

+ "gAnnot.rda",

+ package="RnaSeqTutorial"),

+ format="bam",

+ count="genes",

+ summarization="geneModels",

+ pattern="bam$",

+ outputFormat="RNAseq")

> head(readCounts(rnaSeq2,'genes','geneModels'))

� Q14: section 4.1, page 22: you can directly use the rnaSeq and
rnaSeq2 objects

> RPKM(rnaSeq,from="transcripts")

> RPKM(rnaSeq2,from="geneModels")

� Q15: Explanations are in the easyRNASeq package vignette.

� Q16: Explanations are in the easyRNASeq package vignette.

36

� Q17: section 4.2, page 23: For the Illumina protocol, the barcode
is read in a separate sequencing reaction. The barcode sequence is
reported as a field of the export file, and when the data is loaded using
thewithAll argument, it is accessible through:

> alignData(alns)$multiplexIndex

To view all the possible fields, do:

> varLabels(alignData(alns))

37

