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High-throughput technologies such as whole genome transcriptional profil-
ing revolutionized molecular biology and provide an incredible amount of data.
On the other hand, these techniques pose elementary methodological challenges
simply by the huge and ever increasing amount of data produced: researchers
need adequate tools to extract the information content of the data in an effective
and intelligent way. This includes algorithmic tasks such as data compression
and filtering, feature selection, linkage with the functional context, and proper
visualization. Especially, the latter task is very important because an intuitive
visualization of massive data clearly promotes quality control, the discovery of
their intrinsic structure, functional data mining and finally the generation of
hypotheses. We aim at adapting a holistic view on the gene activation patterns
as seen by expression studies rather than to consider single genes or single path-
ways. This view requires methods which support an integrative and reductionist
approach to disentangle the complex gene-phenotype interactions related to can-
cer genesis and progression. With this motivation we implemented an analysis
pipeline based on data processing by a Self-Organizing Map (SOM) (Wirth et al.)
2011)(Wirth et al., [2012a)). This approach simultaneously searches for features
which are differentially expressed and correlated in their profiles in the set of
samples studied. We include functional information about such co-expressed
genes to extract distinct functional modules inherent in the data and attribute
them to particular types of cellular and biological processes

such as inflammation, cell division, etc. This modular view facilitates the
understanding of the gene expression patterns characterizing different cancer
subtypes on the molecular level. Importantly, SOMs preserve the information
richness of the original data allowing the detailed study of the samples after
SOM clustering. A central role in our analysis is played by the so-called expres-
sion portraits which serve as intuitive and easy-to-interpret fingerprints of the
transcriptional activity of the samples. Their analysis provides a holistic view
on the expression patterns activated in a particular sample. Importantly, they
also allow identification and interpretation of outlier samples and, thus, improve
data quality (Hopp et al., 2013a)(Hopp et al., |2013b)).



1 Example data: transctiptome of healthy hu-
man tissue samples

The data was downloaded from Gene Expression Omnibus repository (GEO
accession no. GSE7307). About 20,000 genes in more than 650 tissue samples
were measured using the Affymetrix HGU133-Plus2 microarray. A subset of 12
selected tissues from different categories is used here as example data set for the
oposSOM-package.

2 Setting up the environment

In order to set the analysis parameters and to create the enclosing environment
it is obligatory to use opossom.new. If any parameter is not explicitly defined,
default values will be used (see also Parameters section):

> library(oposSOM)
> env <- opossom.new(list(dataset.name="Tissues",
+ dim. 1stLv1Som=20))

The oposSOM package requires input of the expression data. Usually the raw
microarray intensity data is preprocessed using appropiate calibration and sum-
marization algorithms (e.g. MAS5, VSN or RMA), and transformed into loga-
rithmic scale prior to utilizing them in the pipeline.

The package then accepts two formats: Firstly a simple two-dimensional nu-
merical matrix, where the columns and rows represent the samples and genes,
respectively:

> data(opossom. tissues)
> str(opossom.tissues, vec.len=3)

num [1:20957, 1:12] 0.299 2.492 2.293 2.041 ...

- attr(*, "dimnames")=List of 2
..$ : chr [1:20957] "ENSG0O0000115415" "ENSG0O0000252095" "ENSG00000111640"
..$ : chr [1:12] "liver" "kidney cortex" "thyroid gland"

> env$indata <- opossom.tissues


http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE7307
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE7307

Secondly the input data can also be given as Biobase::ExpressionSet object:

> data(opossom. tissues)

> library(Biobase)

> opossom.tissues.eset = ExpressionSet (assayData=opossom.tissues)
> opossom.tissues.eset

ExpressionSet (storageMode: lockedEnvironment)
assayData: 20957 features, 12 samples
element names: exprs
protocolData: none
phenoData: none
featureData: none
experimentData: use 'experimentData(object)'
Annotation:

> env$indata <- opossom.tissues.eset

Each sample may be assigned to a distinct group and a respective color to
improve data visualization and result presentations. If not defined by the user,
the samples will be collected within one group and colored using a standard
scheme.

> env$group.labels <- c(rep("Homeostasis", 2),

+ "Endocrine",

+ "Digestion",

+ "Exocrine",

+ "Epithelium",

+ "Reproduction",

+ "Muscle",

+ rep("Immune System", 2),
+ rep("Nervous System", 2) )

> env$group.colors <- c(rep("gold", 2),
+ "red2",

+ "brown",

+ "purple”,

+ "cyan”,

+ "pink”’

+ "green2",

+ rep("blue2", 2),
+ rep("gray", 2) )



Alternatively, the group.labels and group.colors can also be defined within
the phenotype information of the ExpressionSet:

group.info <- data.frame(
group.labels = c(rep("Homeostasis", 2),

"Endocrine",
"Digestion",
"Exocrine",
"Epithelium",
"Reproduction",
"Muscle",

rep("Immune System", 2),

rep("Nervous System", 2) ),

>
+
+
+
+
+
+
+
+
+
+
+ group.colors = c(rep("gold", 2),

+ "red2",

+ "brown",

+ "purple”,

+ "cyan",

+ "pink",

+ "green2",

+ rep("blue2", 2),
+ rep("gray", 2) ),
+

+

row.names=colnames (opossom. tissues))

> opossom.tissues.eset = ExpressionSet(assayData=opossom.tissues,
+ phenoData=AnnotatedDataFrame (group.info)
> opossom.tissues.eset

ExpressionSet (storageMode: lockedEnvironment)
assayData: 20957 features, 12 samples
element names: exprs
protocolData: none
phenoData
sampleNames: liver kidney cortex ... cerebral cortex (12 total)
varLabels: group.labels group.colors
varMetadata: labelDescription
featureData: none
experimentData: use 'experimentData(object)'
Annotation:

> env$indata <- opossom.tissues.eset



Finally the pipeline will run through all analysis modules without further
input. Periodical status messages are given to inform about running and ac-
complished tasks. Please note that the tissue sample will take approx. 30min
to finish, depending on the users’ hardware:

> # opossom.run(env)
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Figure 1: Few selected results provided by the oposSOM package: (a) Expres-
sion landscape portraits represent fingerprints of transcriptional activity. The
group.labels and group.colors parameters are used to arrange and represent the
samples throughout all analyses. (b) Functional expression modules are iden-
tified in the expression landscapes and described using appropriate summary
portraits (left part), and expression profiles, enrichment analyses and differen-
tial gene lists (right part). (c) Sample similarity structure is analysed using
different algorithms and distance metrics. Here a clustered pairwise correlation
matrix is shown.



3 Browsing the results

The pipeline will store the results in a defined folder structure. These results
comprise a variety of PDF documents with plots and images addressing the input
data, supplementary descriptions of the SOM generated, the metadata obtained
by the SOM algorithm, the sample similarity structures and also functional an-
notations. The PDF reports are accompanied by detailed CSV spreadsheets
which render the complete information richness accessible.

Figure [1|shows few selected outputs generated by the pipeline. The expression
landscape portraits (Figure [Th) represent fingerprints of transcriptional activ-
ity. They are used to identify functional expression modules, which are further
visualized and evaluated (Figure ) Sample similarity structure is analysed
using different algorithms and distance metrics, for example by clustering the
pairwise sample correlation matrix (Figure )

Detailed description of the respective algorithms and visualizations would ex-
ceed the scope of this outline. We therefore refer to our publications aiming
at methodical issues and application of the pipeline (Wirth et al., [2011))(Wirth
et all [2012b)(Wirth et al) 2012a)(Wirthl [2012))(Steiner et al., [2012)(Binder
et al.l [2012))(Hopp et al., [2013a)) (Hopp et al., 2013b).
HTML files are generated to prov1de straightforward access to this great amount
of analysis results (see Figure [2 . They guide the user in terms of giving the
most prominent links at a glance and leading from one analsis module to an-
other. The Summary.html is the starting point of this browsing and can be
found in the results folder created by the oposSOM pipeline.
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Figure 2: HTML files allow browsing all results provided by the oposSOM
package: (a) The central Summary.html serves as starting point and contains
general information and results, as well as links to other HTML files such as
(b) the sample summary page, (c) the spot module summary page and (d) the

functional analyses page.
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4 Parameter settings

All parameters are optional and will be set to default values if missing. However
we recommend to adapt the following parameters according to the respective
analysis:

e dataset.name (character): name of the dataset. Used to name results
folder and environment image (default:’'Unnamed’).

e dim.1stLvlSom (integer): dimension of primary SOM (default: 20). Given
as a single value defining the size of the square SOM grid.

o feature.centralization (boolean): enables or disables centralization of the
features (default: TRUE).

e sample.quantile.normalization (boolean): enables quantile normalization
of the samples (default: TRUE).

The parameters below are secondary and may be left unattended by the user:

e dim.2ndLvlSom (integer): dimension of the second level SOM (default:
20). Given as a single value defining the size of the square SOM grid.

e training.ectension (numerical, >0): factor extending the number of itera-
tions in SOM training (default: 1).

e rotate.SOM.portraits (integer {0,1,2,3}): number of roations of the pri-
mary SOM in counter-clockwise fashion (default: 0). This solely influences
the orientation of the portraits.

e flip.SOM.portraits (boolean): mirroring the primary SOM along the bottom-
left to top-right diagonal (default: FALSE). This solely influences the ori-
entation of the portraits.

e database.dataset (character): type of ensemble dataset addressed with
biomaR#t interface (default: ”auto”). Use "auto” to detect this parame-
ter automatically.

e database.id.type (character): type of rowname identifier in biomaRt database
(default: 7). Obsolete if database.dataset="auto”.

e geneset.analysis (boolean): enables or disables geneset analysis (default:
TRUE).

e geneset.analysis.exact (boolean): enables or disables p-value and fdr calcu-
lation in geneset analysis (default: TRUE). Obsolete if geneset.analysis=F.



spot.threshold.samples (numerical, between 0 and 1): expression threshold
for the spot regions in single sample portraits (default: 0.65).

spot.threshold.modules (numerical, between 0 and 1): spot detection in
summary maps, expression threshold (default: 0.95).

spot.coresize.modules (integer, >0): spot detection in summary maps,
minimum spot size (default: 3).

spot.threshold.groupmap (numerical, between 0 and 1): spot detection in
group-specific summary maps, expression threshold (default: 0.75).

spot.coresize.groupmap (integer, >0): spot detection in group-specific sum-
mary maps, minimum spot size (default: 5).

pairwise.comparison.list (list of group lists): group list for pairwise anal-
yses (default: empty list). Each element is a list of two character vectors
containing the sample names to be analysed in pairwise comparison. The
sample names must be contained in the column names of the input data
matrix. For example, the following setting will compare the homeostasis
(liver, kidney) to the nervous system samples (accumbens, cortex), and
also tongue to the nervous system:

> env$preferences$pairwise.comparison.list <-

+ list(list(c("liver", "kidney cortex"),

+ c("accumbens", "cerebral cortex")),
+ list(c("tongue"),

+

c("accumbens", "cerebral cortex")))



5 New functionalities introduced with oposSOM
1.0 on Bioconductor

The oposSOM-package release on Bioconductor is highly superior to the version
released on CRAN in 2011:

e Structure of the source code was thoroughly revised to meet the require-
ments of Bioconductor.

e Organization and presentation of the results output was improved, accom-
panied with an extended HTML interface to access all results.

e A package vignette was introduced.

e New analysis modules were implemented:

Metagene entropy and portrait topology analyses
Neighbor-joining clustering of the samples
Correlation Network analysis of the samples
GSZ-profiles for the individual gene sets

Overview heatmaps summarizing enrichment of a large number of
gene sets

Cancer hallmark enrichment analyses
Enrichment analyses for genes sets relating to chromosomal positions
Spot report sheets and spot correlation (wTO) networks

Expression portraits, differential expression analyses and functional
characteristics summarized for the groups defined

Stability analyses of the groups using correlation silhouette methods

Differential expression analyses for pairs of samples or groups of sam-
ples, including differential expression portraits and functional char-
acterization

e Primary input data can be given as Bioconductor "ExpressionSet’ object.

6 Citing oposSOM

Please cite (Wirth et al.| 2011]) and (Wirth et al.,|2012al) when using the package.

7 Details

This document was written using:

> sessionInfo()
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R version 3.2.0 (2015-04-16)
Platform: x86_64-unknown-linux-gnu (64-bit)
Running under: Ubuntu 14.04.2 LTS

US.UTF-8

locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=C
[56] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:
[1] parallel stats graphics grDevices utils datasets methods
[8] base

other attached packages:

[1] Biobase_2.28.0

loaded via a namespace (and not attached):

[1]
[4]
(7]
[10]
[13]
[16]
[19]
[22]

lattice_0.20-31 ape_3.2

XML_3.98-1.1 bitops_1.0-6
GenomeInfoDb_1.4.0 nlme_3.1-120
stats4_3.2.0 RSQLite_1.0.0
som_0.3-5 pixmap_0.4-11
scatterplot3d_0.3-35 S4Vectors_0.6.0
tools_3.2.0 biomaRt_2.24.0
igraph_0.7.1 AnnotationDbi_1.30.0
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BiocGenerics_0.14.0 oposSOM_1.4.0

IRanges_2.2.0
grid_3.2.0
DBI_0.3.1
KernSmooth_2.23-14
fdrtool_1.2.14
fastICA_1.2-0
RCurl_1.95-4.5
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