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1 The Problem

Given that the sex of many species is an easily observable and usually un-
ambiguous classification, it is surprising the number of microarray data sets in
public repositories that lack the associated sample sex information. Sex-biased
gene expression in normal and pathological tissues is a well recognized for both
sex chromosome and autosomal genes. Sex biases also exist in the prevalence
and severity of many common human diseases, such as cardiovascular disease
and some cancers. As sex is a potential influencing factor of both pathological
and non-pathological phenotypes, gene expression analyses that do not account
for sex-specific effects could fail to identify a significant proportion of genes that
contribute the condition under investigation. Therefore, the absence of sample
sex information restricts the reuse of gene expression data sets where the re-
searcher intends to factor the effect of sex in reanalysis or reinterpretation, or
when intending to include such data sets in larger gene expression meta-analyses.

This is why we developed massiR, a package for predicting the sex of sam-
ples in microarray data sets. This package allows researchers to expand their
analyses to retrospectively incorporate sex as a variable, generate or confirm sex
information associated with publicly available data sets, to accurately predict
the sex of samples missing sex information, or as a simple sanity check for your
own microarray gene expression data.

2 Importing data and beginning the analysis

The massiR analysis begins by importing standard gene expression data of
normalized and log transformed probe values. The gene expression data can be
in the form of a data.frame object and have the sample identifiers as the column
names and the probe identifiers as the row names, or as an ExpressionSet object.
The identifiers for probes corresponding to Y chromosome genes must be as a
data.frame object with the probe identifiers as row.names.

To load the included test massiR gene expression data:

> library(massiR)

> data(massi.test.dataset)

The included gene expression data is composed of 60 samples and 1026 probes
as a data.frame object.

To load the test Y chromosome probes corresponding to the included data:

> data(massi.test.probes)

The Included list of Y chromosome probes contains probe identifiers as row.names
in the data.frame class.
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3 Extracting the Y chromosome probe data

The first step of the massiR analysis involves extracting the expression values
for probes that correspond to Y chromosome genes. The user has the option of
using their own list of probes corresponding to Y chromosome genes or using the
probe lists included with the package. The included lists correspond to popular
microarray platforms and contain identifiers for probes that map uniquely to Y
chromosome genes. See section 8 for detials on using the included probes and
section 9 for details on obtaining Y chromosome probes easily from Ensembl
Biomart.

When the expression values for Y chromosome probes are extracted, the
expression variance for each probe across all samples is calculated. This allows
the identification of low variance probes, which are unlikely to be informative
in sex classification. The user has the option of selecting a probe variation
threshold, so only the most informative probes are used in the classification
process. Deciding on a probe variation threshold can be informed by inspecting
a probe variation plot (Figure 1) generated by the massi.y.plot function. In our
experience, using the most variable 25-50% of probes (typically 10-40 probes,
depending on platform) produces good results.

To extract data corresponding to Y chromosome probes from the test data
set and look at a probe variation plot:

> massi.y.out <- massi_y(massi.test.dataset, massi.test.probes)

> massi_y_plot(massi.y.out)

This plot (Figure 1) is output to the R graphics device.
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Figure 1: Expression variation (CV) of Y chromosome probes across all samples
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After viewing the probe variation plot, a decision can be made regarding
which probes to use in the clustering step. The massiR package includes methods
for selecting probe variation thresholds based on quantiles. The threshold can
be determined by quantiles of probe variance (CV): 1=All probes, 2=Upper
75%, 3=Upper 50%, 4=Upper 25%. It is highly recommended that probe CV
plot generated using the massi y plot function be inspected to inform threshold
choice (Figure 1). The default threshold value is 3.

Once a probe threshold has been decided upon, run the massi select function.
This will return a data.frame with the samples as columns and the subset of
selected y chromosome probes as row names.

> massi.select.out <-

+ massi_select(massi.test.dataset, massi.test.probes, threshold=4)

Check the output for the first 5 samples:

> head(massi.select.out)[,1:5]

S1 S2 S3 S4 S5

ILMN_1670821 5.746427 5.686032 6.307110 6.179258 6.594808

ILMN_1685690 5.459125 5.567289 6.919465 6.789817 6.559376

ILMN_1739587 5.883483 5.764190 6.441775 6.438789 6.707278

ILMN_1755537 5.882456 5.831844 8.133164 8.052959 8.298985

ILMN_1772163 5.696833 5.680091 5.907170 6.017871 6.465122

ILMN_1804958 5.815093 5.654395 5.929610 6.104089 5.868732

4 Predicting the sex of samples

To classify samples as either male or female, clustering is performed using
the values from the subset of Y chromosome probes by implementing the parti-
tioning around medoids algorithm which performs k-medoids clustering (Hennig
2013), where samples are assigned to one of two clusters. The two clusters are
then compared using the probe expression values across all samples in each
cluster. Samples within the cluster featuring the highest Y chromosome probe
values are classed as male and those within the cluster with the lowest Y probe
values classed as female. Results such sample probe mean, standard deviation
and z-scores are reported in a table together with the sex predicted for each
sample.

To predict the sex of the samples using massi cluster:

> results <- massi_cluster(massi.select.out)

Extract the results for each sample from the returned list:

> sample.results <- data.frame(results[[2]])

> head(sample.results)
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ID mean_y_probes_value y_probes_sd z_score sex

1 S1 5.911089 0.4572756 -0.6453629 female

2 S10 6.749520 0.8418586 0.7773050 male

3 S11 5.689586 0.4750484 -1.1074329 female

4 S12 6.702993 0.7894613 0.7045705 male

5 S13 5.838450 0.6759924 -0.7193198 female

6 S14 5.819845 0.6593184 -0.7524047 female

As you can see, it is a relatively straightforward procedure to produce a table
with the predicted sex of each sample with some basic metrics.

5 Visualizing the massiR analysis data

The massiR package includes a function which allows various aspects of the
data used in the analysis to be visualized. These plots enable to used to inspect
sample and clustering characteristics which could aid in identifying problematic
samples and outliers.

To run the massi.plot function with the output from the massi select and
massi cluster functions:

> massi_cluster_plot(massi.select.out, results)

This function will generate a heat map with dendrogram of Y chromosome
probes as rows and individual samples in columns (Figure 2), a bar plot of
mean values and standard deviation from the subset of Y chromosome probes
used in K-medoids clustering (Figure 3), with the bars colored with respect to
predicted sex and a principal component plot showing clusters (Figure 4). These
plots can aid the user in identifying sample outliers or probes that may not be
informative in the clustering step.
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probes. Therefore viewing the heatmap may help identify problematic probes.
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6 Check for potential sex bias using the dip test

The massiR method for predicting the sex of samples is >97% accurate for
data sets with 6 or more samples and with at least of 15% of either males or
females. Outside of this range, this method still performs well in most cases.
As there is no guarantee that publicly available data sets will fall within these
limits, the function massi.dip can be used to test if the data set might have a
male/female ratio that might affect performance.

The massiR method was tested using empirical data sets for five different human
tissues. Individual data subsets were randomly generated for each tissue data
set ranging from 6-50 samples and with a wide-range of Male/Female ratios.
The results of this testing suggest for data sets with >10 samples a dip statistic
>0.08 is indicative of at least 15% of males or females in the data set.

The massi dip function calculates z-scores for each sample and implements
the dip test to test for unimodality (Maechler 2013). As a relatively balanced
dataset would typically show a bi-modal distribution of the z-scores, the dip
statistic is then used to predict if a dataset shows a unimodal distribution that
would be expected if a vast majority of samples were of one sex.

To use massi dip function, which calculates the dip statistic using the data
output from the massi select function:

> dip.result <- massi_dip(massi.select.out)

This returns the message: dip test statistic is >0.08. This suggests that the
proportion of male and female samples in this data set is relatively balanced

Visually inspecting this distribution as a density plot (figure 5) or a his-
togram plot (figure 6) enables the user to see if there is the expected bi-modal
distribution (as there should be distinct distributions for each sex).

To produce a density plot and histogram of sample z-scores:
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> dip.result <- massi_dip(massi.select.out)

> plot(dip.result[[3]])
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Figure 5: Density plot of mean y chromosome probe z-scores
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> dip.result <- massi_dip(massi.select.out)

> hist(x=dip.result[[2]], breaks=20)
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Figure 6: Histogram of mean y chromosome probe z-scores
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If the data set was has a sex bias that may influence the accuracy of the
massiR sex prediction, then the massi dip function is likely to return a dip
statistic of <0.08. For example, if we are to use the massiR test data set to
generate a subset to 20 samples composed of 10% males, we will see that the
dip statistic returned is <0.08.

To create this female skewed bias:
get the sample id’s for the male and female samples:

> male.ids <-

+ subset(sample.results$ID,

+ subset=sample.results$sex=="male")

> female.ids <-

+ subset(sample.results$ID,

+ subset=sample.results$sex=="female")

Create a data subsest of 20 samples with 10% males:

> bias.subset.ids <- c(female.ids[1:18], male.ids[1:2])

> bias.subset <- massi.select.out[bias.subset.ids]

Use the massi.dip function to test for sex-biased data set:

> bias.dip <- massi_dip(bias.subset)

Please note that a dip >0.08 is a good indication that there is not a sex
bias present that will affect the accuracy of the massiR method. However, and
dip statistic <0.08 may still be returned for data sets with >15% males or
female or data sets that a suitable for massiR analysis, therefore the results of
the massi dip function should be interpreted with caution and in light of the
massi cluster results.

7 Performing massiR analysis with an Expres-
sionSet object

The massiR pipeline allows the input of expression data in the class Expres-
sionSet. Here is an example of how to use data in the ExpressionSet class in a
massiR analysis and how to put the results back into the ExpressionSet:

Load the example ExpressionSet data included with the massiR package:

> data(massi.eset, massi.test.probes)

Using massiR with an ExpressionSet is the same as using a data.frame as in
the above example:

> eset.select.out <-

+ massi_select(massi.eset, massi.test.probes)

> eset.results <-

+ massi_cluster(eset.select.out)
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Now to get the massi.cluster results and add them to the ExpressionSet:

> # Get the sex for each sample from the massi_cluster results

> eset.sample.results <-

+ data.frame(eset.results[[2]])

> sexData <-

+ data.frame(eset.sample.results[c("ID", "sex")])

> # Extract the order of samples in the ExpressionSet and match with results

> eset.names <-

+ colnames(exprs(massi.eset))

> # match the sample order in massiR results to the same as the ExpressionSet object

> sexData <- sexData[match(eset.names, sexData$ID),]

> # create an annotatedDataFrame to add to ExpressionSet

> pData <- new("AnnotatedDataFrame", data = sexData)

> # add the annotatedDataFrame to the Expressionset as phenoData

> phenoData(massi.eset) <- pData

Check the phenoData is in the ExpressionSet and double check that all
sample id’s from the massiR analysis match the sample identifiers in the Ex-
pressionSet.

> # check the phenodata is now within the ExpressionSet

> phenoData(massi.eset)

An object of class 'AnnotatedDataFrame'

rowNames: 1 12 ... 57 (60 total)

varLabels: ID sex

varMetadata: labelDescription

> # check that all phenodata id's match expressionSet column names.

> # This must return "TRUE"

> all(massi.eset$ID == colnames(exprs(massi.eset)))

[1] TRUE

8 Using the included massiR Y chromosome probe
lists

The massiR package includes lists of Y chromosome probes for widely used
Illumina and Affymetrix human gene expression platforms. If you wish to use
one of the included probe lists, for example the Illumina human v2 probes:

Load the massiR included probe lists:

> data(y.probes)

Check the names of the platforms for the probe lists.

> names(y.probes)
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[1] "illumina_humanwg_6_v1" "illumina_humanwg_6_v2" "illumina_humanwg_6_v1"

[4] "illumina_humanht_12" "affy_hugene_1_0_st_v1" "affy_hg_u133_plus_2"

To get probe list into format for massiR analysis:

> illumina.v2.probes <- data.frame(y.probes["illumina_humanwg_6_v2"])

The names of the probe lists correspond to Ensembl biomart attribute names.
For instructions on obtaining probe identifiers for other platforms, see the section
”Using biomaRt to obtain y chromosome probe lists”

9 Using biomaRt to obtain y chromosome probe
lists

Obtaining y chromosome probes lists for many microarray platforms is rel-
atively easy using the biomaRt package (Durinik et al. 2005 and Durinik et al.
2009). This method is recommended because Ensembl have mapped probe se-
quences to reference genomes for many platforms and this allows ambiguous and
non-specific probes to be removed. For details on probe mapping methods, see
<http://jan2013.archive.ensembl.org/info/docs/microarray_probe_set_

mapping.html>

For example, you can download the probes corresponding to the massiR test
data set and obtain the Entrez gene id and genomic positions and convert these
into a format for a massiR analysis:

Use the biomaRt package to download genomic regions and Entrez gene id’s
for Illumina v2 probes:

> library(biomaRt)

> mart <- useMart('ensembl', dataset="hsapiens_gene_ensembl")

> filters <- listFilters(mart)

> attributes <- listAttributes(mart)

> gene.attributes <-

+ getBM(mart=mart, values=TRUE,

+ filters=c("with_illumina_humanwg_6_v2"),

+ attributes= c("illumina_humanwg_6_v2", "entrezgene",

+ "chromosome_name", "start_position",

+ "end_position", "strand"))

Remove the probes mapped to multiple genomic regions:

> unique.probe <-

+ subset(gene.attributes, subset=!duplicated(gene.attributes[,1]))

Select the probes that correspond to y chromosome genes:

> y.unique <-

+ subset(unique.probe, subset=unique.probe$chromosome_name == "Y")
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Get the probe id’s as row.names in the format for massiR analysis:

> illumina.v2.probes <-

+ data.frame(row.names=y.unique$illumina_humanwg_6_v2)

This is a straightforwd way of obtaining Y chromosome probes for many
microarray platforms that is independent of platform manufacturer annotations
and is highly reccomended.
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