Training and testing a K-Top-Scoring-Pair
(KTSP) classifier with switchBox.

Bahman Afsari and Luigi Marchionni

The Sidney Kimmel Comprehensive Cancer Center,
Johns Hopkins University School of Medicine

Modified: June 20, 2014. Compiled: October 13, 2014

Contents

[\9}

Introduction
Installing the package

Data structure
3.1 Trainingset e e e e e

32 Testingset e e

Training KTSP algorithm

4.1 Unrestricted KTSP classifiers
4.1.1 Default statistical filtering
4.1.2 Altenative filtering methods

4.2 Training a Restricted KTSP algorithm

Calculate and aggregates the TSP votes
Classifiy samples and compute the classifier performance

1

12

14

6.2 Classifiy validation samples 16
7 Compute the signed TSP scores 17
8 Use of deprecated functions 20
9 System Information 23
10 Literature Cited 23

1 Introduction

The switchBox package allows to train and validate a K-Top-Scoring-Pair (KTSP)
classifier, as used by Marchionni et al in [1]. KTSP is an extension of the TSP
classifier described by Geman and colleagues [2, 3, 4]. The TSP algorithm is a
simple binary classifier based on the ordering of two measurements.Basing the
prediction solely on the ordering of a small number of features (e.g. gene ex-
pressions), known as ranked based methodology, seems a promising approach to
to build robust classifiers to data normalization and rise to more transparent de-
cision rules. The first and simplest of such methodologies, the Top-Scoring Pair
(TSP) classifier, was introduced in [2] and is based on reversal of two features
(e.g. the expressions of two genes). Multiple extensions were proposed after-
wards, e.g. [3] and many of these extensions have been successfully applied for
diagnosis and prognosis of cancer such as recurrence of breast cancer in [1]. A
popular successor of TSP classifiers is kTSP ([3]), which applies the majority vot-
ing among multiple of the the reversal of pairs of features. In addition to being
applied by peer scientists, kTSP shown its power by wining the ICMLA the chal-
lenge for cancer classification in the presence of other competitive methods such
as Support Vector Machines ([5]).

kTSP decision is based on k feature (e.g. gene) pairs, say, © = {(i1,71),-- -, (i, J&) }-
If we denote the feature profile with X = (X7, X5, . ..), the family of rank based
classifiers is an aggregation of the comparisons X;, < Xj,. Specifically, the kTSP
statistics can be written as:

k

W= 1T < X)) - o

=1

where [is the indicator function. The kTSP classification decision can be pro-
duced by thresholding the «, i.e. Y = I{x > 7} provided the labels Y € {0, 1}.
The standard threshold is 7 = 0. The only parameters required for calculating ~
is the feature pairs. Usually, disjoint feature pairs are desirable because an out-
lier feature value cannot heavily influence the decision. In the introductory paper
to kTSP ([?]), the authors proposed an ad-hoc method for feature selection. This
method was based on score for each pair of features which measures how discrim-
inative is a comparison of the feature values. If we denote the score related to the
gene 7 and j by s;;, then the score was defined as

sij = |P(X; < X;|Y = 1) = P(X; < X;|Y = 0)].

We can sort the pairs of genes by this score. A pair with large score (close to one)
indicates that the reversal of the feature value predicts the phenotype accurately.

In [6], an analysis of variance was proposed for gene selection in kTSP and other
rank-based classifiers. This method finds the feature pairs which make the dis-
tribution of x under two classes far apart in the analysis of variance sense. In
mathematical words, we seek the set of feature pairs, ©*, that

E(r©)Y =1) - E(x(O)]Y =0)
VVar(5(©))Y =1) + Var(k(9)]Y =0)
This method automatically chooses the number of genes and hence, it is almost a
parameter free method. However, the search for © is very intensive search. So, a

greedy and approximate search was proposed to find the optimal set of gene pairs.

In practice, the only parameter required is a maximum cap for the number pairs,
k.

The switchBox package contains several utilities enabling to:

1. Filter the features to be used to develop the classifier (i.e., differentially
expressed genes);

2. Compute the scores for all available feature pairs to identify the top per-
forming TSPs;

3. Compute the scores for selected feature pairs to identify the top performing
TSPs;

4. Identify the number of top pairs, K, to be used in the final classifier;

3

5. Compute individual TSP votes for one class or the other and aggregate the
votes based on various methods;

6. Classify new samples based on the top KTSP based on various methods;

2 Installing the package

Download and install the package switchBox from Bioconductor.

> source ("http://bioconductor.org/biocLite.R")
> biocLite ("switchBox")

Load the library.

> require (switchBox)

3 Data structure

3.1 Training set
Load the example training data contained in the switchBox package.

> ### Load the example data for the TRAINING set
> data (trainingData)

The object mat Training is a numeric matrix containing gene expression data
for the 78 breast cancer patients and the 70 genes used to implement the MammaPrint
assay [7]. This data was obtained from from the MammaPrintData package, as
described in [1]. Samples are stored by column and genes by row. Gene annota-
tion is stored as rownames (matTraining).

> class (matTraining)
[1] "matrix"

> dim(matTraining)
[1] 70 78

> str(matTraining)

num [1:70, 1:78] -0.0564 0.0347 -0.0451 -0.1556 0.1394
- attr(+*, "dimnames")=List of 2

.$: chr [1:70] "AA555029 _RC_Hs.370457" "AF257175_Hs.15250" "AK000745_Hs.377155" "AKAP2 Hs.516834"
.$: chr [1:78] "Trainingl.Bad" "TrainingZ2.Bad" "Training3.Good" "Training4.Good" ...

The factor t rainingGroup contains the prognostic information:

> ### Show group variable for the TRAINING set
> table (trainingGroup)

trainingGroup
Bad Good
34 44

3.2 Testing set

Load the example testing data contained in the switchBox package.

> ### Load the example data for the TEST set
> data (testingData)

The object mat Test ing is a numeric matrix containing gene expression data for
the 307 breast cancer patients and the 70 genes used to validate the MammaPrint
assay [8]. This data was obtained from from the MammaPrintData package,
as described in [1]. Also in this case samples are stored by column and genes by
row. Gene annotation is stored as rownames (matTraining).

> class (matTesting)
[1] "matrix"

> dim(matTesting)
[1] 70 307

> str (matTesting)

num [1:70, 1:307] 0.0035 -0.0599 -0.0678 0.1139 -0.094
- attr(#*, "dimnames")=List of 2

.$: chr [1:70] "AA555029_RC_Hs.370457" "AF257175_Hs.15250" "AK000745_Hs.377155" "AKAP2 Hs.516834"
.S : chr [1:307] "Testl.Good" "TestZ2.Good" "Test3.Good" "Test4.Good" ...

The factor test ingGroup contains the prognostic information:

> ### Show group variable for the TEST set
> table (testingGroup)

testingGroup
Bad Good
47 260

4 Training KTSP algorithm

4.1 Unrestricted KTSP classifiers

We can train the KTSP algoritm using all possible feature pairs — unrestricted
KTSP classifier — with or without statistical feature filtering, using the SWAP . KTSP . Train
function.

4.1.1 Default statistical filtering

Training an unrestricted KTSP predictor using a statistical feature filtering is the
default and it is achieved by using the default parameters, as follows:

> ### The arguments to the "SWAP.KTSP.Train" function
> args (SWAP.KTSP.Train)

function (inputMat, phenoGroup, krange = c(3, 5, 7:10), FilterFunc = SWAP.Filter.Wilcoxon,
RestrictedPairs, ...)
NULL

> ### Train a classifier using default filtering function based on the Wilcoxon test
> classifier <- SWAP.KTSP.Train(matTraining, trainingGroup, krange=c(3:15))

Applying filtering function to 'inputMat'...
Computing scores for 70 features.

This will require enough memory for 2415 pairs.
Selecting K...

7 TSP will be used to build the final classifier.

> ### Show the classifier
> classifier

Sname
[1] "7TSPs"
STSPs

[, 1] [,2]
[1,] "GNAZ_Hs.555870" "Contig32185_RC_Hs.159422"
[2,] "Contig46223 RC_Hs.22917" "OXCT_Hs.278277"
[3,] "RFC4_Hs.518475" "L2DTI,_Hs.445885"
[4,] "Contig40831_RC _Hs.161160" "CFFM4_Hs.250822"
[5,] "FLJ11354 _Hs.523468" "LOC57110_Hs.36761"
[6,] "Contigb5725_RC _Hs.470654" "IGFBP5_Hs.184339"
[7,] "UCH37_Hs.145469" "SERF1A_Hs.32567"
Sscore

[1] 0.6029423 0.5467924 0.5347600 0.5280755 0.5267389 0.5200542 0.5133699

Slabels
[1] "Bad" "Good"

> ### Extract the TSP from the classifier
> classifier$STSPs

[,1] [,2]

[1,] "GNAZ_Hs.555870" "Contig32185_RC_Hs.159422"
[2,] "Contig46223 RC_Hs.22917" "OXCT_Hs.278277"

[3,] "RFC4_Hs.518475" "L2DTL Hs.445885"

[4,] "Contig40831_RC _Hs.161160" "CFFM4_Hs.250822"

[5,] "FLJ11354_Hs.523468" "LOC57110_Hs.36761"

[6,] "Contigb5725_RC _Hs.470654" "IGFBP5_Hs.184339"

[7,] "UCH37_Hs.145469" "SERF1A Hs.32567"

Below is shown the way the default feature filtering works. The SWAP .Filter.Wilcoxon
function takes the phenotype factor, the predictor data, the number of feature to

be returned, and a logical value to decide whether to include equal number of

featured positively and negatively associated with the phenotype to be predicted.

> ### The arguments to the "SWAP.KTSP.Train" function
> args (SWAP.Filter.Wilcoxon)

function (phenoGroup, inputMat, featureNo = 100, UpDown = TRUE)
NULL

> ### Retrieve the top best 4 genes using default Wilcoxon filtering
> ### Note that there are ties
> SWAP.Filter.Wilcoxon (trainingGroup, matTraining, featureNo=4)

[1] "KIAA0175_Hs.184339" "IGFBP5_Hs.184339" "RFC4_Hs.518475"
[4] "FLJ11354 _Hs.523468" "GNAZ_Hs.555870"

Train a classifier using the SWAP .Filter.Wilcoxon filtering function.

> ### Train a classifier from the top 4 best genes

> ### according to Wilcoxon filtering function

> classifier <- SWAP.KTSP.Train(matTraining, trainingGroup,
FilterFunc=SWAP.Filter.Wilcoxon, featureNo=4)

Applying filtering function to 'inputMat'...

Computing scores for 5 features.

This will require enough memory for 10 pairs.

Selecting K...

The required range of k is not available!

The minimum number of available TSP (2) will be used instead.

> ### Show the classifier
> classifier

Sname
[1] "2TSPs"

STSPs
[,1] [,2]
[1,] "FLJ11354 _Hs.523468" "IGFBP5 Hs.184339"

[2,] "RFC4_Hs.518475" "KIAAQ175_Hs.184339"

Sscore
[1] 0.5173798 0.4826204

Slabels
[1] "Bad" "Good"

Train a classifier using all possible features:

> ### To use all features "FilterFunc" must be set to NULL
> classifier <- SWAP.KTSP.Train(matTraining, trainingGroup, FilterFunc=NULL)

No feature filtering procedure will be used...
Computing scores for 70 features.

This will require enough memory for 2415 pairs.
Selecting K...

7 TSP will be used to build the final classifier.

> ### Show the classifier
> classifier

Sname
[1] "7TSPs"
STSPs

[,1] [,2]
[1,] "GNAZ_Hs.555870" "Contig32185 _RC_Hs.159422"
[2,] "Contig46223 RC _Hs.22917" "OXCT_Hs.278277"
[3,] "RFC4_Hs.518475" "L2DTI_Hs.445885"
[4,] "Contig40831_RC _Hs.161160" "CFFM4_Hs.250822"
[5,] "FLJ11354 _Hs.523468" "LOC57110_Hs.36761"
[6,] "Contigb5725_RC _Hs.470654" "IGFBP5_Hs.184339"
[7,] "UCH37_Hs.145469" "SERF1A Hs.32567"
Sscore

[1] 0.6029423 0.5467924 0.5347600 0.5280755 0.5267389 0.5200542 0.5133699

Slabels
[1] "Bad" "Good"

4.1.2 Altenative filtering methods

Training can also be achieved using alternative filtering methods. These methods
can be specified by passing a different filtering function to SWAP . KTSP . Train.
These functions should use th phenoGroup, inputData arguments, as well
as any other necessary argument (passed using . . .), as shown below.

For instance, we can define an alternative filtering function selecting 10 random
features.

> ### An alternative filtering function selecting 20 random features
> randoml0 <- function(situation, data) { sample (rownames (data), 10) }
> randomlO (trainingGroup, matTraining)

[1] "DKFzZP564D0462_Hs.318894" "CEGP1_Hs.369982" "LOC57110_Hs.36761"
[4] "AA555029_RC_Hs.370457" "CFFM4_Hs.250822" "Contig46218 RC_Hs.283127"
[7] "Contig38288 RC_Hs.144073" "PRCI_Hs.366401" "KIAA1442 Hs.471955"

[10] "FGF18_Hs.87191"

Below is a more realistic example of an alternative filtering function. In this case
we use the R t . test function to select the features with an absolute t-statistics
larger than a specified quantile.

> ### An alternative filtering function based on a t-test

> topRttest <- function(situation, data, quant 0.75) {
out <- apply(data, 1, function(x, ...) t.test(x ~ situation)S$statistic)
names (out [abs (out) > quantile (abs(out), quant)])

}
> ### Show the top 5% features using the newly defined filtering function
> topRttest (trainingGroup, matTraining, quant=0.95)

[1] "Contig32185_RC_Hs.159422" "FLJ11354 Hs.523468" "IGFBP5_Hs.184339"
[4] "KIAA0175_Hs.184339"

Train a classifier using the alternative filtering function based on the t-test and also
define the max number of TSP using krange.

> ### Train with t-test and krange
> classifier <- SWAP.KTSP.Train(matTraining, trainingGroup,
FilterFunc = topRttest, quant = 0.9, krange=c(15:30))

Applying filtering function to 'inputMat'...

Computing scores for 7 features.

This will require enough memory for 21 pairs.

Selecting K...

The required range of k is not available!

The minimum number of available TSP (3) will be used instead.

> ### Show the classifier
> classifier

Sname
[1] "3TSPs"
STSPs
[,1] [,2]
[1,] "GNAZ_Hs.555870" "Contig32185_RC _Hs.159422"
[2,] "FLJ11354 Hs.523468" "IGFBP5_ Hs.184339"
[3,] "SERFI1A Hs.32567" "MMP9_Hs.297413"
Sscore

[1] 0.6029413 0.5173798 0.1631016

Slabels
[l] "Bad" "Good"

4.2 Training a Restricted KTSP algorithm

The swithcBox allows to training a KTSP classifier using a pre-specified set

of restricted feature pairs. This can be useful to implement KTSP classifiers re-
stricted to specific TSPs based, for instane, on prior biological information ([9]).

To this end, the user must specify a set of candidate pairs by setting RestrictedPairs
argument.

As an example, we can define a set of candidate pairs by randolmly selecting some
of the rownames from the inputMat matrix and the classifier chooses from this
set.

In areal example these pairs would be provided by the user, for instance usinf prior
biological knowledge. The restricted pairs must contain valid feature names, i.e.
the row names of inputMat.

> set.seed(123)
> somePairs <—- matrix(sample (rownames (matTraining), 6"2, replace=FALSE), ncol=2)
> head (somePairs)

[,1] [,2]
[1,] "Contig38288 _RC_Hs.144073" "Contig32125_RC_Hs.371395"
[2,] "MP1_Hs.26010" "KIAA1442 Hs.471955"
[3,] "Contig63649 RC_Hs.72620" "HSA250839 Hs.133062"
[4,] "PK428_Hs.516834" "SERF1A _Hs.32567"
[5,] "RFC4_Hs.518475" "DKFZP564D0462_Hs.318894"
[6,] "AKO00745_Hs.377155" "IGFBP5_Hs.511093"

> dim(somePairs)

[1] 18 2

Train a classifier using the set of restricted feature pairs and the default filtering:

> ### Train
> classifier <- SWAP.KTSP.Train(matTraining, trainingGroup,
RestrictedPairs = somePairs, krange=3:16)

Applying filtering function to 'inputMat'...
Restricting the analysis to the provided candidate TSPs
Computing scores for 18 available restricted pairs.
This will require enough memory for 18 pairs.

Selecting K...

11 TSP will be used to build the final classifier.

> ### Show the classifier
> classifier

10

Sname

[1] "11TSPs"
STSPs
[,1] [,2]
[1,] "DKFZP564D0462 Hs.318894" "RFC4 _Hs.518475"
[2,] "MP1_Hs.26010" "KIAA1442 Hs.471955"
[3,] "SERFIA Hs.32567" "PK428 Hs.516834"
[4,] "FGF18 Hs.87191" "Contig46223 RC_Hs.22917"
[5,] "AK000745_Hs.377155" "IGFBP5_Hs.511093"
[6,] "FLJ22477 _Hs.149004" "FLT1_Hs.507621"
[7,] "KIAAQ0175_Hs.184339" "EXT1_Hs.492618"
[8,] "TMEFF1_Hs.336224" "Contig55377_RC_Hs.463089"
[9,] "ALDH4_ _Hs.133062" "Contig55725_RC_Hs.470654"
[10,] "ESMI_Hs.129944" "FLJ11190_Hs.516834"
[11,] "AA555029 RC _Hs.370457" "COL4A2_Hs.508716"
Sscore

[1] 0.4532088 0.3943852 0.3836903 0.3810164 0.3128345 0.2834227 0.2500002 0.2259360

[9] 0.2032088 0.1938504 0.1911766
Slabels
[l] "Bad" "Good"

Train a classifier using a set of restricted feature pairs, defining the maximum
number of TSP using krange and also filtering the features by T-test.

> ### Train

> classifier <- SWAP.KTSP.Train(matTraining, trainingGroup,
RestrictedPairs somePairs,
FilterFunc = topRttest, quant =
krange=c(3:10))

0.3,

Applying filtering function to 'inputMat'...
Restricting the analysis to the provided candidate TSPs
Computing scores for 10 available restricted pairs.
This will require enough memory for 10 pairs.

Selecting K...

9 TSP will be used to build the final classifier.

> ### Show the classifier
> classifier

Sname
[1] "9TSPs"
STSPs
[,1] [,2]
[1,] "SERF1A Hs.32567" "PK428 Hs.516834"
[2,] "FGF18_Hs.87191" "Contig46223 _RC_Hs.22917"
[3,] "AK000745_Hs.377155" "IGFBP5_Hs.511093"
[4,] "KIAAQ0175_Hs.184339" "EXT1_Hs.492618"
[5,] "TMEFFI1_Hs.336224" "Contig55377_RC_Hs.463089"
[6,] "ESMI_Hs.129944" "FLJ11190_Hs.516834"
[7,] "AL137718 Hs.508141" "PECI_Hs.15250"

11

[8,] "ECT2_Hs.518299" "ORC6L_Hs.49760"
[9,] "OXCT_Hs.278277" "CFFM4_Hs.250822"

Sscore
[1] 0.38369019 0.38101624 0.31283440 0.25000012 0.22593590 0.19385035 0.17780769
[8] 0.13636374 0.08021399

Slabels
[1] "Bad" "Good"

S Calculate and aggregates the TSP votes

The SWAP .KTSP.Statistics function can be used to compute and aggre-
gate the TSP votes using alternative functions to combine the votes. The default
method is the count of the signed TSP votes. We can also pass a different function
to combine the KTSPs. This function takes an argument x — a logical vector cor-
responding to the TSP votes — of length equal to the number of columns (e.g., the
number of cancer patients under analysis) and aggregates the votes of all /' TSPs
of the classifier identified by the training proces (see the SWAP .KTSP.Train
function).

Here we will use the default parameters (the count of the signed TSP votes)

> ### Train a classifier
> classifier <- SWAP.KTSP.Train(matTraining, trainingGroup,
FilterFunc = NULL, krange=8)

No feature filtering procedure will be used...
Computing scores for 70 features.

This will require enough memory for 2415 pairs.
Selecting K...

8 TSP will be used to build the final classifier.

> ### Compute the statistics using the default parameters:

> ### counting the signed TSP votes

> ktspStatDefault <- SWAP.KTSP.Statistics (inputMat = matTraining,
classifier = classifier)

> ### Show the components in the output

> names (ktspStatDefault)

[1] "statistics" "comparisons"

> ### Show some of the votes
> head (ktspStatDefaultScomparisons|[, 1:2])

GNAZ_Hs.555870>Contig32185_RC_Hs.159422

Trainingl.Bad FALSE
TrainingZ2.Bad FALSE
Training3.Good TRUE

12

Training4.Good TRUE

Trainingb.Bad FALSE
Training6.Bad FALSE

Contig46223 RC_Hs.22917>0XCT_Hs.278277
Trainingl.Bad FALSE
TrainingZ2.Bad FALSE
Training3.Good TRUE
Training4.Good TRUE
Trainingb.Bad TRUE
Training6.Bad FALSE

> ### Show default statistics
> head (ktspStatDefaultSstatistics)

Trainingl.Bad Training2.Bad Training3.Good Training4.Good Trainingb.Bad
-6 -6 6 6 0
Trainingé6.Bad
-2

Here we will use the sum to aggregate the TSP votes

> ### Compute

> ktspStatSum <- SWAP.KTSP.Statistics (inputMat = matTraining,
classifier = classifier, CombineFunc=sum)

> ### Show statistics obtained using the sum

> head (ktspStatSum$statistics)

Trainingl.Bad Training2.Bad Training3.Good Training4.Good Trainingb.Bad
1 1 7 7 4
Trainingé6.Bad
3

Here, for instance, we will apply a hard treshold equal to 2

> ### Compute

> ktspStatThreshold <- SWAP.KTSP.Statistics (inputMat = matTraining,
classifier = classifier, CombineFunc = function(x) sum(x) > 2)

> ### Show statistics obtained using the threshold

> head (ktspStatThresholdS$statistics)

Trainingl.Bad Training2.Bad Training3.Good Training4.Good Trainingb.Bad

FALSE FALSE TRUE TRUE TRUE
Trainingé6.Bad
TRUE

We can also make a heatmap showing the individual TSPs votes (see Figure 1
below).

> ### Make a heatmap showing the individual TSPs votes

> colorForRows <- as.character (l+as.numeric (trainingGroup))

> heatmap (1+ktspStatThresholdScomparisons, scale="none",
margins = c (10, 5), cexCol=0.5, cexRow=0.5,
labRow=trainingGroup, RowSideColors=colorForRows)

13

6 Classifiy samples and compute the classifier per-
formance

6.1 Classifiy training samples

The SWAP .KTSP.Classify function allows to classify one or more samples
using the classifier identified by SWAP .KTSP . Train. The resubstitution per-
formance in the training set is shown below.

> ### Show the classifier
> classifier

Sname
[1] "8TSpPs"
STSPs

[,1] [,2]
[1,] "GNAZ_Hs.555870" "Contig32185_RC_Hs.159422"
[2,] "Contig46223 RC _Hs.22917" "OXCTI_Hs.278277"
[3,] "RFC4_Hs.518475" "L2DTIL_Hs.445885"
[4,] "Contig40831_RC _Hs.161160" "CFFM4_Hs.250822"
[5,] "FLJ11354_Hs.523468" "LOC57110_Hs.36761"
[6,] "Contig55725_RC_Hs.470654" "IGFBP5_Hs.184339"
[7,] "UCH37_Hs.145469" "SERF1A Hs.32567"
[8,] "GSTM3_Hs.2006" "KIAAQ175_Hs.184339"
Sscore

[1] 0.6029423 0.5467924 0.5347600 0.5280755 0.5267389 0.5200542 0.5133699 0.5080221

Slabels
[1] "Bad" "Good"

> ### Apply the classifier to the TRAINING set

> trainingPrediction <- SWAP.KTSP.Classify(matTraining, classifier)
> ### Show

> str(trainingPrediction)

Factor w/ 2 levels "Bad","Good": 1 1 2 2 1 1 2 2 1 1

- attr (%, "names")= chr [1:78] "Trainingl.Bad" "Training2.Bad" "Training3.Good" "Training4.Good" ...

> ### Resubstitution performance in the TRAINING set
> table(trainingPrediction, trainingGroup)

trainingGroup
trainingPrediction Bad Good
Bad 30 6
Good 4 38

We can apply the classifier using a specific decision to combine the K TSP as
specified with the DecideFunc argument of SWAP .KTSP.Classify. This
argument is a function working on a logical vector x containing the votes of each

14

L12812'SH1OX0<LT622'SH O §229vB1u0D

22Y65T'SH 0N G8TZEBAU0D<0,8555SH ZYND

6EEVET'SH SLTOVVI<O00Z SH EWLSD

228052 'SH PINAFO<09TTST'SH DY Te80vBII0D

S88SYY'SH 1LAZT<SLYATS SH 04y

29526"SH WTIS<69VSYT'SH LEHON

T0298'SH 0TTLSD0T1<BOVELS SH YSETTC TS

66EVBT'SH Sd80I<ySI0Ly'SH Y 522556100

dual TSP votes.

indivi

the

: Heatmap showing

Figure 1

15

TSP. We can for instance count all votes for class one and then classify a patient
in one class or the other based on a specific threshold.

> ### Usr a CombineFunc based on sum(x) > 5.5
> trainingPrediction <- SWAP.KTSP.Classify (matTraining, classifier,
DecisionFunc = function(x) sum(x) > 5.5)
> ### Show
> str(trainingPrediction)

Factor w/ 2 levels "Bad","Good": 1 1 2 2 1 1 2 2 11

- attr (%, "names")= chr [1:78] "Trainingl.Bad" "Training2.Bad" "Training3.Good" "Training4.Good" ...

> ### Resubstitution performance in the TRAINING set
> table(trainingPrediction, trainingGroup)

trainingGroup
trainingPrediction Bad Good
Bad 34 8

Good 0 36

6.2 Classifiy validation samples

We can apply the trained classifier to one new sample of the test set:

> ### Classify one sample

> testPrediction <- SWAP.KTSP.Classify(matTesting[, 1, drop=FALSE], classifier)
> ### Show

> testPrediction

Testl.Good
Good
Levels: Bad Good

We can apply the trained classifier to a new set of samples, using the defaul deci-
sion rule based on the “majority wins” principle:

Apply the classifier to the complete TEST set
testPrediction <- SWAP.KTSP.Classify (matTesting, classifier)
Show

table (testPrediction)

vV VvV v Vv

testPrediction
Bad Good
133 174

> ### Resubstitution performance in the TEST set
> table(testPrediction, testingGroup)

16

testingGroup
testPrediction Bad Good
Bad 31 102
Good 16 158

We can apply the trained classifier to predict of a new set of samples, using an
alternative decision rule specified by DecideFunc For instance, we can classify
by thresholding vote counts in favor of one of the classes.

> ### APlly the classifier using sum(x) > 5.5
> testPrediction <- SWAP.KTSP.Classify (matTesting, classifier,
DecisionFunc = function(x) sum(x) > 5.5)
> ### Resubstitution performance in the TEST set
> table (testPrediction, testingGroup)

testingGroup
testPrediction Bad Good

Bad 43 138
Good 4 122

7 Compute the signed TSP scores

The switchBox allows also to compute the individual scores for each TSP of
interest. This can be achieved by using the SWAP.CalculateSignedScore
function as shown below.

Compute the scores using all features for all possible pairs:

> ### Compute the scores using all features for all possible pairs
> scores <- SWAP.CalculateSignedScore (matTraining, trainingGroup, FilterFunc=NULL)

No feature filtering procedure will be used...
Computing scores for 70 features.
This will require enough memory for 2415 pairs.

> ### Show scores
> class (scores)

[1] "1ist"
> dim(scoresSscore)

[1] 70 70

Extract the TSP scores of interest — the absolute value correspond to the scores
returned by SWAP .KTSP.Train.

17

Get the scores

scoresOfInterest <- diag(scores$score[classifier$TSPs[,1] , classifierSTSPs[,2]])
Their absolute value should corresponf to the scores returned by SWAP.KTSP.Train
all(classifierSscore == abs (scoresOfInterest))

vV VvV Vv Vv

[1] TRUE

The SWAP.CalculateSignedScore function accept the same argumets used
by SWAP.KTSP.Train. It can compute the scores with or without a filtering
function and using or not the restricted pairs, as specified by FilterFunc and
RestrictedPairs respectively.

> ### Compute the scores with default filtering function

> scores <- SWAP.CalculateSignedScore (matTraining, trainingGroup, featureNo=20)

Applying filtering function to 'inputMat'...

Computing scores for 21 features.

This will require enough memory for 210 pairs.

> ### Show scores
> dim(scores$score)

[1] 21 21
> ### Compute the scores without the default filtering function
> ### and using restricted pairs
> scores <- SWAP.CalculateSignedScore (matTraining, trainingGroup,
FilterFunc = NULL, RestrictedPairs = somePairs)
No feature filtering procedure will be used...
Restricting the analysis to the provided candidate TSPs
Computing scores for 18 available restricted pairs.

This will require enough memory for 18 pairs.

> ### Show scores
> class (scoresSscore)

[1] "numeric"
> length (scores$score)

[1] 18

In Figure 2 is shown the histograms for all possible TSP scores.

> hist (scoresSscore, col="salmon", main="TSP scores")

18

> hist (scores$score,

Frequency

col="salmon", main="TSP scores")

TSP scores

-0.6

T T T T
-0.4 -0.2 0.0 0.2

scores$score

Figure 2: Histograms of all TSP socres.

19

0.4

8 Use of deprecated functions

The two functions KTSP . Train and KTSP .Classify are deprecated and are
included in the package only for backward compatibility. They have been substi-
tuted by respectively SWAP . KTSP.Train and SWAP .KTSP.Classify. These
functions were used to train and validate the 8-TSP classifier described by Mar-
chionni et al [1] and are maintained for reproducibility purposes. Example on the
way they are used follows.

Preparation of phenotype information (a numeric vector with values equal to O or
1) for training the KTSP classifier:

> ### Phenotypic group variable for the 78 samples
> table(trainingGroup)

trainingGroup
Bad Good
34 44

> levels (trainingGroup)

[1] "Bad" "Good"

> ### Turn into a numeric vector with values equal to 0 and 1
> trainingGroupNum <- as.numeric (trainingGroup) - 1

> ### Show group variable for the TRAINING set

>

table (trainingGroupNum)

trainingGroupNum
0 1
34 44

KTSP classifier training using the deprected function:

> ### Train a classifier using default filtering function based on the Wilcoxon test
> classifier <— KTSP.Train(matTraining, trainingGroupNum, n=8)
> ### Show the classifier
> classifier
$TSPs
[»1] [,2]
[1,] 42 19

[2,] 24 58
[3,] 63 50
[4,] 22 13
[5,1 37 52
[6,] 27 46
[7,1]1 69 64
[8,1]1 43 48

Sscore
[1] 0.6029417 0.5467919 0.5347597 0.5280752 0.5267384 0.5200538 0.5133694 0.5080218

20

SgeneNames

[,1] [,2]
[1,] "GNAZ_Hs.555870" "Contig32185 _RC_Hs.159422"
[2,] "Contig46223 RC_Hs.22917" "OXCT_Hs.278277"
[3,] "RFC4_Hs.518475" "L2DTL _Hs.445885"
[4,] "Contig40831_RC_Hs.161160" "CFFM4_Hs.250822"
[5,] "FLJ11354 Hs.523468" "LOC57110_Hs.36761"
[6,] "Contigb5725_RC _Hs.470654" "IGFBP5_Hs.184339"
[7,] "UCH37_Hs.145469" "SERF1A Hs.32567"
[8,] "GSTM3_Hs.2006" "KIAAQ175_Hs.184339"

KTSP classifier performance using the deprected function:

> ### Apply the classifier to one sample of the TEST set using
sum of votes less than 2.5
> trainPrediction <- KTSP.Classify(matTraining, classifier,
combineFunc = function (x) sum(x) < 2.5)

\%

> ### Contingency table
> table(trainPrediction, trainingGroupNum)

trainingGroupNum
trainPrediction 0 1

0 34 8

1 0 36

Preparation of phenotype information (a numeric vector with values equal to O or
1) for testing the KTSP classifier on new data:

> ### Phenotypic group variable for the 307 samples
> table (testingGroup)

testingGroup
Bad Good
47 260

> levels (testingGroup)
[l] "Bad" "Good"

> ### Turn into a numeric vector with values equal to 0 and 1
> testingGroupNum <- as.numeric(testingGroup) - 1

> ### Show group variable for the TEST set

> table (testingGroupNum)

testingGroupNum

0 1
47 260

Testing on new data and getting KTSP classifier performance using the deprected
function:

21

> ### Apply the classifier to one sample of the TEST set using

> ### sum of votes less than 2.5

> testPrediction <- KTSP.Classify (matTesting, classifier,
combineFunc = function(x) sum(x) < 2.5)

> ### Show prediction

> table (testPrediction)

testPrediction
0 1
181 126

> ### Contingency table
> table (testPrediction, testingGroupNum)

testingGroupNum
testPrediction 0 1

0 43 138

1 4 122

22

9 System Information

Session information:
> toLatex (sessionInfo())
* R version 3.1.1 Patched (2014-09-25 r66681),
x86_64-unknown—-linux—gnu

e Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C,
LC_TIME=en_ US.UTF-8, LC_COLLATE=C,
LC_MONETARY=en_ US.UTF-8, LC_MESSAGES=en_US.UTF-8,
LC_PAPER=en_US.UTF-8, LC_NAME=C, LC_ADDRESS=C,
LC_TELEPHONE=C, LC_MEASUREMENT=en_US.UTF-8,
LC_IDENTIFICATION=C

* Base packages: base, datasets, grDevices, graphics, methods, stats, utils
* Other packages: switchBox 1.0.0

* Loaded via a namespace (and not attached): tools 3.1.1

10 Literature Cited

References

[1] Luigi Marchionni, Bahman Afsari, Donald Geman, and Jeffrey T Leek. A
simple and reproducible breast cancer prognostic test. BMC Genomics,
14:336, 2013.

[2] Donald Geman, Christian d’Avignon, Daniel Q Naiman, and Raimond L
Winslow. Classifying gene expression profiles from pairwise mrna compar-
isons. Stat Appl Genet Mol Biol, 3:Article19, 2004.

[3] Aik Choon Tan, Daniel Q Naiman, Lei Xu, Raimond L Winslow, and Don-
ald Geman. Simple decision rules for classifying human cancers from gene
expression profiles. Bioinformatics, 21(20):3896-904, Oct 2005.

23

[4]

[5]

[6]

[7]

[8]

[9]

Lei Xu, Aik Choon Tan, Daniel Q Naiman, Donald Geman, and Raimond L
Winslow. Robust prostate cancer marker genes emerge from direct integration
of inter-study microarray data. Bioinformatics, 21(20):3905-11, Oct 2005.

D. Geman, B. Afsari, and D. Naiman A.C. Tan. Microarray classification
from several two-gene experssion comparisons. 2008. (Winner, ICMLA Mi-
croarray Classification Algorithm Competition).

Bahman Afsari, Ulissess Braga-Neto, and Donald Geman. Rank discrimi-
nants for predicting phenotypes from rna expression. Annals of Applied Statis-
tics, to appear.

Annuska M Glas, Arno Floore, Leonie] M J Delahaye, Anke T Witteveen,
Rob C F Pover, Niels Bakx, Jaana S T Lahti-Domenici, Tako J Bruinsma,
Marc O Warmoes, René Bernards, Lodewyk F A Wessels, and Laura J
Van’t Veer. Converting a breast cancer microarray signature into a high-
throughput diagnostic test. BMC Genomics, 7:278, 2006.

Marc Buyse, Sherene Loi, Laura van’t Veer, Giuseppe Viale, Mauro De-
lorenzi, Annuska M Glas, Mahasti Saghatchian d’Assignies, Jonas Bergh,
Rosette Lidereau, Paul Ellis, Adrian Harris, Jan Bogaerts, Patrick Therasse,
Arno Floore, Mohamed Amakrane, Fanny Piette, Emiel Rutgers, Christos
Sotiriou, Fatima Cardoso, Martine J Piccart, and TRANSBIG Consortium.
Validation and clinical utility of a 70-gene prognostic signature for women
with node-negative breast cancer. J Natl Cancer Inst, 98(17):1183-92, Sep
2006.

Relative mRNA Levels of Functionally Interacting Proteins Are Consistent
Disease Molecular Signatures. Wang, yuliang and afsari, bahman and geman,
donald and price, nathan. PLOS ONE, Under revision.

24

	 Introduction
	 Installing the package
	Data structure
	Training set
	Testing set

	Training KTSP algorithm
	Unrestricted KTSP classifiers
	Default statistical filtering
	Altenative filtering methods

	Training a Restricted KTSP algorithm

	Calculate and aggregates the TSP votes
	Classifiy samples and compute the classifier performance
	Classifiy training samples
	Classifiy validation samples

	Compute the signed TSP scores
	Use of deprecated functions
	 System Information
	 Literature Cited

