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1 Introduction

The Parallel Mixed Model (PMM) approach is suitable for hit selection and cross-comparison of
RNAi screens generated in experiments that are performed in parallel under several conditions.
For example, we could think of the measurements or readouts from cells under RNAi knock-down,
which are infected with several pathogens or which are grown from different cell lines. PMM
simultaneously takes into account all the knock-down effects in order to gain statistical power
for the hit detection. As a special feature, PMM allows incorporating RNAi weights that can
be assigned according to the additional information on the used RNAis or the screening quality.
The theory behind PMM is shortly described in the second section (more details can be found in
[1]). The third section shows the functionality of the PMM R-package by using an RNAi dataset as
example.

2 Background

PMM is composed of a linear mixed model and an assessment of the local False Discovery Rate.
The linear mixed model consists of a fixed effect for condition and of two random effects for gene
g and for gene g within a condition c. We denote the readout or measurement result of the RNAi
s silencing the gene g as ygcs for the condition c. The linear mixed model of the PMM is defined
as the following linear model

Ygcs = µc + ag + bcg + βXgcs + εgcs

where µc is the fixed effect for condition c (typically close to 0 if the data is Z-Scored), ag is the
gene effect overall pathogens, bcg is the gene effect within a pathogen and εgcs denotes the error
term.
The effect of a certain gene g within a condition c is described by the sum of the two random
effects:

ccg = ag + bcg.

A positive estimated ccg effect means that the RNAi readout for condition c is enhanced if the
corresponding gene g is knocked down. A negative effect means that the RNAi readout is reduced.
The linear mixed model is estimated by the lmer function from the lme4 R-package.
To distinguish hit genes, PMM provides as second step an estimate of the local False Discovery
Rate (FDR). We define the local false discovery rate as

f̂dr(c) =
π̂0f̂0(c)

f̂(c)

where π0 stands for the proportion of true hits, f0 for the distribution of the readout for all
genes that are hits, f1 for the distribution of readout for all genes that are no hits and f(c) =
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π0f0(c)+(1−π0)f1(c). The three quantities are separately estimated by using Maximum Likelihood,
Poisson regression and moment estimation (for details see [2] and [3]).
Additionally, a sharedness score shg is offered for an easier cross-comparison of the results from
PMM. The sharedness score indicates if a gene is a hit in only one condition or if the hit appears
among all conditions. The sharedness score is a combination of two quantities:

shg =
1

2

(
(1 − mean(fdrcg)) +

∑
c

(fdrcg < 1)

)

The first part defines the shift away from 1 and the second part describes how many pathogens
support the shift.

3 Working Example

The PMM R-package contains the following functions:

Function Description
pmm fits the PMM

hitheatmap visualizes the results of PMM
sharedness computes the sharedness

Moreover, an RNAi dataset on infection with several pathogens is included in the R-package.

> library(pmm)

> data(kinome)

> head(kinome)

GeneID GeneName condition siRNA company CellCount InfectionIndex

1 25 ABL1 ADENO 1 Ambion 0.105927 1.127378

2 25 ABL1 ADENO 2 Ambion -0.319963 -1.517203

3 25 ABL1 ADENO 3 Ambion 1.830071 0.151446

4 25 ABL1 ADENO 1 Dharmacon 0.096761 -1.657932

5 25 ABL1 ADENO 2 Dharmacon 0.534097 0.440019

6 25 ABL1 ADENO 3 Dharmacon 0.123893 -0.230555

weight_library

1 2

2 2

3 2

4 1

5 1

6 1

The dataset contains the readouts of 826 kinases knock-down experiments - each targeted by a
total of 12 independent siRNAs coming from three manufactures: Ambion (3 siRNAs), Qiagen (4
siRNAs) and Dharmacon (4 siRNAs + 1 pool siRNA). After knock-down the cells were infected
with a pathogen, imaged with a microscope and the infection rate, as well as the number of
cells were extracted from the microscope images. All experiments were conducted for 8 different
pathogens. For example, the normalized number of cells (0.105927) and the normalized infection
score (1.127378) from the frist row of the data matrix are readouts of the microscope image from
the siRNA experiment where gene ABL1 was knocked down with siRNA 1 from the manufacturer
Ambion (for details see [1]).
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3.1 Input to PMM

In order to use pmm your data needs to be stored as data.frame. Each row should correspond
to one independent RNAi experiment. The data frame should have at least the following three
columns:

1. gene identifier

2. condition

3. RNAi readout

In our example, the column GeneID identifies the genes, the column condition corresponds to
the pathogens which indicate the different conditions and as siRNA readout serve the columns
InfectionIndex and CellCount.

Note:

1. The data should contain several independent siRNAs (different seeds) measurements per gene
and condition.

2. The biological replicates (experimental results with identical siRNA (same seeds) and iden-
tical condition) should be averaged.

3.2 Fitting PMM

In order to fit the PMM, take the data frame with your measurements as input and specify the
correct column names by using the arguments gene.col and condition.col. As example, we fit
the PMM for the readout InfectionIndex.

> fit1 <- pmm(kinome, "InfectionIndex", gene.col = "GeneName",

+ condition.col = "condition")

> head(fit1)

GeneID ccg.ADENO fdr.ADENO ccg.BARTONELLA fdr.BARTONELLA ccg.BRUCELLA

1 AAK1 0.20302313 1 0.01690875 1 0.14275985

2 AATK 0.12641842 1 -0.16504423 1 -0.02594681

3 ABL1 -0.12880832 1 0.10988288 1 -0.05980182

4 ABL2 -0.17482047 1 -0.01058877 1 -0.12022737

5 ACVR1 -0.17032266 1 -0.13287513 1 -0.25434036

6 ACVR1B 0.03966081 1 -0.18706973 1 -0.24045441

fdr.BRUCELLA ccg.LISTERIA fdr.LISTERIA ccg.RHINO fdr.RHINO ccg.SALMONELLA

1 1 0.31750158 0.9190195 -0.008399229 1.0000000 0.10503468

2 1 0.03525293 1.0000000 0.419511789 0.9367436 -0.02181387

3 1 -0.11524463 1.0000000 -0.225983005 0.9968858 -0.15649122

4 1 -0.25343895 1.0000000 0.021600548 1.0000000 0.11198034

5 1 -0.35657588 0.9236894 -0.314185327 0.9269003 -0.17388914

6 1 -0.03998616 1.0000000 -0.091292479 1.0000000 0.07908285

fdr.SALMONELLA ccg.SHIGELLA fdr.SHIGELLA ccg.VACCINIA fdr.VACCINIA

1 1 0.06197101 1 0.35902163 0.8531588

2 1 -0.16184007 1 -0.08375328 1.0000000

3 1 -0.33228726 1 -0.08383966 1.0000000

4 1 -0.16282578 1 -0.07334075 1.0000000

5 1 -0.41598247 1 -0.18011948 1.0000000

6 1 -0.01247688 1 -0.09540118 1.0000000
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The default output of pmm is a matrix that contains the estimated ccg effects for each condition
c and gene g, as well as an estimate for the local false discovery rate. A positive estimated ccg
effect means that the response was enhanced when the corresponding gene was knocked down. A
negative effect means that the response was reduced. Another version of the output giving some
more information is also available by using the argument simplify:

> fit2 <- pmm(kinome, "InfectionIndex", gene.col = "GeneName",

+ condition.col = "condition", simplify = FALSE)

> class(fit2)

[1] "list"

> names(fit2)

[1] "ccg.matrix" "lmm" "ccg"

> identical(fit1,fit2[[1]])

[1] TRUE

The non-simplified output of pmm is a list of three components. The first component contains
the simpilified output, i.e the matrix with the estimated ccg effects and the estimated local false
discovery rate, the second component contains the fit of the linear mixed model and the third
component contains the estimated ag and the estimated bcg values. Additional arguments of pmm

can be used to add weights to the linear mixed model fit (weight) or change the number of
minimal required siRNA replicates for each gene (ignore). Moreover pmm can deal with missing
values. Missing values appear, for example, if your data doesn’t contain a full set of combinations
for conditions and genes, meaning that for each gene not every condition was performed. As an
example, we set all measurements of the gene AAK1 and the pathogen Adenovirus to NA. The
result of the pmm fit looks as follows:

> kinome$InfectionIndex[kinome$GeneName == "AAK1" &

+ kinome$condition == "ADENO"] <- rep(NA,12)

> fit3 <- pmm(kinome ,"InfectionIndex", gene.col = "GeneName")

> head(fit3,3)

GeneID ccg.ADENO fdr.ADENO ccg.BARTONELLA fdr.BARTONELLA ccg.BRUCELLA

1 AAK1 NA NA 0.005334597 1 0.13126340

2 AATK 0.1266127 1 -0.165151226 1 -0.02596048

3 ABL1 -0.1286538 1 0.110046729 1 -0.05973965

fdr.BRUCELLA ccg.LISTERIA fdr.LISTERIA ccg.RHINO fdr.RHINO ccg.SALMONELLA

1 1 0.30611339 0.9469847 -0.01998932 1.0000000 0.09394959

2 1 0.03528036 1.0000000 0.41979809 0.9348426 -0.02182478

3 1 -0.11521568 1.0000000 -0.22601988 0.9970146 -0.15648731

fdr.SALMONELLA ccg.SHIGELLA fdr.SHIGELLA ccg.VACCINIA fdr.VACCINIA

1 1 0.05042396 1 0.34808786 0.8799426

2 1 -0.16194562 1 -0.08380444 1.0000000

3 1 -0.33238823 1 -0.08379267 1.0000000

The output shows now NA for the removed combination.

4



3.3 Visualization of Results

The results of PMM can be illustrated by a heat map using the function hitheatmap.

> hitheatmap(fit1, threshold = 0.2)
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Figure 1: Visualization of PMM results for an easier cross-comparison between the different con-
ditions.

Red color indicates a positive estimated ccg effect, blue color a negative estimated ccg effect. The
darker the color, the stronger is the estimated ccg effect. The heat map contains only the genes
for which the local false discovery rate is below a given threshold for at least one condition. The
yellow star indicates the significant genes. The plot can be modified by passing further arguments
to the plot and the par function

> hitheatmap(fit1, threshold = 0.4, cex.main = 2,

+ main = "My modified plot", col.main = "white",

+ col.axis = "white", cex.axis = 0.8, bg = "black", mar = c(6,8,4,6))

My modified plot
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Figure 2: Modified Heat map.

Missing combinations are plotted in white color and marked by NA. Use the argument na.omit =

na.omit to plot only complete combinations.
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3.4 Adding Sharedness Score

The sharedness score returns a value between 0 and 1 for each gene. Score 0 indicates that a gene
is not shared among the condition and score 1 that the gene is significant among all conditions.
The sharedness score is only computed for genes that pass a given threshold.

> sh <- sharedness(fit1, threshold = 0.2)

> sh[order(sh$Sharedness),]

GeneID Sharedness

14 ULK1 0.1214748

4 ETNK1 0.1249985

2 CSNK1A1 0.1866005

7 ITPK1 0.1998551

3 CSNK2A2 0.2517173

15 WDSUB1 0.2525157

13 TGFBR2 0.3190708

9 MYLK4 0.3270544

5 GAK 0.4207531

1 AURKB 0.4424351

11 RIPK4 0.4762744

10 PIK3R3 0.5137590

12 TGFBR1 0.5388678

8 MTOR 0.6198472

6 ILK 0.6240870

The sharedness score can also be visualized within the hitheatmap. Use the argument shared-

ness.score = TRUE to add a row for the sharedness score. The darker the green color, the stronger
is the sharedness among the conditions.

> hitheatmap(fit1, sharedness.score = TRUE, main = "My hits found by PMM")
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Figure 3: Visualization of PMM results with sharedness score.
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