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Abstract 
 
Regulatory networks inferred from microarray data sets provide an estimated 

blueprint of the functional interactions taking place under the assayed experimental 

conditions. In each of these experiments, the gene expression pathway exerts a finely 

tuned control simultaneously over all genes relevant to the cellular state. This 

renders most pairs of those genes significantly correlated, and therefore, the 

challenge faced by every method that aims at inferring a molecular regulatory 

network from microarray data, lies in distinguishing direct from indirect 

interactions. A straightforward solution to this problem would be to move directly 

from bivariate to multivariate statistical approaches. However, the daunting 

dimension of typical microarray data sets, with a number of genes p several orders 

of magnitude larger than the number of samples n, precludes the application of 

standard multivariate techniques and confronts the biologist with sophisticated 

procedures that address this situation. We have introduced a new way to approach 

this problem in an intuitive manner, based on limited-order partial correlations, and 

in this chapter we illustrate this method through the R package qpgraph, which 

forms part of the Bioconductor project and is available at its website (1). 
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1. Introduction 

 
The genome-wide assay of gene expression by microarray instruments provides a 

high-throughput readout of the relative RNA concentration for a very large number 

of genes p across a typically much smaller number of experimental conditions n. This 

enables a fast systematic comparison of all expression profiles on a gene-by-gene 

basis by analysis techniques such as differential expression. However, the 

simultaneous assay of all genes embeds in the microarray data a pattern of 

correlations projected from the regulatory interactions forming part of the cellular 

state of the samples, and therefore, estimating this pattern from the data can aid in 

building a network model of the transcriptional regulatory interactions. 

 
Many published solutions to this problem rely on pairwise measures of association 

based on bivariate statistics, such as Pearson correlation or mutual information (2). 

However, marginal pairwise associations cannot distinguish direct from indirect 

(that is, spurious) relationships and specific enhancements to this pairwise approach 

have been made to address this problem (see, for instance, (3) and (4)). 

 
A sensible approach is to try to apply multivariate statistical methods such as 

undirected Gaussian graphical modeling (5) and compute partial correlations which 

are a measure of association between two variables while controlling for the 

remaining ones. However, these methods require inverting the sample covariance 

matrix of the gene expression profiles and this is only possible when n > p (6). This 

has led to the development of specific inferential procedures, which try to overcome 

the small n and large p problem by exploiting specific biological background 

knowledge on the structure of the network to be inferred. From this viewpoint, the 

most relevant feature of regulatory networks is that they are sparse, that is the direct 

regulatory interactions between genes represent a small proportion of the edges 
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present in a fully connected network (see, for instance, (7)). Statistical procedures for 

inference on sparse networks include, among others, a Bayesian approach with 

sparsity inducing prior (8), the lasso estimate of the inverse covariance matrix (see, 

among others, (9) and (10)), the shrinkage estimate of the covariance matrix (11) and 

procedures based on limited-order partial correlations (see, for instance, (12) and 

(13)). 

 
In (14) a procedure is proposed for the statistical learning of sparse networks based 

on a quantity called the non-rejection rate. The computation of the non-rejection rate 

requires carrying out a large number of hypothesis tests involving limited-order 

partial correlations, nonetheless that procedure is not affected by the multiple testing 

problem. Furthermore, in (15) it is shown that averaging non-rejection rates obtained 

through different orders of the partial correlations is an effective strategy to release 

the user from making an educated guess on the most suitable order. In the same 

article, a method based on the concept of functional coherence is introduced, for the 

comparison of the functional relevance of different inferred networks and their 

regulatory modules. In the rest of this chapter we show how to apply this entire 

methodology by using the statistical software R and the Bioconductor package 

qpgraph. 

 
2. Materials 
 
2.1. The non-rejection rate 
 
We represent the molecular regulatory network we want to infer by means of a 

mathematical object called a graph. A graph is a pair G=(V, E), where V={1,2, ... , p} is 

a finite set of vertices and E is a subset of pairs of vertices, called the edges of G. In this 

context, vertices are genes and edges are direct regulatory interactions (see Note 1). 

Nevertheless, the graphs we consider here have no multiple edges and no loops; 
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furthermore, they are undirected so that both (i,j) ∈ E and (j, i) ∈ E are an equivalent 

way to write that the vertices i and j are linked by an edge. A basic feature of graphs 

is that they are visual objects. In the graphical representation, vertices may be 

depicted with circles while undirected edges are lines joining pairs of vertices. For 

example, the graph G=(V, E) with V={1, 2, 3} and E={(1, 2), (2, 3)} can be represented 

as ──────. A path in G from i to j is a sequence of vertices such that i and j 

are the first and last vertex of the sequence, respectively, and every vertex in the 

sequence is linked to the next vertex by an edge. The subset Q ⊆ V is said to separate i 

from j if all paths from i to j have at least one vertex in Q. For instance, in the graph 

of the example above the sequence (1, 2, 3) is a path between 1 and 3 whereas the 

sequence (1, 3, 2) is not a path. Furthermore, the set Q={2} separates 1 from 3. 

 
The random vector of gene expression profiles is indexed by the set V and denoted 

by XV=(X1, X2, ... , Xp)T and, furthermore, we denote by ρij.V\{i,j} the full-order partial 

correlation between the genes i and j, that is the correlation coefficient between the 

two genes adjusted for all the remaining genes V\{i, j}. We assume that XV belongs 

to a Gaussian graphical model with graph G=(V, E) and refer to (5) for a full account 

on these models. Here, we recall that in a Gaussian graphical model XV is assumed 

to be multivariate normal and that the vertices i and j are not linked by an edge if 

and only if ρij.V\{i,j}=0. It follows that the sample version of full-order partial 

correlations plays a key role in statistical procedures for inferring the network 

structure from data. However, these quantities can be computed only if n is larger 

than p and this has precluded the application of standard techniques in the context 

of regulatory network inference from microarray data. On the other hand, if the edge 

between the genes i and j is missing from the graph then possibly a large number of 

limited-order partial correlations are equal to zero. More specifically, for a subset Q 

⊂ V\{i,j} we denote by ρij.Q the limited-order partial correlation, that is the correlation 
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coefficient between i and j adjusted for the genes in Q. It can be shown that if Q 

separates i and j in G, then ρij.Q is equal to zero. This is a useful result because the 

sample version of ρij.Q can be computed whenever n > q+2 and, if the distribution of 

XV is faithful to G (see (14) and references therein), then ρij.Q=0 also implies that the 

vertices i and j are not linked by an edge in G. 

 
In sparse graphs one should expect a high degree of separation between vertices and 

therefore limited-order partial correlations are useful tools for inferring sparse 

molecular regulatory networks from data. There are, however, several difficulties 

related to the use of limited-order partial correlations because for every pair of genes 

i and j there are a huge number of potential subsets Q, and this leads to 

computational problems as well as to multiple testing problems. In (14) the authors 

propose to use a quantity based on partial correlations of order q that they call the 

non-rejection rate. The non-rejection rate for vertices i and j is denoted by NRR(i,j|q) 

and it is the probability of  not rejecting, on the basis of a suitable statistical test, the 

hypothesis that ρij.Q=0 where Q is a subset of q genes randomly selected from V\{i,j}. 

Hence, the non-rejection rate is a probability associated to every pair of vertices, 

genes in the context of this chapter, and takes values between zero and one, with 

larger values providing stronger evidence that an edge is not present in G. The 

procedure introduced in (15) amounts to estimating the non-rejection rate for every 

pair of vertices, ranking all the possible edges of the graph according to these values 

and then removing those edges whose non-rejection rate values are above a given 

threshold. Different methods for the choice of the threshold are discussed in the 

forthcoming sections where the graph inferred with this method will be called the 

qp-graph; we refer to (14) and (15) for technical details. Here we recall that the 

computation of the non-rejection rate requires the specification of a value q 

corresponding to the dimension of the potential separator, with q ranging from the 
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value 1 to the value n-3. Obviously, a key question when using the non-rejection rate 

with microarray data is what value of q should be employed. We know that a larger 

value of q increases the probability that a randomly chosen subset Q separates i and 

j, but this could compromise the statistical power of the tests which depends on n-q. 

In (15) a simple and effective solution to this question was introduced and consists of 

averaging (taking the arithmetic mean), for each pair of genes, the estimates of the 

non-rejection rates for different values of q spanning its entire range from 1 to 

somewhere close to n-3. These authors also showed that the average non-rejection 

rate is more stable than the non-rejection rate, avoids having to specify a particular 

value of q and it behaves similarly to the non-rejection rate for connected pairs of 

vertices in the true underlying graph G (i.e., for directly interacting genes in the 

underlying molecular regulatory network). They also pointed out that the drawback 

of averaging is that a disconnected pair of vertices (i,j) in a graph G whose indirect 

relationship is mediated by a large number of other vertices, will be easier to identify 

with the non-rejection rate using a sufficiently large value of q than with the average 

non-rejection rate. However, in networks showing high degrees of modularity and 

sparseness the number of genes mediating indirect interactions should not be very 

large, and therefore, the average non-rejection rate should be working well, just as 

they observed in the empirical results reported in (15). 

 
2.2. Functional coherence 
 
A critical question when estimating a molecular regulatory network from data is to 

know the extent to which the inferred regulatory relationships reflect the functional 

organization of the system under the experimental conditions employed to generate 

the microarray data. The authors in (15) addressed this question using the Gene 

Ontology (GO) database (16) which provides structured functional annotations on 

genes for a large number of organisms including Escherichia coli (E. coli). The 
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approach followed consists of assessing the functional coherence of every regulatory 

module within a given network. Assume a regulatory module is defined as a 

transcription factor and its set of regulated genes. The functional coherence of a 

regulatory module is estimated by relying on the observation that, for many 

transcription factor genes, their biological function, beyond regulating transcription, 

is related to the genes they regulate. Note that different regulatory modules can form 

part of a common pathway and thus share some more general functional 

annotations, which can lead to some degree of functional coherence between target 

genes and transcription factors of different modules. However, in (15) it is shown 

that for the case of E. coli data, the degree of functional coherence within a 

regulatory module is higher than between highly correlated but distinct modules. 

This observation allowed them to conclude that functional coherence constitutes an 

appealing measure for assessing the discriminative power between direct and 

indirect interactions and therefore can be employed as an independent measure of 

accuracy. 

 
The way in which the authors in (15) estimated functional coherence is as follows. 

Using GO annotations, concretely those that refer to the biological process (BP) 

ontology, two GO graphs are built such that vertices are GO terms and (directed) 

links are GO relationships. One GO graph is induced (i.e., grown toward vertices 

representing more generic GO terms) from GO terms annotated on the transcription 

factor gene discarding those terms related to transcriptional regulation. The other 

GO graph is induced from GO terms overrepresented among the regulated genes in 

the estimated regulatory module which, to try to avoid spuriously enriched GO 

terms, we take it only into consideration if it contains at least 5 genes. These 

overrepresented GO terms can be found, for instance, by using the conditional 

hypergeometric test implemented in the Bioconductor package GOstats (17) on the 
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E. coli GO annotations from the org.EcK12.eg.db Bioconductor package. Finally, 

the level of functional coherence of the regulatory module is estimated as the degree 

of similarity between the two GO graphs, which in this case amounts to a 

comparison of the two corresponding subsets of vertices. The level of functional 

coherence of the entire network is determined by the distribution of the functional 

coherence values of all the regulatory modules for which this measure was 

calculated (see Note 2). 

 
2.3. Escherichia coli microarray data 
 
In this chapter we describe our procedure through the analysis of an E. coli 

microarray data set from (18) and deposited at the NCBI Gene Expression Omnibus 

(GEO) with accession GDS680. It contains 43 microarray hybridizations that monitor 

the response from E. coli during an oxygen shift targeting the a priori most relevant 

part of the network by using six strains with knockouts of key transcriptional 

regulators in the oxygen response (∆arcA, ∆appY, ∆fnr, ∆oxyR, ∆soxS and the double 

knockout ∆arcA∆fnr). We will infer a network starting from the full gene set of E. coli 

with p=4,205 genes (see the following subsection for details on filtering steps). 

 
2.4. Escherichia coli functional and microarray data processing 
 
We downloaded the Release 6.1 from RegulonDB (19) formed by an initial set of 

3,472 transcriptional regulatory relationships. We translated the Blattner IDs into 

Entrez IDs, discarded those interactions for which an Entrez ID was missing in any 

of the two genes and did the rest of the filtering using Entrez IDs. We filtered out 

those interactions corresponding to self-regulation and among those conforming to 

feedback-loop interactions we discarded arbitrarily one of the two interactions. Some 

interactions were duplicated due to a multiple mapping of some Blattner IDs to 

Entrez IDs, in that case we removed the duplicated interactions arbitrarily. We 
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finally discarded interactions that did not map to genes in the array and were left 

with 3,283 interactions involving a total of 1,428 genes. 

 
We have obtained RMA expression values for the data in (18) using the rma() 

function from the affy package in Bioconductor. We filtered out those genes, for 

which there was no Entrez ID and when two or more probesets were annotated 

under the same Entrez ID we kept the probeset with highest median expression 

level. These filtering steps left a total number of p=4,205 probesets mapped one-to-

one with E. coli Entrez genes. 

 
3. Methods 
 
3.1. Running the Bioconductor package qpgraph 
 
The methodology briefly described in this chapter is implemented in the software 

called qpgraph, which is an add-on package for the statistical software R (20). 

However, unlike most other available software packages for R, which are deposited 

at the Comprehensive R Archive Network -CRAN- (21), the package qpgraph forms 

part of the Bioconductor project (see (22) and (1)) and it is deposited in the 

Bioconductor website instead. The version of the software employed to illustrate this 

chapter runs over R 2.12 and thus forms part of Bioconductor package bundle 

version 2.7 (see Note 3). Among the packages that get installed by default with R 

and Bioconductor, qpgraph will automatically load some of them when calling 

certain functions but one of these, Biobase, should be explicitly loaded to 

manipulate microarray expression data through the ExpressionSet class of 

objects. Therefore, the initial sequence of commands to successfully start working 

with qpgraph through the example illustrated in this chapter is as folows: 

 
> library(Biobase) 
> library(qpgraph) 
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Additionally, we may consider the fact that most modern desktop computers come 

with four or more core processors and that it is relatively common to have access to 

a cluster facility with dozens, hundreds or perhaps thousands of processors 

scattered through an interconnected network of computer nodes. The qpgraph 

package can take advantage of such a multiprocessor hardware by performing some 

of the calculations in parallel. In order to enable this feature it is necessary to install 

the R packages snow and rlecuyer from the CRAN repository and load them prior 

to using the qpgraph package. The specific type of cluster configuration that will be 

employed will depend on whether additional packages providing such a specific 

support are installed. For example if the package Rmpi is installed, then the cluster 

configuration will be that of an MPI cluster (see (23) and Note 4 for details on this 

subject). Thus, if we want to take advantage of an available multiprocessor 

infrastructure we should additionally write the following commands: 

 
> library(snow) 
> library(rlecuyer) 
 

Once these packages have been successfully loaded, to perform calculations in 

parallel it is necessary to provide an argument, called clusterSize, to the 

corresponding function indicating the number of processors that we wish to use.  In 

this chapter we assume we can use 8 processors, which should allow the longest 

calculation illustrated in this chapter to finish in less than 15 minutes. During long 

calculations it is convenient to monitor their progress and this is possible in most of 

the functions from the qpgraph package if we set the argument verbose=TRUE, 

which by default is set to FALSE. 
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3.2. A quick tour through the qpgraph package 
 
In this section we illustrate the minimal function calls in the qpgraph package that 

allow one to infer a molecular regulatory network from microarray data. We need 

first to load the data described in the previous section and which is included as an 

example data set in the qpgraph package. 

 
> data(EcoliOxygen) 
 

The previous command will load on our current R default environment two objects, 

one of them called gds680.eset, which is an object of the class ExpressionSet 

and contains the E. coli microarray data described in the previous section. We can 

see these objects in the workspace with the function ls() and figure out the 

dimension of this particular microarray data set with dim(), as follows: 

 
> ls() 
[1] "filtered.regulon6.1" "gds680.eset" 
> dim(gds680.eset) 
Features  Samples 
    4205       43 
 
When we have a microarray data set, either as an ExpressionSet object or simply 

as a matrix of numeric values, we can immediately proceed to estimate non-rejection 

rates with a q-order of, for instance, q=3 with the function qpNrr(): 

 
> nrr <- qpNrr(gds680.eset, q=3, clusterSize=8) 
 

This function returns a symmetric matrix of non-rejection rate values with its 

diagonal entries set to NA. Using this matrix as input to the function qpGraph() we 

can directly infer a molecular regulatory network by setting a non-rejection rate 

cutoff value above which edges are removed from an initial fully connected graph. 

The selection of this cutoff could be done, for instance, on the basis of targeting a 

graph of specific density which can be examined by calling first the function 
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qpGraphDensity(), whose result is displayed in Figure 1a and from which we 

consider retrieving a graph of 7% density by using a 0.1 cutoff value: 

 
> qpGraphDensity(nrr, title="", breaks=10) 
> g <- qpGraph(nrr, threshold=0.1, return.type="graphNEL") 
> g 
A graphNEL graph with undirected edges 
Number of Nodes = 4205 
Number of Edges = 644036 
 

By default, the qpGraph() function returns an adjacency matrix but, by setting 

return.type="graphNEL" we obtain a graphNEL-class object as a result, 

which, as we shall see later, is amenable for processing with functions from the 

Bioconductor packages graph and Rgraphviz. We can conclude this quick tour 

through the main cycle of the task of inferring a network from microarray data by 

showing how we can extract a ranking of the strongest edges in the network with 

the function qpTopPairs(): 

 
> qpTopPairs(nrr) 
       i      j x 
1 947758 947761 0 
2 948517 948512 0 
3 944834 944794 0 
4 948517 944797 0 
5 948512 944797 0 
6 945112 945108 0 
 

where the first two columns, called i and j, correspond to the identifiers of the pair 

of variables and the third column x corresponds, in this case, to non-rejection rate 

values. An immediate question is whether the value of q=3 was appropriate for this 

data set and while we may try to find an answer by exploring the estimated non-

rejection rate values in a number of ways described in (14), an easy solution 

introduced in (15) consists of estimating the so-called average non-rejection rates 

whose corresponding function, qpAvgNrr(), is called in an analogous way to 

qpNrr() but without the need to specify a value for q. 
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In (15) a comparison of this procedure with other widely used techniques is carried 

out. Here, we restrict the comparison to a simple procedure based on sample 

Pearson correlation coefficients and, furthermore, to the worst performing strategy 

which consists of setting association values uniformly at random to every pair of 

genes (which we shall informally call the random association method) leading to a 

completely random ranking of the edges of the graph. All these quantities can be 

computed using two functions available also through the qpgraph package: 

 
> allGenes <-  featureNames(gds680.eset) 
> pcc <- qpPCC(gds680.eset) 
> rndcor <- qpUnifRndAssociation(length(allGenes), allGenes) 
 

3.3. Avoiding unnecessary calculations 
 
We saw before that as part of the EcoliOxygen example data set included in the 

qpgraph package, there was an object called filtered.regulon6.1.  This object 

is a data.frame and contains pairs of genes corresponding to curated 

transcriptional regulatory relationships from E. coli retrieved from the 6.1 version of 

the RegulonDB database. Each of these relationships indicates that one transcription 

factor gene activates or represses the transcription of the other target gene. If we are 

interested in just this kind of transcriptional regulatory interactions, i.e., associations 

involving at least one transcription factor gene, we can substantially speed up 

calculations by restricting them to those pairs of genes suitable to form such an 

association. In order to illustrate this feature, we start here by extracting from the 

RegulonDB data what genes form the subset of transcription factors: 

 
> regulonTFgenes <- unique(filtered.regulon6.1[, "EgID_TF"]) 
 

In general, this kind of functional information about genes is available for many 

organisms through different on-line databases (24). Once we have a list of 
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transcription factor genes, restricting the pairs that include at least one of them can 

be done through the arguments pairup.i and pairup.j in both functions, 

qpNrr() and qpAvgNrr(). We use here the latter to estimate average non-rejection 

rates that will help us to infer a transcriptional regulatory network without having to 

specify a particular q-order value. Since the estimation of non-rejection rates is 

carried out by means of a Monte Carlo sampling procedure, in order to allow the 

reader to reproduce the exact numbers shown here we will set a specific seed to the 

random number generator before estimating average non-rejection rates. 

 
> set.seed(123) 
> avgnrr <- qpAvgNrr(gds680.eset, pairup.i=regulonTFgenes, 
                     pairup.j=allGenes, clusterSize=8) 
 
The default settings for the function qpAvgNrr() employ 4 q-values uniformly 

distributed along the available range of q values. In this example, these correspond 

to q={1, 11, 21, 31}. However, we can change this default setting by using the 

argument qOrders. 

 
3.4. Network accuracy with respect to a gold-standard 
 
E. coli is the free-living organism with the largest fraction of its transcriptional 

regulatory network supported by some sort of experimental evidence. As a result of 

an effort in combining all this evidence the database RegulonDB (19) provides a 

curated set of transcription factor and target gene relationships that we can use as a 

gold-standard to, as we shall see later, calibrate a nominal precision or recall at 

which we want to infer the network or compare the performance of different 

parameters and network inference methods. This performance is assessed in terms 

of precision-recall curves. 

 
Every network inference method that we consider here provides a ranking of the 

edges of the fully connected graph, that is, of all possible interactions. Then a 
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threshold is chosen and this leads to a partition of the set of all edges into a set of 

predicted edges and a set of missing edges. On the other hand, the set of RegulonDB 

interactions are a subset of the set of all possible interactions and a predicted edge 

that belongs to the set of RegulonDB interactions is called a true positive. Following 

the conventions from (25), when using RegulonDB interactions for comparison the 

recall (also known as sensitivity) is defined as the fraction of true positives in the set 

of RegulonDB interactions and the precision (also known as positive predictive value) 

is defined as the number of true positives over the number of predicted edges whose 

genes belong to at least one transcription factor and target gene relationship in 

RegulonDB. For a given network inference method, the precision-recall curve is 

constructed by plotting the precision against the recall for a wide range of different 

threshold values. In the E. coli dataset we analyze, precision-recall curves should be 

calculated on the subset of 1,428 genes forming the 3,283 RegulonDB interactions 

and this can be achieved with the qpgraph package through the function 

qpPrecisionRecall() as follows: 

 
> regulonGenes <- unique(c(filtered.regulon6.1$EgID_TF, 
                           filtered.regulon6.1$EgID_TG)) 
> avgnrr.pr <- qpPrecisionRecall(avgnrr, 
                 refGraph=filtered.regulon6.1[, c("EgID_TF", "EgID_TG")], 
                 decreasing=FALSE, 
                 pairup.i=regulonTFgenes, 
                 pairup.j=regulonGenes, 
                 recallSteps=c(seq(0,0.1,0.005), 
                               seq(0.1,1.0,0.1))) 
 

The previous lines calculate the precision-recall curve for the ranking derived from 

the average non-rejection rate values. The calculation of these curves for the other 

two rankings derived from Pearson coefficients and uniformly random association 

values would require replacing the first argument by the corresponding matrix of 

measurements in absolute value since these two methods provide values ranging 
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from -1 to +1. We can plot the resulting precision-recall curve for the average non-

rejection rate stored in avgnrr.pr as follows: 

 

> plot(100*avgnrr.pl[, 1:2], type="b", pch=19, xlim=c(0, 6), 

       xlab="Recall (% RegulonDB interactions)", ylab="Precision (%)") 

 

In Figure 1b this plot is shown jointly with the other calculated curves, where the 

comparison of the average non-rejection rate (labeled qp-graph) with the other 

methods yields up to 40% improvement in precision with respect to using absolute 

Pearson correlation coefficients and observe that for precision levels between 50% 

and 80% the qp-graph method doubles the recall. We shall see later that this has an 

important impact when targeting a network of a reasonable nominal precision in 

such a data set with p=4,205 and n=43. 

 
[FIGURE 1 NEAR HERE] 
 
3.5. Inference of molecular regulatory networks of specific size 
 
Given a measure of association for every pair of genes of interest, the most 

straightforward way to infer a network is to select a number of top-scoring 

interactions that conform a resulting network of a specific size that we choose. We 

showed before such a strategy by looking at the graph density as a function of 

threshold, however, we can also extract a network of specific size by using the 

argument topPairs in the call to the qpGraph() and qpAnyGraph() functions 

where the call for the random association values would be analogous to the one of 

Pearson correlations. 

 
> qpg1000sze <- qpGraph(avgnrr, threshold=NULL, topPairs=1000) 
> pcc1000sze <- qpAnyGraph(abs(pcc$R), threshold=NULL, 
                  topPairs=1000, decreasing=TRUE, 
                  pairup.i=regulonTFgenes, 
                  pairup.j=allGenes) 
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In the example above we are extracting networks formed by the top-scoring 1,000 

interactions. 

 
3.6. Inference of molecular regulatory networks at nominal precision and recall 
levels 
 
When a gold-standard network is available we can infer a specific molecular 

regulatory network using a nominal precision and/or using a nominal recall. This is 

implemented in the qpgraph package by calling first the function 

qpPRscoreThreshold() which, given a precision-recall curve calculated with 

qpPrecisionRecall(), will calculate for us the score that attains the desired 

nominal level. In this particular example, and considering the precision-recall curve 

of Figure 1b, we will employ nominal values of 50% precision and 3% recall: 

 
> avgnrr.50p.thr <- qpPRscoreThreshold(avgnrr.pr, level=0.50, 
                      recall.level=FALSE, max.score=0) 
> avgnrr.3r.thr <- qpPRscoreThreshold(avgnrr.pr, level=0.03, 
                     recall.level=TRUE, max.score=0) 
 
where the thresholds for the other methods would be analogously calculated 

replacing the first argument by the object storing the corresponding curve returned 

by qpPrecisionRecall(). 

 

Next, we apply these nominal precision and recall thresholds to obtain the networks 

by using the functions qpGraph() for the average non-rejection rate and 

qpAnyGraph() for any other type of association measure, here illustrated only with 

Pearson correlation coefficients: 

 

> qpg50pre <- qpGraph(avgnrr, avgnrr.50p.thr) 
> pcc50pre <- qpAnyGraph(abs(pcc$R), abspcc.50p.thr, 
                remove="below", pairup.i=regulonTFgenes, 
                pairup.j=allGenes) 
> qpg3rec <- qpGraph(avgnrr, avgnrr.3r.thr) 
> pcc3rec <- qpAnyGraph(abs(pcc$R), abspcc.3r.thr, 
               remove="below", pairup.i=regulonTFgenes, 
               pairup.j=allGenes) 
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3.7. Estimation of functional coherence 
 
In order to estimate functional coherence we need to install a Bioconductor package 

with GO functional annotations associated to the feature names (genes, probes, etc.) 

of the microarray data. For this example, we require the E. coli GO annotations 

stored in the package org.EcK12.eg.db. It will be also necessary to have installed 

the GOstats package to enable the GO enrichment analysis. The function 

qpFunctionalCoherence() will allow us to estimate functional coherence values 

as we illustrate here below for the case of the nominal 50%-precision network 

obtained with the qp-graph method. The estimation for the other networks would 

require replacing only the first argument by the object storing the corresponding 

network: 

 
> library(GOstats) 
> library(org.EcK12.eg.db) 
> qpg50preFC <- qpFunctionalCoherence(qpg50pre, 
                  TFgenes=regulonTFgenes, 
                  chip="org.EcK12.eg.db", 
                  minRMsize=5, clusterSize=8) 
 
This function returns a list object storing the transcriptional network and the 

values of functional coherence for each regulatory module. These values can be 

examined by means of a boxplot as follows: 

 
> boxplot(qpg50preFC$functionalCoherenceValues, 
          col=grey(0.50), ylim=c(0,1), ylab="Functional coherence") 
 

In Figure 2 we see the boxplots for the functional coherence values of all networks 

obtained from each method and selection strategy. Through the three different 

strategies, the networks obtained with the qp-graph method provide distributions of 

functional coherence with mean and median values larger than those obtained from 

networks built with Pearson correlation or simply at random. 

 
 [FIGURE 2 NEAR HERE] 
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3.8. The 50%-precision qp-graph regulatory network 
 
We are going to examine in detail the 50%-precision qp-graph transcriptional 

regulatory network. A quick glance at the pairs with strongest average non-rejection 

rates including the functional coherence values of their regulatory modules within 

this 50%-precision network can be obtained with the function qpTopPairs() as 

follows: 

 
> qpTopPairs(measurementsMatrix=avgnrr, refGraph=qpg50pre, 
             pairup.i=regulonTFgenes, pairup.j=allGenes, 
             annotation="org.EcK12.eg.db", fcOutput=qpg50preFC, 
             fcOutput.na.rm=TRUE) 
       i      j iSymbol jSymbol    x funCoherence 
1 948797 945585    appY    appC 0.01         0.33 
2 947466 945938    glcC    mhpR 0.01         0.14 
3 945938 946255    mhpR    astC 0.01         0.71 
4 947466 948336    glcC    fadB 0.02         0.14 
5 948797 947547    appY    appB 0.02         0.33 
6 948797 946206    appY    appA 0.02         0.33 
 

The previous function call admits also a file argument that would allow us to store 

these information as a tab-separated column text file, thus more amenable for 

automatic processing when combined with the argument n=Inf since by default 

this is set to a limited number (n=6) of pairs being reported. 

 
For many other types of analysis, it is useful to store the network as an object of the 

graphNEL class, which is defined in the graph package. This is obtained by calling 

the qpGraph() function setting properly the argument return.type as follows: 

 
> g <- qpGraph(avgnrr, threshold=avgnrr.50p.thr, return.type="graphNEL") 
> g 
A graphNEL graph with undirected edges 
Number of Nodes = 147 
Number of Edges = 120 
 

As we see from the object's description, the 50%-precision qp-graph network consists 

of 120 transcriptional regulatory relationships involving 147 different genes. A GO 

enrichment analysis on this subset of genes can give us insights into the main 
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molecular processes related to the assayed conditions. Such an analysis can be 

performed by means of a conditional hypergeometric test using the Bioconductor 

package GOstats as follows: 

 
> goHypGparams <- new("GOHyperGParams", 
                      geneIds=nodes(g), 
                      universeGeneIds=allGenes, 
                      annotation="org.EcK12.eg.db", ontology="BP", 
                      pvalueCutoff=0.05, conditional=TRUE, 
                      testDirection="over") 
> goHypGcond <- hyperGTest(goHypGparams) 
 

where the object goHypGcond stores the result of the analysis which can be 

examined in R through the summary() function whose output is displayed in Table 

1. The GO terms enriched by the subset of 147 genes reflect three broad functional 

categories one being transcription, which is the most enriched but it is also probably 

a byproduct of the network models themselves that are anchored on transcription 

factor genes. The other two are metabolism and response to an external stimulus, 

which are central among the biological processes that are triggered by an oxygen 

shift. Particularly related to this, is the fatty acid oxidation process since fatty acid 

metabolism is crucial to allow the cell to adapt quickly to environmental changes 

and allows E. coli to grow under anaerobic conditions (26). 

 
 [TABLE 1 NEAR HERE] 
 
Finally, using the graphNEL representation of our network stored in the variable g 

and the function connComp()from the graph package we can easily look up the 

distribution of sizes of the connected components: 

 
> table(sapply(connComp(g), length)) 
 
 2  3  4  6  8  9 17 19 
24  6  4  2  1  1  1  1 
 
and observe that two of them, formed by 17 and 19 genes, are distinctively larger 

than the rest, thus corresponding to the more complex part of the network. In order 
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to examine in more detail these two subnetworks we can plot them using the 

Bioconductor package Rgraphviz (see Note 5) and calling the function 

qpPlotNetwork() which will output Figure 3a: 

 
> library(Rgraphviz) 
> qpPlotNetwork(g, minimumSizeConnComp=17, pairup.i=regulonTFgenes, 
                pairup.j=allGenes, annotation="org.EcK12.eg.db") 
 
Often the visualization of many interacting genes is dificult to interpret as, for 

instance in this case, the module regulated by mhpR. We can also visualize the part 

of the network connected to mhpR by using the arguments vertexSubset and 

boundary as follows and obtain the result shown in Figure 3b: 

 
> g_mhpR <- qpPlotNetwork(g, vertexSubset="mhpR", boundary=TRUE, 
                          pairup.i=regulonTFgenes, pairup.j=allGenes, 
                          annotation="org.EcK12.eg.db") 
 
Note that we have assigned the result of this function to a variable named g_mhpR. 

This will store the graph we have just visualized into this variable as a graphNEL 

object and can be useful to extract the list of edges forming this subnetwork again 

through the function qpTopPairs(): 

 
> qpTopPairs(measurementsMatrix=avgnrr[nodes(g_mhpR), nodes(g_mhpR)], 
             refGraph=g_mhpR, pairup.i=regulonTFgenes, pairup.j=allGenes, 
             annotation="org.EcK12.eg.db", fcOutput=qpg50preFC) 
       i      j iSymbol jSymbol    x funCoherence 
1 945938 947466    mhpR    glcC 0.01         0.71 
2 945938 946255    mhpR    astC 0.01         0.71 
3 947466 948336    glcC    fadB 0.02         0.14 
4 945938 944954    mhpR    mhpC 0.02         0.71 
5 947466 946255    glcC    astC 0.02         0.14 
6 945938 948823    mhpR    fadI 0.02         0.71 
 
This last step allows us to see that the two strongest associations occur within the 

mhpR regulatory module, which also has a very high value of functional coherence, 

thus constituting two promising candidates for a follow up study. 

 
 [FIGURE 3 NEAR HERE] 
 



	
   22	
  

Notes 
 

1. The underlying method assumes that it is estimating an undirected Gaussian 

graphical model, which is a well-defined statistical model. However, our 

biological interpretation of this model as a transcriptional regulatory network 

will lead us to discard interactions between genes where none of them is a 

transcription factor, and to put directions in the resulting graph from 

transcription factor genes to their putative targets. This provides us with a 

network model of the underlying transcriptional regulation, which does not 

have a statistical interpretation anymore in terms of, for instance, conditional 

independence, but which allows one to formulate educated guesses on 

plausible biological hypotheses. 

2. The limited availability of GO functional annotations for genes outside well-

studied model organisms can compromise a reliable estimation of functional 

coherence values. 

3. Bioconductor release versions are synchronized with R software release 

versions and thus updated twice a year. It is always recommended to work 

with the latest versions. For a detailed explanation on how to install and 

update the R and Bioconductor software please visit the website (27). 

4. The installation of the package Rmpi requires a prior installation and 

configuration of an MPI library. For further details on this issue please visit 

the website (28). 

5. The installation of the package Rgraphviz requires a prior installation of the 

software graphviz available at the website (29). 
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Tables 
 
Table 1. Gene Ontology biological process terms enriched (P-value ≤ 0.05) among the 

147 genes forming the 50%-precision qp-graph network inferred from the oxygen 

deprivation data in (18). 

 
GO Term 
Identifier 

P-value Odds 
Ratio 

Exp. Count Count Size Term 

GO:0006350  < 0.0001 4.76 13.79 39  292 transcription  
GO:0009059  0.0004 2.14 27.81 43 589  macromolecule biosynthetic 

process 
GO:0019395 0.0022 5.34 1.42 6 30 fatty acid oxidation 
GO:0030258 0.0022 5.34 1.42 6 30 lipid modification 
GO:0044260 0.0035 1.84 38.15 51 808 cellular macromolecule 

metabolic process 
GO:0044238 0.0073 2.08 66.10 76 1400 primary metabolic process 
GO:0006542 0.0096 8.92 0.47 3 10 glutamine biosynthetic process 
GO:0006578 0.0124 20.62 0.19 2 4 betaine biosynthetic process 
GO:0009268 0.0124 20.62 0.19 2 4 response to pH 
GO:0006807 0.0398 1.50 43.44 52 920 nitrogen compound metabolic 

process 
GO:0042594 0.0428 4.44 0.80 3 17 response to starvation 

 
 



	
   27	
  

Figure legends 
 
Figure 1. Performance comparison on the oxygen deprivation E. coli data with 

respect to RegulonDB. (A) Graph density as function of the non-rejection rate 

estimated with q=3. (B) Precision-recall curves comparing a random ranking of the 

putative interactions, a ranking made by absolute Pearson correlation (Pairwise 

PCC) and a ranking derived from the average non-rejection rate (qp-graph). 

 
Figure 2. Functional coherence estimated from networks derived with different 

strategies and methods. (A) A nominal RegulonDB-precision of 50%, (B) a nominal 

RegulonDB-recall of 3%, and (C) using the top ranked 1 000 interactions. On the x-

axis and between square brackets, under each method, are indicated, respectively, 

the total number of regulatory modules of the network, the number of them with at 

least 5 genes and the number of them with at least 5 genes with GO-BP annotations. 

Among this latter number of modules, the number of them where the transcription 

factor had GO annotations beyond transcription regulation is noted above between 

parentheses by n and corresponds to the number of modules on which functional 

coherence could be calculated. 

 
Figure 3. The 50%-precision qp-graph transcriptional network. (A) The two largest 

connected components. (B) The mhpR regulatory module in detail. 
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