Using R and Bioconductor for proteomics data analysis
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Introduction
Even well-known and respected leaders in proteomics agree that it lies 10 years

behind genomics. There are several valid reasons for this, including the chem-
istry of proteins, the technical complexity of the instrumentation (in particular
mass-spectrometry - MS) and the vast possibilities in the study of proteins. An
often overseen albeit essential component of this failure is arguably the software
that is promoted inside the proteomics community. Computational proteomics re-
searchers who value quality software, comprehensive data analysis and reproducible
research ought to illustrate how more flexible and advanced tools can effectively
be used and demonstrate their advantages. Here, we illustrate some examples of
proteomics data analysis in R, in particular low level raw MS data manipulation,
labelled and label-free quantitation and peptide identification, taken from the
RforProteomics package [4].

Working with raw data

The proteomics community has developed a range of data standards and formats
for MS data (the latest being mzML) to overcome the shortcomings of closed,
binary vendor-specific formats.

One of the main projects that implement parsers for the XML-based open formats
is the C++ proteowizard project [2], which is interfaced by the mzR Bioconductor
package using the Rcpp infrastructure.

library( )
fname <- dir(system.file(package = , dir = ),
full.name = TRUE, pattern = )

ms <- openMSfile(fname)

The resulting ms object is a file handle that allows fast random access to the
individual spectra. mzR is used by a variety of other packages like xcms, MSnbase,
RMassBank and TargetSearch.

Challenges Improved support of raw MS data and develop the range of
supported formats, in particular identification (mzIdentML) and quantitation
(mzQuantML) formats.

Labelled quantitation

The same raw data file can be imported in a convenient higher level container
and directly processed, plotted, quantified and normalised with the MSnbase [5]
software.

exp <- readMSData(fname, verbose = FALSE)

plot(expll 1], full = TRUE, reporters = iTRAQ4)

set <- quantify(exp, method = , reporters = 1TRAQ4,
verbose = FALSE, parallel = TRUE)

head(exprs(set), n = 3)
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Figure: MS? spectrum of an iTRAQ 4-plex experiment highlighting the 4 isobaric reporter ions, as
produced by plot above (left). Peptides of interest from a spiked-in experiment (top right) and
distribution of the m/z differences of all MS? spectra from the same experiment, used as a
peptide-spectrum matching quality assessment (bottom right).

Challenges Although labelled MS? quantitation is well supported with MSnbase
and isobar, metabolic labelling techniques like 1°N or SILAC still need to be
supported.
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Label-free quantitation

Support for data dependent label-free quantitation is available, among others, in
the xcms [8] and MALDIquant [7] packages.

The latter provides a complete pipeline, including baseline subtraction, smooth-
ing, peak detection and alignment using warping functions, handling of replicated
measurements as well as allowing spectra with different resolutions.
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Figure: Illustration of the MALDIquant pipeline: raw spectrum with estimate baseline (A);
variance-stabilised, smoothed, baseline-corrected spectrum with detected peaks (B); fitted warping
function for peak alignment (C); four unaligned peaks (D); four aligned peaks (E); merged
spectrum with discovered and labelled peaks (F).

A complete pipeline for MS¥ data independent acquisition, including support for
ion mobility separation is available in the synapter package [1] that, among other
features, transfers identification between acquisitions to substantially reduce miss-
ing values.

Challenges Application and bench-marking of label-free pipelines on popular
Thermo Orbitrap instruments.

Peptide identification

The recently released rTANDEM package encapsulates the X!Tandem [3] search
engine in R.

It uses the same XML-based parameter files as the native application or dedicated
R parameter object. Result files can be directly parsed and mined in R .

xmlres <- rtandem(spectra.mgf, taxon ;
taxonomy = )
default.parameters

## or xmlres <- tandem(param)

res <- GetResultsFromXML(xmlres)

proteins <- GetProteins(res) ## data.table objects

peptides <- GetPeptides(res)
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A complete pipeline for peptide identification is welcome. With support for
mzIdentML files, it will become possible to import identification data from most
search engines, thus allowing comparison of different tools and facilitating the in-
tegration of R based pipelines with existing third party tools.

Challenges Better integration of identification and raw/quantitation data in-
frastructures.

Conclusions and perspectives

The flexibility of the R environment and the breadth of available packages is some-
times daunting for newcomers and dedicated introductory material is welcome. The
RforProteomics package [https://github.com/lgatto/RforProteomics]
ought to assume such a role. For this, RforProteomics should be a collaborative
project and contributions through the github repository are encouraged.

Despite well known advantages in terms of statistical analyses of data and some
unique software for proteomics and mass-spectrometry data analysis, there remains
a lot of efforts and work to be done for R/Bioconductor to become a complete
framework for proteomics data processing. These efforts should be tackled by a
group of developers. It is our hope that the RforProteomics will be a help-
ful targeted introduction to new users and motivate collaborative development of
package developers.
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