A Bioconductor package for investigation of network heterogeneity from
high-dimensional data

Nicolas Stadler* Frank DondelingerT

August 19, 2015

1 Introduction

Data analysis in systems biology and medicine often requires analysing data whose dynamics can be described as a
network of observed and unobserved variables. A simple example is a protein signalling network in a cell.

Simplifying the process greatly, signalling proteins known as kinases can be unphosphorylated (inactive) or phosphorylated
(active). Cell signalling uses the phosphorylation machinery to pass messages from the exterior of the cell to the interior
where they will be acted upon. This message passing is achieved via a relay of kinases and other proteins (the signalling
pathway), which can be thought of as a network.

Numerous software packages exist for reconstructing networks from observational data (e.g. [1], [2], [3], [4]). However,
most of these packages assume that there is a single underlying network. Package nethet was designed with the intent
of handling heterogeneous datasets arising from a collection of (possibly related) networks.

Take for example protein measurements of breast cancer tumor cells. It is known that there exist several subtypes of
breast cancer with different molecular profiles [5]. We might be interested in whether the signalling pathways (networks)
reconstructed from two subtypes are statistically different. If they are not, then we might want to identify new subtypes
that present different molecular profiles, and reconstruct the networks for each identified subtype. The nethet package
contains functionalities to tackle all of these tasks.

To the best of our knowledge, nethet is currently the only implementation of statistical solid methodology enabling
the analysis of network heterogeneity from high-dimensional data. Package nethet combines several implementations
of recent statistical innovations useful for estimation and comparison of networks in a heterogeneous, high-dimensional
setting. In particular, we provide code for formal two-sample testing in Gaussian graphical models (differential network
and GGM-GSA; [6], [7]) and make a novel network-based clustering algorithm available (mixed graphical lasso, [8]).

2 Statistical setup

We consider independent samples X; € R? (i = 1,...,n), measuring p molecular variables. We assume that the collected
data can be divided into K different groups. Let S; € {1,..., K} be the group assignment of sample 4, denote with ny
the group specific sample size and write X, for the ng X p data matrix consisting of all samples belonging to group k.

To describe networks we use Gaussian graphical models (GGMs, [9]). These models use an undirected graph (or network)
to describe probabilistic relationships between variables. For each group k, we assume that Xj is sampled from a
multivariate Gaussian distribution with (unknown) mean p; and (unknown) p X p concentration matrix Qj = E,;l. The

*staedler.n@gmail.com
Tfdondelinger.work@gmail.com

nethet 2

matrix €2 defines the group-specific graph Gy, via

(.j?jl) € E(Gk;) = Qk;jj/ # 07
7' €{l,...,p}and j # j,

where E(G) denotes the edge set of graph G.

Learning of networks G, is a so-called high-dimensional statistical problem. We employ regularization to learn sparse,
parsimonious networks and thereby control over-fitting. In particular, we use the popular graphical Lasso [10, 11].
Frequently the group assignments .S;, as well as the number of groups K, are unknown at the outset and have to be
inferred simultaneously with the group-specific mean vectors and networks. The method mixglasso, implemented in this
package, is a novel tool for high-dimensional, network-based clustering. It is based on a finite mixture of GGMs and
employs an adaptive and automatic penalization scheme [8].

Network inference is subject to statistical uncertainty and observed differences between estimated networks may be due
to noise in the data and variability in estimation rather than any true difference in underlying network topology. Testing
hypotheses of the form

Hyp : G, = Gy, k‘,k/E{l,...,K},k#k‘/

is challenging. We build upon a recent approach called differential network [6, 7] which allows formal two-sample testing
in high-dimensional GGMs.

3 Package functionalities

The package consists of the following main parts:

e Simulation functions for creating synthetic data from the underlying Gaussian mixture (network) model.

e Network inference using the het_cv_glasso function for reconstructing heterogeneous networks from data with
the graphical Lasso [12] when the group structure is known.

e High-dimensional hypothesis testing capabilities, including the diffnet functions implementing a statistical test for
whether the networks underlying a pair of dataset are different, the ggmgsa functions allowing for differential gene
set testing and the diffregr functions testing whether two high-dimensional regression models are statistically
different [6, 7].

e The mixglasso functions implementing a network-based clustering and reconstruction algorithm also based on the
graphical Lasso, for unknown group structure [8].

e Plotting and export functions for displaying and saving the results of the analysis in a sensible way.

4 Simulate data

In order to demonstrate the functionalities of the package, we will first simulate data from a Gaussian mixture model
with a known covariance structure. The nethet package includes code for generating random covariance matrices with
a given sparsity, and for simulating from a Gaussian mixture model with given means and covariances. The function
sim mix networks provides a convenient wrapper for both:

n = 100
25

o)
Il

n.comp = 4

mix.prob = c(0.1, 0.4, 0.3, 0.2)

nethet 3

Specify sparsity in [0,1], indicating fraction of off-diagonal zero entries.
s = 0.9

Generate networks with random means and covariances. Means will be drawn from
a standard Gaussian distribution, non—zero covariance values from a

Beta(1,1) distribution.

sim.result = sim_mix_networks(n, p, n.comp, s, mix.prob)

The data is contained in sim.result$data, and the components that each data point belongs to are contained in
sim.result$comp. Let's check that the mixture probabilities are correct and then plot the first two dimensions of the
data. Note that we do not expect these to be well-separated in any way.

print (table(sim.result$comp)/n)

#it
#i# 1 2 3 4
0.12 0.35 0.34 0.19

component = as.factor(sim.result$comp)

library('ggplot2')
gplot(x=sim.result$datal,1], y=sim.result$datal,2],
colour=component) +
xlab('Dimension 1') +
ylab('Dimension 2')

2- = =
N O- I component
[% ® . o. ° .°. oo ® . 1
9 ° ° 25 .0,. c
[72] S o oo . R ° 2
5 -2 - — I ‘.l:: .
E . o . .:] Y ° 3
5 [] ‘ ‘ : L] 4
_4 -
_6 - o
1 1 1 1 1 1
-4 -2 0 2 4 6
Dimension 1

The means and covariances of the data are contained in sim.result$Mu and sim.result$Sig. If desired, they can
also be specified when calling sim mix _networks.

Generate new dataset with the same covariances, but different means
sim.result.new = sim_mix_networks(n, p, n.comp, s, mix.prob, Sig=sim.result$Sig)

component = as.factor(sim.result.new$comp)

gplot(x=sim.result.new$datal,1], y=sim.result.new$datal,2],
colour=component) +

nethet 4

xlab('Dimension 1') +
ylab('Dimension 2')

10 - - .
N | . . component
.5 e i, i
% I '. 'k % o O 2
g 0- . . - . e o e 3
0o e o ° . 4
...‘.-
° " 6o °°
-5 - ——
| | |
-4 0 4
Dimension 1

When the covariance matrices for the components are not specified in advance, the sim_ mix networks function implicitly
assumes that they are generated independently of each other. In order to test the diffnet functions, we also want to
be able to generate simulated data from pairs of networks that present some common edges. The generate_2networks
function is used to generate pairs of networks with an arbitrary overlap.

Sample size and number of nodes

n <- 40

p <- 10

Specify sparse inverse covartance matrices,

with number of edges inm common equal to ~ 0.8*p

gen.net <- generate_2networks(p,graph='random',n.nz=rep(p,2),
n.nz.common=ceiling(p*0.8))

invcovl <- gen.net[[1]]
invcov2 <- gen.net[[2]]

plot_2networks(invcovl,invcov2,label.pos=0,label.cex=0.7)

nethet 5

X2 X7 X2 X7

X5 X5

X9 X9
X6
X4
X4

X3

X8 X10 x8® X10

X1 X1

5 Network estimation with known group labels

If it is known a priori to which component each sample belongs, then the problem of reconstructing the network reduces
to a simple application of the graphical Lasso to each component. For convenience, we have included a wrapper function
het_cv_glasso in nethet that applies the graphical Lasso [12] to each component in a heterogeneous dataset with
specified component labels. The penalisation hyperparameter is tuned individually for each component using cross-
validation.

To demonstrate het_cv_glasso, we will generate some data in the same way as in the previous section:
n = 100

p = 25
sim.result = sim_mix_networks(n, p, n.comp, s, mix.prob)

test.data = sim.result$data
test.labels = sim.result$comp

networks = het_cv_glasso(data=test.data, grouping=test.labels)

One way of checking if the reconstructed networks are sensible is plotting the covariance matrices used for generating
the networks against the reconstructed covariance matrices.

components = as.factor(rep(l:n.comp, each=p~2))

gplot (x=c(networks$Sig), y=c(sim.result$Sig),
colour=components) +
xlab('Reconstructed Covariances') +
ylab('True Covariances')

nethet 6

8 2 ;
o . ”:._'.‘ components
G e 1
.% rl :,‘.;.‘ ..:c'
> *f‘ il 2
o -
O O 7 : Py !’:o . ° 3
S P 4
=)

o e

_2 - *
I I I I
-2.5 0.0 2.5 5.0

Reconstructed Covariances

6 High-dimensional two-sample testing

We have demonstrated how to use our package to estimate networks from heterogeneous data. Often, we would like
to perform a statistical comparison between networks. Differential network allows formal hypothesis testing regarding
network differences. It is based on a novel and very general methodology for high-dimensional two-sample testing. Other
useful tools based on this technology are GGM-GSA (“multivariate gene-set testing based on GGMs") and differential re-
gression which allows formal two-sample testing in the high-dimensional regression model. For details on this methodology
we refer the reader to [6, 7].

6.1 Differential network

Let us consider datasets generated from GGMs (G and G5 respectively. We would like to know whether networks inferred
from these datasets differ in a statistical significant manner, that is we would like to test the hypothesis

HO : G1 :GQ.

The function diffnet multisplit uses repeated sample splitting to address this task. The main steps are:

”

1. Both datasets are randomly split into two halves: the “in-" and “out-sample”.

Networks are inferred using only the in-sample (“screening step”).

Based on the out-sample, a p-value is computed which compares the networks obtained in step 2 (“cleaning step”).
Steps 1-3 are repeated many times (e.g. 50 times); the resulting p-values are aggregated and the final aggregated
p-value is reported.

N

We now illustrate the use of diffnet multisplit with an example. We consider GGMs (i.e. inverse covariance
matrices) previously generated in Section 4.

set.seed (1)

p <- 30

nethet 7

gen.net <- generate_2networks(p,graph='random',n.nz=rep(p,2),
n.nz.common=ceiling (p*0.8))

invcovl <- gen.net[[1]]

invcov2 <- gen.net[[2]]

Get corresponding correlation matrices
corl <- cov2cor(solve(invcovi))
cor2 <- cov2cor(solve(invcov2))

We start with generating data under the “null-scenario” where both datasets have the same underlying network.

Generate data under null hypothesis
library(mvtnorm) # To generate multivariate Gaussian random samples

Sample size

n <- 70
x1 <- rmvnorm(n,mean = rep(0,dim(corl) [1]), sigma = corl)
x2 <- rmvnorm(n,mean = rep(0,dim(corl) [1]), sigma = corl)

Then, we run a differential network analysis:

Run diffnet (under null hypothests)
dn.null <- diffnet_multisplit(x1l,x2,b.splits=1,verbose=FALSE)

We obtain the p-value 0.8505236, which is stored in dn.null$ms.pval.

The same analysis can be performed for data generated under the alternative hypothesis.

Generate data under alternative hypothesis (datasets have different networks)
x1 <- rmvnorm(n,mean = rep(0,dim(corl)[1]), sigma = corl)
x2 <- rmvnorm(n,mean = rep(0,dim(corl) [2]), sigma = cor2)

Run diffnet (under alternative)
dn.altn <- diffnet_multisplit(x1l,x2,b.splits=1,verbose=FALSE)

The resulting p-value is 0.715561 which indicates a highly significant network difference.

The variable b.splits specifies the number of data splits used in the differential network procedure. The p-values in the
previous examples were obtained using only a single data split (b.splits=1). P-values heavily depend on the random
split of the data. This amounts to a " p-value lottery”. To get stable and reproducible results we therefore would typically
choose a larger number for the variable b.split and report the aggregated p-value.

Typically we would choose a larger number of splits
Use parallel library (only available under Uniz) for computational effictency
if (.Platform$0S.type == "unix") {
dn.altn <- diffnet_multisplit(x1l,x2,b.splits=50,verbose=FALSE,mc.flag=TRUE)
} else {
dn.altn <- diffnet_multisplit(xl,x2,b.splits=25,verbose=FALSE,mc.flag=FALSE)

}

par(cex=0.7)
plot(dn.altn, cex=0.5) # histogram over 50 p-values

nethet 8

histogram single—split p—values

o _
o [
1
- - - median aggregated X
8 - - - meinshausen aggregated !
1
|
8 — 1
1
> 1
8 1
s 8 o |
[on |
o !
=g X
— 1
1
1
1
o — |
1
_____}_____ |
o - —
[I I I I]
0.0 0.2 0.4 0.6 0.8 1.0
p-values

cat('p-value:',dn.altn$medagg.pval,'\n')
p-value: 0.95436

6.2 Multivariate gene-set testing based on GGMs

In the case where molecular variables can be grouped into various sets of biologically related features (e.g. gene-sets or
pathways), ggmgsa multisplit can be used to perform differential network analyses iteratively for all gene-sets. This
allows us to identify gene-sets which show a significant network difference. For illustration we consider data generated
from the following networks.

set.seed(1)

p<-9

n <- 40

hub.net <- generate_2networks(p,graph='hub',n.hub=3,n.hub.diff=1)

invcovl <- hub.net[[1]]

invcov2 <- hub.net[[2]]

plot_2networks(invcovl,invcov2,label.pos=0,label.cex=0.7,
main=c('network 1', 'metwork 2'),cex.main=0.7)

nethet

network 2 network 1
X7 X9 X7 X9
—° —°
X8 X8
X X:
<6 6 e
(-]
X1 X1
X4 X4
.X3
X5 X3 X5

library('mvtnorm')
x1 <- rmvnorm(n,mean = cov2cor(solve(invcovl)))

cov2cor(solve(invcov2)))

rep(0,p), sigma =
rep(0,p), sigma =

x2 <- rmvnorm(n,mean

The nodes can be grouped into three gene-sets where only the first has a different underlying network.

gene.names <- paste('G',1:p,sep='")
gsets <- split(gene.names,rep(1:3,each=3))

We run GGM-GSA with a single data split (b.splits=1) and note that only the p-value for the first gene-set has small
magnitude. Again, we would typically use a larger number of data splits in order to obtain stable p-values.

fit.ggmgsa <- ggmgsa_multisplit(xl,x2,b.splits=1,gsets,gene.names,verbose=FALSE)

library(xtable)
print (xtable (summary(fit.ggmgsa) ,digits=6))

medagg.pval meinshagg.pval
gsl 0.001010 0.004037
gs2 0.356396 1.000000
gs3 0.110297 0.440744

6.3 Differential regression

In addition to differential network, this R-package also provides an implementation of differential regression. In particular,
the function diffregr multisplit allows formal two-sample testing in the high-dimensional regression model. It is also
based on sample splitting and is very similar to the previously introduced diffnet multisplit.

Consider the following sparse regression models.

p <- 100
n <- 80

x1 <- matrix(rnorm(n*p),n,p)

nethet 10

x2 <- matrix(rnorm(n*p),n,p)

Active-sets and regression coefficients

actl <- sample(l:p,5)

act2 <- c(act1[1:3],sample(setdiff(l:p,actl),2))
betal <- beta2 <- rep(0,p)

betallactl] <- 0.7

beta2[act2] <- 0.7

We generate data under the null-hypothesis and run differential regression. The histogram shows the distribution of the
p-values obtained form ten data splits.

Response wectors under null-hypothesis
y1l <- x1Yx¥as.matrix(betal)+rnorm(n,sd=1)
y2 <- x2Yx%as.matrix(betal)+rnorm(n,sd=1)

Differential regression; b.splits=10

fit.null <- diffregr_multisplit(yl,y2,x1,x2,b.splits=10)

par(cex=0.7)

plot(fit.null,cex=0.5) # histogram of p-values from b.spltt data splits

histogram single-split p—values

- - - median aggregated
© — - - - meinshausen aggregated

frequency

[I I I I I |
0.988 0.990 0.992 0.994 0.996 0.998 1.000

p-values

cat('p-value: ',fit.null$medagg.pval,'\n') # median aggregated p-value

p-value: 0.9999619

The following example illustrates differential regression in scenario with different regression models.

Response wectors under alternative-hypothests
y1l <- x1Yx%as.matrix(betal)+rnorm(n,sd=1)
y2 <- x2Yx%as.matrix(beta2)+rnorm(n,sd=1)

Differential regresston (asymptotic p-values)
fit.alt <- diffregr_multisplit(yl,y2,x1,x2,b.splits=10)
par(cex=0.7)

nethet 11

plot(fit.alt)

histogram single—split p—values

~ —
- -|- median aggregated
© - - -|- meinshausen aggregated
n —
o)
c <
5]
>
o
g ® 7
PN
- -
© - L
[I I I I 1
0.0 0.2 0.4 0.6 0.8 1.0
p-values

cat('p-value: ',fit.alt$medagg.pval,'\n')

p-value: 0.0009108626

For differential regression we have the option to compute permutation-based p-values by choosing a number of permu-
tations n.perm.

fit.alt.perm <- diffregr_multisplit(yl,y2,x1,x2,b.splits=5,n.perm=100)

The default option (n.perm=NULL) uses an asymptotic approximation to calculate p-values.

7 Network estimation and model-based clustering with unknown group la-
bels

Often we do not know a priori which component each sample belongs to. For example in the case of samples corresponding
to protein measurements in breast cancer patients, the particular subtype of breast cancer that a patient suffers from may
be unknown. In these cases, our package allows for network-based clustering of the samples using the mixture graphical
Lasso (mixglasso), which jointly clusters the samples and reconstructs the networks for each group or cluster.

To demonstrate the mixglasso function, let us first generate some data in the same way as before, but with means
defined to ensure separability of the groups:

n = 1000
p = 10

s = 0.9
n.comp = 3

nethet 12

Mu = matrix(0,p,n.comp)

Define nmon-zero means in each group (non-overlapping)
nonzero.mean = split(sample(l:p),rep(l:n.comp,length=p))

Set non-zero means to fized wvalue
for(k in 1:n.comp){
Mu[nonzero.mean[[k]],k] = -2/sqrt(ceiling(p/n.comp))

}

Generate data
sim.result = sim_mix_networks(n, p, n.comp, s, Mu=Mu)

Now we will run mixglasso on this dataset to retrieve the original clustering and reconstruct the underlying networks.

Run mizglasso
mixglasso.result = mixglasso(sim.result$data, n.comp=3)

Calculate adjusted rand index to judge how accurate the clustering s
Values > 0.7 indicate good agreement.
library(mclust, quietly=TRUE)

Package ’mclust’ version 5.0.2
Type ’citation("mclust")’ for citing this R package in publications.

adj.rand = adjustedRandIndex(mixglasso.result$comp, sim.result$comp)
cat('Adjusted Rand Index', round(adj.rand, digits=2), '\n')

Adjusted Rand Index 0.72

Table 1 shows the cross-tabulation of the number of samples in predicted versus true groups.

A B C
1 9 31 294
2 331 10 22
3 11 272 20

Table 1: Cross-tabulation of mixglasso clusters (rows) with true group assignments (columns).

What if we don't know the true number groups? Luckily, mixglasso supports model comparison using BIC [13] and
minimum description length [14]. In the following example we will use BIC to find the correct number of components:

Run mizglasso over a range of numbers of components
mixglasso.result = mixglasso(sim.result$data, n.comp=1:6)

Repeat with lambda=0 and lambda=Inf for comparison
mixglasso.result.0 = mixglasso(sim.result$data, n.comp=1:6, lambda=0)
mixglasso.result.Inf = mixglasso(sim.result$data, n.comp=1:6, lambda=Inf)

Aggregate BIC results for plotting
BIC.vals = c(mixglasso.result$bic, mixglasso.result.O0$bic,
mixglasso.result.Inf$bic)

lambda.labels = rep(c('Default', 'Lambda = 0', 'Lambda = Inf'), each=6)

Plot to werify that minimum BIC wvalue corresponds with true
library(ggplot2)

nethet 13

plotting.frame <- data.frame(BIC=BIC.vals, Num.Comps=rep(1:6, 3), Lambda=lambda.labels)
p <- ggplot(plotting.frame) +
geom_line (aes(x=Num.Comps, y=BIC, colour=Lambda)) +

geom_vline(xintercept=3, linetype='dotted')

print (p)

18000 -
17500 - Lambda
0 Default
m — Lambda =0
17000 - — Lambda = Inf
16500 -
1) 1 1
2 4 6
Num.Comps

We note that mixglasso involves a penalization parameter A which trades off goodness-of-fit and model complexity. We
recommend to use the default which employs an adaptive and automatic penalization scheme [8]. Note that in this
simplified example, A = 0 (no penalization) performs well because n >> p. A = oo constrains inverse covariance
matrices to be diagonal, hence the inferior performance.

8 Plotting and exporting results

Our package includes several functions for plotting and exporting the networks and results that have been obtained.

8.1 Plotting results

The output of het_cv_glmnet and mixglasso can be plotted either in network form or as individual edges in the
networks. For the network plots, we use the network package [15]. This is the default plotting when plot is invoked
on an object of class nethetclustering, and produces one global plot showing edges that occur in any group, as well
as one plot for each group. For this example we will use the networks and clustering obtained using mixglasso in the
previous section.

mixglasso.clustering = mixglasso.result$models[[mixglasso.result$bic.opt]]

nethet 14

Usually we are only interested in specific edges, and perhaps we wish to compare them among groups. Function dot_plot
generates a plot with edges above a certain threshold along the y-axis, and one circle for each group showing the smallest
mean of the two nodes that make up the edge. We use the ggplot2 package to make the plots [16].

g = dot_plot(mixglasso.clustering, p.corrs.thresh=0.5, dot.size.range=c(1,5))

Mean
4-9- @ . « -09
e 06
1-3 - . e 03
e 00
2-5- ° T Type
1
6-10 - ° * 2
- 3
1 1 1 1
-0.6 -0.4 -0.2 0.0

P.Corr

Finally, we might want to compare the observed values of the nodes linked by specific edges across groups. Function
scatter_plot will generate plots for a specified list of edges.

node.pairs = rbind(c(9,10), c(2,5),c(4,9))

g = scatter_plot(mixglasso.clustering, data=sim.result$data,
node.pairs=node.pairs, cex=0.5)

nethet

1
PCorr: 0.0.
Coir: 0.4:
3 -
O -
_3 -
-6 - =
PCorr: (
Coir: 0.0«
3 -
N
[} -
S 0
o
Z
_3 -
_6 - -
PCorr: 0.0:
Coir: 0.4¢
2 :
O -
_3 -
_6 -

8.2 Exporting Results

2
PCorr: (
Corr: —-0.0!
PCorr; ~0.5
Corr: —0.7:
PCorr: (
Corr: —0.0¢
| | |
-4 0 4

PCorr:-0.’
Corr: —0.8!

Pgorr: (
Corr: 0.1:

PCorr: (
Corr: —0.0:

15

Our package offers the option to export the inferred networks as a comma-separated values (CSV) text file. Like the
plotting functions, function export_network can be invoked on the output of het_cv_glmnet and mixglasso.

Save network in CSV format, omitting edges with absolute partial correlation

less than 0.25.

#export_network(mizglasso.clustering, file='nethet_network.csv',

p.corrs.thresh=0.25)

This creates a CSV file encoding a table with one row for each edge with partial correlation above the threshold, and

nethet 16

columns indicating the nodes linked by the edge, the absolute partial correlation, the sign of the partial correlation, and
the group or cluster in which the edge occurred.

If the user wishes to use the Cytoscape [17] software to analyse the network further, we note that the output of
export_network can be loaded into Cytoscape, provided the option quote=FALSE is set.

Save network in CSV format suitable for Cytoscape import
#emport_network(mimglasso.clustering, file='nethet_network.csv',
p.corrs.thresh=0.25, quote=FALSE)

sessionInfo()

R version 3.2.2 (2015-08-14)

Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 14.04.3 LTS

##

locale:

[1] LC_CTYPE=en_US.UTF-8
[4] LC_COLLATE=C

[7] LC_PAPER=en_US.UTF-8
[10] LC_TELEPHONE=C

##

attached base packages:
[1] stats graphics
#it

other attached packages:
[1] mclust_5.0.2 xtable_1.7-4 mvtnorm_1.0-3 ggplot2_1.0.1 nethet_1.0.1

LC_NUMERIC=C LC_TIME=en_US.UTF-8
LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
LC_NAME=C LC_ADDRESS=C

LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

grDevices utils datasets methods base

##

loaded via a namespace (and not attached):

[1] ICSNP_1.0-9 Rcpp_0.12.0 highr_0.5 parcor_0.2-6

[5] formatR_1.2 plyr_1.8.3 ppls_1.6-1 iterators_1.0.7

[9] tools_3.2.2 digest_0.6.8 GeneNet_1.2.13 evaluate_0.7.2

[13] gtable_0.1.2 lattice_0.20-33 huge_1.2.6 Matrix_1.2-2

[17] foreach_1.4.2 igraph_1.0.1 parallel_3.2.2 CompQuadForm_1.4.1
[21] proto_0.3-10 stringr_1.0.0 knitr_1.11 ICS_1.2-4

[25] stats4_3.2.2 multtest_2.24.0 grid_3.2.2 glmnet_2.0-2

[29] Biobase_2.28.0 Epi_1.1.67 survival_2.38-3 longitudinal_1.1.12
[33] fdrtool_1.2.15 glasso_1.8 limma_3.24.15 GSA_1.03

[37] reshape2_1.4.1 corpcor_1.6.8 magrittr_1.5 splines_3.2.2

[41] BiocGenerics_0.14.0 scales_0.2.5 codetools_0.2-14 MASS_7.3-43

[45] BiocStyle_1.6.0 colorspace_1.2-6 labeling 0.3 stringi_0.5-5

[49] survey_3.30-3 network_1.12.0 munsell_0.4.2 ggm_2.3
References

[1] Adam A. Margolin, llya Nemenman, Katia Basso, Chris Wiggins, Gustavo Stolovitzky, Riccardo D. Favera, and
Andrea Califano. ARACNE: An algorithm for the reconstruction of gene regulatory networks in a mammalian cellular
context. BMC Bioinformatics, 7(Suppl 1):S7, March 2006. URL: http://www.biomedcentral.com/1471-2105/
7/S1/S7, doi:10.1186/1471-2105-7-S1-87

[2] Bayesian Networks in R - with Applications in Systems Biology. URL: http://www.springer.com/statistics/
computational+statistics/book/978-1-4614-6445-7.

[3] Michael N. C. Fletcher, Mauro A. A. Castro, Xin Wang, Ines de Santiago, Martin OReilly, Suet-Feung Chin,
Oscar M. Rueda, Carlos Caldas, Bruce A. J. Ponder, Florian Markowetz, and Kerstin B. Meyer. Master regulators

http://www.biomedcentral.com/1471-2105/7/S1/S7
http://www.biomedcentral.com/1471-2105/7/S1/S7
http://dx.doi.org/10.1186/1471-2105-7-S1-S7
http://www.springer.com/statistics/computational+statistics/book/978-1-4614-6445-7
http://www.springer.com/statistics/computational+statistics/book/978-1-4614-6445-7

nethet 17

[4]

[5]
[6]
[7]
(8]

[9]
[10]

[11]
[12]
[13]
[14]
[15]

[16]
[17]

of FGFR2 signalling and breast cancer risk. Nature Communications, 4, September 2013. URL: http://www.
nature.com/ncomms/2013/130917/ncomms3464/full/ncomms3464.html?message-global=remove, doi:10.
1038/ncomms3464.

Frank Dondelinger, Sophie Lebre, and Dirk Husmeier. Non-homogeneous dynamic Bayesian networks with Bayesian
regularization for inferring gene regulatory networks with gradually time-varying structure. Machine Learning,
90(2):191-230, February 2013. URL: http://link.springer.com/article/10.1007/s10994-012-5311-%,
d0i:10.1007/s10994-012-5311-x.

The Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Na-
ture, 490(7418):61-70, October 2012. URL: http://www.nature.com/nature/journal/v490/n7418/full/
naturel11412.html, doi:10.1038/naturel11412.

Nicolas Stadler and Sach Mukherjee. Two-sample testing in high-dimensional models. arXiv.org:1210.4584, 2013.

Nicolas Stadler and Sach Mukherjee. Multivariate gene-set testing based on graphical models. Biostatistics, doi:
10.1093/biostatistics/kxu027, 2014.

Nicolas Stadler and Sach Mukherjee. Penalized estimation in high-dimensional hidden Markov models with state-
specific graphical models. Annals of Applied Statistics, 7:2157-2179, 2013.

H. Rue and L. Held. Gaussian Markov random fields: theory and applications. CRC Press, 2005.

J. Friedman, T. Hastie, and R. Tibshirani. Sparse inverse covariance estimation with the graphical Lasso. Biostatis-
tics, 9(3):432-441, 2008.

Tuo Zhao, Han Liu, Kathryn Roeder, John Lafferty, and Larry Wasserman. The huge package for high-dimensional
undirected graph estimation in R. Journal of Machine Learning Research, 13:1059-1062, 2012.

Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Sparse inverse covariance estimation with the graphical
lasso. Biostatistics, 9(3):432—441, July 2008. URL: http://biostatistics.oxfordjournals.org/content/9/
3/432, doi:10.1093/biostatistics/kxm045.

Gideon Schwarz et al. Estimating the dimension of a model. The annals of statistics, 6(2):461-464, 1978.

Mark H Hansen and Bin Yu. Model selection and the principle of minimum description length. Journal of the
American Statistical Association, 96(454):746-774, 2001.

Carter T. Butts, Mark S. Handcock, and David R. Hunter. network: Classes for Relational Data. lrvine, CA, 2014.
R package version 1.10.2. URL: http://statnet.org/.

Hadley Wickham. ggplot2: elegant graphics for data analysis. Springer, 2009.

Paul Shannon, Andrew Markiel, Owen Ozier, Nitin S Baliga, Jonathan T Wang, Daniel Ramage, Nada Amin, Benno
Schwikowski, and Trey Ideker. Cytoscape: a software environment for integrated models of biomolecular interaction
networks. Genome research, 13(11):2498-2504, 2003.

http://www.nature.com/ncomms/2013/130917/ncomms3464/full/ncomms3464.html?message-global=remove
http://www.nature.com/ncomms/2013/130917/ncomms3464/full/ncomms3464.html?message-global=remove
http://dx.doi.org/10.1038/ncomms3464
http://dx.doi.org/10.1038/ncomms3464
http://link.springer.com/article/10.1007/s10994-012-5311-x
http://dx.doi.org/10.1007/s10994-012-5311-x
http://www.nature.com/nature/journal/v490/n7418/full/nature11412.html
http://www.nature.com/nature/journal/v490/n7418/full/nature11412.html
http://dx.doi.org/10.1038/nature11412
http://biostatistics.oxfordjournals.org/content/9/3/432
http://biostatistics.oxfordjournals.org/content/9/3/432
http://dx.doi.org/10.1093/biostatistics/kxm045
http://statnet.org/

	1 Introduction
	2 Statistical setup
	3 Package functionalities
	4 Simulate data
	5 Network estimation with known group labels
	6 High-dimensional two-sample testing
	6.1 Differential network
	6.2 Multivariate gene-set testing based on GGMs
	6.3 Differential regression

	7 Network estimation and model-based clustering with unknown group labels
	8 Plotting and exporting results
	8.1 Plotting results
	8.2 Exporting Results

