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1 Introduction

High-throughput sequencing technologies allow the production of large volumes of short sequences, which can be
aligned to the genome to create a set of matches to the genome. By looking for regions of the genome which to
which there are high densities of matches, we can infer a segmentation of the genome into regions of biological
significance. The methods we propose allows the simultaneous segmentation of data from multiple samples, taking
into account replicate data, in order to create a consensus segmentation. This has obvious applications in a number
of classes of sequencing experiments, particularly in the discovery of small RNA loci and novel mRNA transcriptome
discovery.

We approach the problem by considering a large set of potential segments upon the genome and counting the number
of tags that match to that segment in multiple sequencing experiments (that may or may not contain replication).
We then adapt the empirical Bayesian methods implemented in the baySeq package [1] to establish, for a given
segment, the likelihood that the count data in that segment is similar to background levels, or that it is similar to the
regions to the left or right of that segment. We then rank all the potential segments in order of increasing likelihood
of similarity and reject those segments for which there is a high likelihood of similarity with the background or the
regions to the left or right of the segment. This gives us a large list of overlapping segments. We reduce this list
to identify non-overlapping loci by choosing, for a set of overlapping segments, the segment which has the lowest
likelihood of similarity with either background or the regions to the left or right of that segment and rejecting all
other segments that overlap with this segment. For fuller details of the method, see Hardcastle et al. [2].

2 Preparation

We begin by loading the segmentSeq package.

> library(segmentSeq)

Note that because the experiments that segmentSeq is designed to analyse are usually massive, we should use (if
possible) parallel processing as implemented by the parallel package. If using this approach, we need to begin
by define a cluster. The following command will use eight processors on a single machine; see the help page for
’makeCluster’ for more information. If we don’t want to parallelise, we can proceed anyway with a NULL cluster.

> if(require("parallel"))

+ {

+ numCores <- min(8, detectCores())

+ cl <- makeCluster(numCores)

+ } else {

+ cl <- NULL

+ }

The readGeneric function is able to read in tab-delimited files which have appropriate column names, and create
an alignmentData object. Alternatively, if the appropriate column names are not present, we can specify which
columns to use for the data. In either case, to use this function we pass a character vector of files, together with
information on which data are to be treated as replicates to the function. We also need to define the lengths of

1



2

the chromosome and specifiy the chromosome names as a character. The data here, drawn from text files in the
’data’ directory of the segmentSeq package are taken from the first million bases of an alignment to chromosome 1
and the first five hundred thousand bases of an alignment to chromosome 2 of Arabidopsis thaliana in a sequencing
experiment where libraries ‘SL9’ and ‘SL10’ are replicates, as are ‘SL26’ and ‘SL32’. Libraries ‘SL9’ and ‘SL10’ are
sequenced from an Argonaute 6 IP, while ‘SL26’ and ‘SL32’ are an Argonaute 4 IP.

A similar function, readBAM performs the same operation on files in the BAM format. Please consult the help page
for further details.

> chrlens <- c(1e6, 2e5)

> datadir <- system.file("extdata", package = "segmentSeq")

> libfiles <- c("SL9.txt", "SL10.txt", "SL26.txt", "SL32.txt")

> libnames <- c("SL9", "SL10", "SL26", "SL32")

> replicates <- c("AGO6", "AGO6", "AGO4", "AGO4")

> aD <- readGeneric(files = libfiles, dir = datadir,

+ replicates = replicates, libnames = libnames,

+ chrs = c(">Chr1", ">Chr2"), chrlens = chrlens,

+ polyLength = 10, header = TRUE, gap = 200)

> aD

An object of class "alignmentData"

13765 rows and 4 columns

Slot "libnames":

[1] "SL9" "SL10" "SL26" "SL32"

Slot "replicates":

[1] AGO6 AGO6 AGO4 AGO4

Levels: AGO4 AGO6

Slot "alignments":

GRanges object with 13765 ranges and 2 metadata columns:

seqnames ranges strand | tag multireads

<Rle> <IRanges> <Rle> | <character> <numeric>

[1] >Chr1 [265, 284] - | AAATGAAGATAAACCATCCA 1

[2] >Chr1 [405, 427] - | AAGGAGTAAGAATGACAATAAAT 1

[3] >Chr1 [406, 420] - | AAGAATGACAATAAA 1

[4] >Chr1 [600, 623] + | AAGGATTGGTGGTTTGAAGACACA 1

[5] >Chr1 [665, 688] + | ATCCTTGTAGCACACATTTTGGCA 1

... ... ... ... ... ... ...

[13761] >Chr2 [179972, 179993] + | ATGAATGGCTCTCTCTAGCGGA 1

[13762] >Chr2 [179978, 180000] - | GAGATTCTCCGCTAGAGAGAGCC 1

[13763] >Chr2 [179999, 180022] - | ATTAATATTAATTCATCGGGAAGA 1

[13764] >Chr2 [180002, 180022] - | ATTAATATTAATTCATCGGGA 1

[13765] >Chr2 [180014, 180037] + | AATATTAATGGTATTTGTGGAAAA 1

-------

seqinfo: 2 sequences from an unspecified genome

Slot "data":

Matrix with 13765 rows.

SL9 SL10 SL26 SL32

1 1 0 0 0

2 0 0 0 2

3 0 1 0 0

4 0 1 0 0

5 7 1 0 0

... ... ... ... ...

13761 2 7 0 0

13762 0 1 0 0

13763 0 1 0 0
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13764 0 1 0 0

13765 1 0 0 0

Slot "libsizes":

[1] 4447 6531 9666 6675

Next, we process this alignmentData object to produce a segData object. This segData object contains a set of
potential segments on the genome defined by the start and end points of regions of overlapping alignments in the
alignmentData object. It then evaluates the number of tags that hit in each of these segments.

> sD <- processAD(aD, gap = 100, cl = cl)

> sD

An object of class "segData"

14444 rows and 4 columns

Slot "replicates":

[1] AGO6 AGO6 AGO4 AGO4

Levels: AGO4 AGO6

Slot "coordinates":

GRanges object with 14444 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] >Chr1 [265, 284] *

[2] >Chr1 [405, 427] *

[3] >Chr1 [600, 623] *

[4] >Chr1 [600, 688] *

[5] >Chr1 [600, 830] *

... ... ... ...

[14440] >Chr2 [179708, 179872] *

[14441] >Chr2 [179708, 180037] *

[14442] >Chr2 [179738, 179872] *

[14443] >Chr2 [179738, 180037] *

[14444] >Chr2 [179923, 180037] *

-------

seqinfo: 2 sequences from an unspecified genome

Slot "locLikelihoods" (stored on log scale):

Matrix with 0 rows.

<0 x 0 matrix>

Slot "data":

Matrix with 0 rows.Matrix with 0 rows.

SL9 SL10 SL26 SL32

Slot "libsizes":

[1] 4447 6531 9666 6675

We can now construct a segment map from these potential segments.

Segmentation by heuristic methods

A fast method of segmentation can be achieved by exploiting the bimodality of the densities of small RNAs in the
potential segments. In this approach, we assign each potential segment to one of two clusters for each replicate
group, either as a segment or a null based on the density of sequence tags within that segment. We then combine
these clusterings for each replicate group to gain a consensus segmentation map.

> hS <- heuristicSeg(sD = sD, aD = aD, RKPM = 1000, largeness = 1e8, getLikes = TRUE, cl = cl)
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......

Segmentation by empirical Bayesian methods

A more refined approach to the problem uses an existing segment map (or, if not provided, a segment map defined
by the hS function) to acquire empirical distributions on the density of sequence tags within a segment. We can then
estimate posterior likelihoods for each potential segment as being either a true segment or a null. We then identify
all potential segments in the with a posterior likelihood of being a segment greater than some value ’lociCutoff’
and containing no subregion with a posterior likelihood of being a null greater than ’nullCutoff’. We then greedily
select the longest segments satisfying these criteria that do not overlap with any other such segments in defining our
segmentation map.

> classSegs <- classifySeg(sD = sD, aD = aD, cD = hS, cl = cl)

............

> classSegs

GRanges object with 254 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] >Chr1 [ 1, 599] *

[2] >Chr1 [ 600, 938] *

[3] >Chr1 [ 939, 967] *

[4] >Chr1 [ 968, 17054] *

[5] >Chr1 [17055, 18728] *

... ... ... ...

[250] >Chr2 [169231, 178343] *

[251] >Chr2 [178344, 178636] *

[252] >Chr2 [178637, 179707] *

[253] >Chr2 [179708, 180037] *

[254] >Chr2 [180038, 200000] *

-------

seqinfo: 2 sequences from an unspecified genome

An object of class "lociData"

254 rows and 4 columns

Slot "replicates"

AGO6 AGO6 AGO4 AGO4

Slot "groups":

[[1]]

[1] AGO6 AGO6 AGO4 AGO4

Levels: AGO4 AGO6

Slot "data":

AGO6.1 AGO6.2 AGO4.1 AGO4.2

[1,] 1 1 0 2

[2,] 41 39 65 83

[3,] 13 7 0 0

[4,] 2 3 0 0

[5,] 682 621 1405 1103

249 more rows...

Slot "annotation":

data frame with 0 columns and 254 rows

Slot "locLikelihoods" (stored on log scale):

Matrix with 254 rows.
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AGO4 AGO6

1 0.26082 0.098357

2 0.93552 0.96812

3 0.13704 0.99008

4 0.036916 0.032084

5 0.98633 0.99537

... ... ...

250 0.32593 0.061916

251 0.92245 0.98141

252 0.056506 0.060477

253 0.94817 0.97325

254 0.036254 0.026154

Expected number of loci in each replicate group

AGO4 AGO6

113.6243 139.0449

By one of these methods, we finally acquire an annotated lociData object, with the annotations describing the
co-ordinates of each segment.

We can use this lociData object, in combination with the alignmentData object, to plot the segmented genome.

> par(mfrow = c(2,1), mar = c(2,6,2,2))

> plotGenome(aD, hS, chr = ">Chr1", limits = c(1, 1e5),

+ showNumber = FALSE, cap = 50)

> plotGenome(aD, classSegs, chr = ">Chr1", limits = c(1, 1e5),

+ showNumber = FALSE, cap = 50)

Given the calculated likelihoods, we can filter the segmented genome by controlling on likelihood, false discovery rate,
or familywise error rate

> loci <- selectLoci(classSegs, FDR = 0.05)

> loci

GRanges object with 116 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] >Chr1 [ 600, 938] *

[2] >Chr1 [ 939, 967] *

[3] >Chr1 [17055, 18728] *

[4] >Chr1 [42217, 42435] *

[5] >Chr1 [44710, 44811] *

... ... ... ...

[112] >Chr2 [144202, 144327] *

[113] >Chr2 [152150, 152173] *

[114] >Chr2 [169196, 169230] *

[115] >Chr2 [178344, 178636] *

[116] >Chr2 [179708, 180037] *

-------

seqinfo: 2 sequences from an unspecified genome

An object of class "lociData"

116 rows and 4 columns

Slot "replicates"

AGO6 AGO6 AGO4 AGO4

Slot "groups":

[[1]]

[1] AGO6 AGO6 AGO4 AGO4

Levels: AGO4 AGO6
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Figure 1: The segmented genome (first 105 bases of chromosome 1.

Slot "data":

AGO6.1 AGO6.2 AGO4.1 AGO4.2

[1,] 41 39 65 83

[2,] 13 7 0 0

[3,] 682 621 1405 1103

[4,] 31 11 48 56

[5,] 73 57 47 21

111 more rows...

Slot "annotation":

data frame with 0 columns and 116 rows

Slot "locLikelihoods" (stored on log scale):

Matrix with 116 rows.

AGO4 AGO6

1 0.93552 0.96812

2 0.13704 0.99008

3 0.98633 0.99537

4 0.94375 0.94224

5 0.95582 0.99689

... ... ...

112 0.79255 0.95779
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113 0.1432 0.96747

114 0.13126 0.9877

115 0.92245 0.98141

116 0.94817 0.97325

Expected number of loci in each replicate group

AGO4 AGO6

79.48241 112.78859

The lociData objects can now be examined for differential expression with the baySeq package.

First we define the possible models of differential expression on the data. In this case, the models are of non-differential
expression and pairwise differential expression.

> groups(classSegs) <- list(NDE = c(1,1,1,1), DE = c("AGO6", "AGO6", "AGO4", "AGO4"))

Then we get empirical distributions on the parameter space of the data.

> classSegs <- getPriors(classSegs, cl = cl)

Then we get the posterior likelihoods of the data conforming to each model. Since the ‘classSegs’ object contains
null regions as well as true loci, we will use the ‘nullData = TRUE’ option to distinguish between non-differentially
expressed loci and non-expressed regions. By default, the loci likelihoods calculated earlier will be used to weight the
initial parameter fit in order to detect null data.

> classSegs <- getLikelihoods(classSegs, nullData = TRUE, cl = cl)

.

We can examine the highest likelihood non-expressed (‘null’) regions

> topCounts(classSegs, NULL, number = 3)

seqnames start end width strand AGO6.1 AGO6.2 AGO4.1 AGO4.2 Likelihood FDR.

1 >Chr1 754198 758593 4396 * 1 0 1 0 0.9340274 0.06597257

2 >Chr1 950796 958752 7957 * 2 4 3 2 0.9321692 0.06690166

3 >Chr1 148877 222440 73564 * 0 0 0 0 0.9271423 0.06888701

FWER.

1 0.06597257

2 0.12932836

3 0.19276348

The highest likelihood expressed but non-differentially expressed regions

> topCounts(classSegs, "NDE", number = 3)

seqnames start end width strand AGO6.1 AGO6.2 AGO4.1 AGO4.2 Likelihood FDR.NDE

1 >Chr2 1554 8147 6594 * 5326 12490 13684 9679 0.9813884 0.01861158

2 >Chr2 8148 8209 62 * 76 2999 643 217 0.9682372 0.02518721

3 >Chr1 446325 447437 1113 * 789 536 1291 1184 0.9609515 0.02980763

FWER.NDE

1 0.01861158

2 0.04978326

3 0.08688778

And the highest likelihood differentially expressed regions

> topCounts(classSegs, "DE", number = 3)

seqnames start end width strand AGO6.1 AGO6.2 AGO4.1 AGO4.2 Likelihood ordering

1 >Chr2 52652 53314 663 * 84 86 982 696 0.9988873 AGO4>AGO6

2 >Chr2 58131 59084 954 * 81 83 965 677 0.9986058 AGO4>AGO6

3 >Chr2 49137 50333 1197 * 101 116 992 719 0.9984271 AGO4>AGO6

FDR.DE FWER.DE

1 0.001112749 0.001112749

2 0.001253482 0.002505413

3 0.001359954 0.004074370
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Finally, to be a good citizen, we stop the cluster we started earlier:

> if(!is.null(cl))

+ stopCluster(cl)

Session Info

> sessionInfo()

R version 3.2.1 (2015-06-18)

Platform: x86_64-unknown-linux-gnu (64-bit)

Running under: Ubuntu 14.04.2 LTS

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C LC_TIME=en_US.UTF-8

[4] LC_COLLATE=C LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8

[7] LC_PAPER=en_US.UTF-8 LC_NAME=C LC_ADDRESS=C

[10] LC_TELEPHONE=C LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:

[1] stats4 parallel stats graphics grDevices utils datasets methods

[9] base

other attached packages:

[1] segmentSeq_2.2.2 ShortRead_1.26.0 GenomicAlignments_1.4.1

[4] Rsamtools_1.20.4 Biostrings_2.36.2 XVector_0.8.0

[7] BiocParallel_1.2.19 baySeq_2.2.0 perm_1.0-0.0

[10] abind_1.4-3 GenomicRanges_1.20.5 GenomeInfoDb_1.4.1

[13] IRanges_2.2.5 S4Vectors_0.6.3 BiocGenerics_0.14.0

loaded via a namespace (and not attached):

[1] zlibbioc_1.14.0 lattice_0.20-33 hwriter_1.3.2 tools_3.2.1

[5] grid_3.2.1 Biobase_2.28.0 latticeExtra_0.6-26 lambda.r_1.1.7

[9] futile.logger_1.4.1 RColorBrewer_1.1-2 futile.options_1.0.0 bitops_1.0-6

[13] BiocStyle_1.6.0
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