
An Introduction to the “genoset”Package

Peter M. Haverty

April 16, 2015

Contents

1 Introduction 2
1.1 Creating Objects . 2
1.2 Accessing Genome Information . 3
1.3 Genome Order . 5
1.4 Using the Subset Features . 5

2 Processing Data 6
2.1 Correction of Copy Number for local GC content . 6
2.2 Segmentation . 6
2.3 Segments as tables or runs . 7
2.4 Gene Level Summaries . 8

3 Plots 8

4 CNSet and BAFSet Objects 10
4.1 Processing B-Allele Frequency Data . 10
4.2 Plots . 11

5 Cross-sample summaries 11

6 Big Data and bigmemoryExtras 12

1

1 Introduction

The genoset package offers an extension of the familiar Bioconductor eSet object for genome assays: the
GenoSet class. The GenoSet class adds location meta-data to the existing feature and phenotype meta-data.
This ’locData’ allows for various queries, summaries, plots and subsetting operations by genome position.
The genoset package also provides a number of convenient functions for working with data associated with
with genome locations.

1.1 Creating Objects

In typical Bioconductor style, GenoSet objects, and derivatives, can be created using the functions with the
same name. Let’s load up some fake data to experiment with. Don’t worry too much about how the fake
data gets made. Notice how assayData elements can be matrices or DataFrames with Rle columns (from
IRanges). They can also be BigMatrix or BigMatrixFactor objects (from bigmemoryExtras).

> library(genoset)

> data(genoset)

> gs = GenoSet(locData=locData.gr, cn=fake.cn, pData=fake.pData, annotation="SNP6")

> gs

GenoSet (storageMode: lockedEnvironment)

assayData: 1000 features, 3 samples

element names: cn

protocolData: none

phenoData

sampleNames: K L M

varLabels: a b ... e (5 total)

varMetadata: labelDescription

featureData: none

experimentData: use 'experimentData(object)'

Annotation: SNP6

Feature Locations:

GRanges object with 1000 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

p1 chr8 [125000000, 125000000] *

p2 chr8 [125030000, 125030000] *

p3 chr8 [125060000, 125060000] *

p4 chr8 [125090000, 125090000] *

p5 chr8 [125120000, 125120000] *

...

p996 chr17 [35850000, 35850000] *

p997 chr17 [35880000, 35880000] *

p998 chr17 [35910000, 35910000] *

p999 chr17 [35940000, 35940000] *

p1000 chr17 [35970000, 35970000] *

seqinfo: 3 sequences from hg19 genome; no seqlengths

> rle.ds = GenoSet(locData=locData.gr,

+ cn = fake.cn,

+ cn.segments=DataFrame(

2

+ K=Rle(c(rep(1.5,300),rep(2.3,700))),L=Rle(c(rep(3.2,700),rep(2.1,300))),

+ M=Rle(rep(1.1,1000)),row.names=rownames(fake.cn)),

+ pData=fake.pData,

+ annotation="SNP6"

+)

Let’s have look at what’s inside these objects.

> names(rle.ds)

[1] "cn" "cn.segments"

> head(rle.ds[,,"cn"])

K L M

p1 0.3447339 0.054100830 0.08183075

p2 0.3514447 0.026945155 0.09475004

p3 0.4006017 -0.006892585 0.08953482

p4 0.3920756 0.036985680 0.19294156

p5 0.4085072 0.003319633 0.07288038

p6 0.3279136 -0.014489804 0.15425615

> head(rle.ds[,,"cn.segments"])

DataFrame with 6 rows and 3 columns

K L M

<Rle> <Rle> <Rle>

p1 1.5 3.2 1.1

p2 1.5 3.2 1.1

p3 1.5 3.2 1.1

p4 1.5 3.2 1.1

p5 1.5 3.2 1.1

p6 1.5 3.2 1.1

Note that names lists the data matrices.

1.2 Accessing Genome Information

Now lets look at some special functions for accessing genome information from a genoset object. These func-
tions are all defined for GenoSet , RangedData and GRanges objects. We can access per-feature information
as well as summaries of chromosome boundaries in base-pair or row-index units.

There are a number of functions for getting portions of the locData data. chr and pos return the
chromosome and position information for each feature. genoPos is like pos, but it returns the base positions
counting from the first base in the genome, with the chromosomes in order by number and then alphabetically
for the letter chromosomes. chrInfo returns the genoPos of the first and last feature on each chromosome in
addition to the offset of the first feature from the start of the genome. chrInfo results are used for drawing
chromosome boundaries on genome-scale plots. pos and genoPos are defined as the floor of the average of
each features start and end positions.

> head(locData(gs))

GRanges object with 6 ranges and 0 metadata columns:

seqnames ranges strand

3

<Rle> <IRanges> <Rle>

p1 chr8 [125000000, 125000000] *

p2 chr8 [125030000, 125030000] *

p3 chr8 [125060000, 125060000] *

p4 chr8 [125090000, 125090000] *

p5 chr8 [125120000, 125120000] *

p6 chr8 [125150000, 125150000] *

seqinfo: 3 sequences from hg19 genome; no seqlengths

> chrNames(gs)

[1] "chr8" "chr12" "chr17"

> chrOrder(c("chr12","chr12","chrX","chr8","chr7","chrY"))

[1] "chr7" "chr8" "chr12" "chr12" "chrX" "chrY"

> chrInfo(gs)

start stop offset

chr8 1 136970000 0

chr12 136970001 149937501 136970000

chr17 149937502 185907501 149937501

> chrIndices(gs)

first last offset

chr8 1 400 0

chr12 401 800 400

chr17 801 1000 800

> elementLengths(gs)

chr8 chr12 chr17

400 400 200

> head(chr(gs))

[1] "chr8" "chr8" "chr8" "chr8" "chr8" "chr8"

> head(start(gs))

[1] 125000000 125030000 125060000 125090000 125120000 125150000

> head(end(gs))

[1] 125000000 125030000 125060000 125090000 125120000 125150000

> head(pos(gs))

[1] 125000000 125030000 125060000 125090000 125120000 125150000

> head(genoPos(gs))

chr8 chr8 chr8 chr8 chr8 chr8

125000000 125030000 125060000 125090000 125120000 125150000

4

1.3 Genome Order

GenoSet , GRanges, and RangedData objects can be set to, and checked for, genome order. Weak genome
order requires that features be ordered within each chromosome. Strong genome order requires a certain
order of chromosomes as well. Features must be ordered so that features from the same chromosome are in
contiguous blocks.

Certain methods on GenoSet objects expect the rows to be in genome order. Users are free to rearrange
rows within chromosome as they please, although if the locData is a RangedData, mixing rows from different
chromosomes is not possible.

The proper order of chromosomes is desirable for full-genome plots and is specified by the chrOrder

function. The object creation method Genoset creates objects in strict genome order.

> chrOrder(chrNames(gs))

[1] "chr8" "chr12" "chr17"

> gs = toGenomeOrder(gs, strict=TRUE)

> isGenomeOrder(gs, strict=TRUE)

[1] TRUE

1.4 Using the Subset Features

GenoSet objects can be subset using array notation. The “features” index can be a set of ranges or the usual
logical, numeric or character indices. chrIndices with a chromosome argument is a convenient way to get
the indices needed to subset by chromosome.

Subset by chromosome

> chr12.ds = gs[chrIndices(gs,"chr12"),]

> dim(chr12.ds)

featureNames sampleNames

400 3

> chrIndices(chr12.ds)

first last offset

chr12 1 400 0

Subset by a collection of gene locations

> gene.gr = GRanges(ranges=IRanges(start=c(35e6,127e6),end=c(35.5e6,129e6),

+ names=c("HER2","CMYC")), seqnames=c("chr17","chr8"))

> gene.ds = gs[gene.gr,]

> dim(gene.ds)

featureNames sampleNames

84 3

> chrIndices(gene.ds)

first last offset

chr8 1 67 0

chr17 68 84 67

5

GenoSet objects can also be subset by a group of samples and/or features, just like an ExpressionSet, or
a matrix for that matter.

> dim(gs[1:4,1:2])

featureNames sampleNames

4 2

eSet-derived classes tend to have special functions to get and set specific assayDataElement members
(the big data matrices). For example, ExpressionSet has the exprs function. It is common to put other
optional matrices in assayData too (genotypes, quality scores, etc.). These can be get and set with the
assayDataElement function, but typing that out can get old. GenoSet and derived classes use the “k”
argument to the matrix subsetting bracket to subset from a specific assayDataElement. In addition to
saving some typing, you can directly use a set of ranges to subset the assayDataElement.

> all(gs[1:4,1:2,"cn"] == assayDataElement(gs,"cn")[1:4,1:2])

[1] TRUE

2 Processing Data

2.1 Correction of Copy Number for local GC content

Copy number data generally shows a GC content effect that appears as slow “waves” along the genome
(Diskin et al., NAR, 2008). The function gcCorrect can be used to remove this effect resulting in much
clearer data and more accurate segmentation. GC content is best measured as the gc content in windows
around each feature, about 2Mb in size.

> library(BSgenome.Hsapiens.UCSC.hg19)

> gc = rnorm(nrow(gs))

> gs[,,"cn"] = gcCorrect(gs[,,"cn"],gc)

2.2 Segmentation

Segmentation is the process of identifying blocks of the genome in each sample that have the same copy
number value. It is a smoothing method that attempts to replicate the biological reality where chunks of
chromosome have been deleted or amplified.

Genoset contains a convenience function for segmenting data for each sample/chr using the DNAcopy
package (the CBS algorithm). Genoset adds features to split jobs among processor cores. When the library
parallel is loaded, the argument n.cores can control the number of processor cores utilized.

Additionally, GenoSet stores segment values so that they can be accessed quickly at both the feature
and segment level. We use a DataFrame object from IRanges where each column is a Run-Length-Encoded
Rle object. This dramatically reduces the amount of memory required to store the segments. Note how the
segmented values become just another member of the assayData slot.

Try running CBS directly

> library(DNAcopy)

> cbs.cna = CNA(gs[,,"cn"], chr(gs), pos(gs))

> cbs.smoothed.CNA = smooth.CNA(cbs.cna)

> cbs.segs = segment(cbs.cna)

Analyzing: Sample.1

Analyzing: Sample.2

Analyzing: Sample.3

6

Or use the convenience function runCBS

> gs[,,"cn.segs"] = runCBS(gs[,,"cn"],locData(gs))

Working on segmentation for sample number 1 : K

Working on segmentation for sample number 2 : L

Working on segmentation for sample number 3 : M

Try it with parallel

> library(parallel)

> gs[,,"cn.segs"] = runCBS(gs[, , "cn"],locData(gs), n.cores=3)

> gs[,,"cn.segs"][1:5,1:3]

Other segmenting methods can also be used of course.
This function makes use of the parallel package to run things in parallel, so plan ahead when picking

“n.cores”. Memory usage can be a bit hard to predict.

2.3 Segments as tables or runs

Having segmented the data for each sample, you may want to explore different representations of the seg-
ments. Genoset describes data in genome segments two ways: 1) as a table of segments, and 2) a Run-
Length-Encoded vector. Tables of segments are useful for printing, overlap queries, database storage, or for
summarizing changes in a sample. Rle representations can be used like regular vectors, plotted as segments
(see genoPlot), and stored efficiently. A collection of Rle objects, one for each sample, are often stored as
one DataFrame in a GenoSet . Genoset provides functions to quickly flip back and forth between table and
Rle representations. You can use these functions on single samples, or the whole collection of samples.

> head(gs[,,"cn.segs"])

$K

numeric-Rle of length 6 with 1 run

Lengths: 6

Values : 0.4045

$L

numeric-Rle of length 6 with 1 run

Lengths: 6

Values : -0.0013

$M

numeric-Rle of length 6 with 1 run

Lengths: 6

Values : 0.1024

> segs = segTable(gs[,2,"cn.segs"], locData(gs))

> list.of.segs = segTable(gs[,,"cn.segs"], locData(gs))

> rbind.list.of.segs = segTable(gs[,,"cn.segs"], locData(gs), stack=TRUE)

> two.kinds.of.segs = segPairTable(gs[,2,"cn.segs"], gs[,3,"cn.segs"], locData(gs))

> rle = segs2Rle(segs, locData(gs))

> rle.df = segs2RleDataFrame(list.of.segs, locData(gs))

> bounds = matrix(c(1,3,4,6,7,10),ncol=2,byrow=TRUE)

> cn = c(1,3,2)

> rle = bounds2Rle(bounds, cn, 10)

7

segPairTable summarizes two Rle objects into segments that have one unique value for each Rle. This
is useful for cases where you want genome regions with one copy number state, and one LOH state, for
example.

bounds2Rle is convenient if you already know the genome feature indices corresponding to the bounds
of each segment.

Currently we use data.frames for tables of segments. In the near future these will have colnames that
will make it easy to coerce these to GRanges. Coercion to GRanges takes a while, so we don’t do that by
default.

2.4 Gene Level Summaries

Analyses usually start with SNP or probeset level data. Often it is desirable to get summaries of assayData
matrices over an arbitrary set of ranges, like exons, genes or cytobands. The function rangeSampleMeans

serves this purpose. Given a RangedData or GRanges of arbitrary genome ranges and a GenoSet object,
rangeSampleMeans will return a matrix of values with a row for each range.

rangeSampleMeans uses boundingIndicesByChr to select the features bounding each range. The bound-
ing features are the features with locations equal to or within the start and end of the range. If no feature
exactly matches an end of the range, the nearest features outside the range will be used. This bounding
ensures that the full extent of the range is accounted for, and more importantly, at least two features are
included for each gene, even if the range falls between two features.

rangeColMeans is used to do a fast average of each of a set of such bounding indices for each sample.
These functions are optimized for speed. For example, with 2.5M features and 750 samples, it takes 0.12
seconds to find the features bounded by all Entrez Genes (one RefSeq each). Calculating the mean value
for each gene and sample takes 9 seconds for a matrix of array data and 30 seconds for a DataFrame of
compressed Rle objects.

Generally, you will want to summarize segmented data and will be working with a DataFrame of Rle,
like that returned by runCBS.

As an example, let’s say you want to get the copynumber of your two favorite genes from the subsetting
example:

Get the gene-level summary:

> boundingIndicesByChr(gene.gr, locData(gs))

left right

HER2 967 985

CMYC 67 135

> rangeSampleMeans(gene.gr, gs, "cn.segs")

K L M

HER2 1.9981 -0.0481 2.9961

CMYC 1.9981 -0.0481 2.9961

3 Plots

Genoset has some handy functions for plotting data along the genome. Segmented data “knows” it should
be plotted as lines, rather than points. One often wants to plot just one chromosome, so a convenience
argument for chromosome subsetting is provided. Like plot, genoPlot plots x against y. ’x’ can be some
form of location data, like a GenoSet , RangedData, orGRanges. ’y’ is some form of data along those
coordinates, like a numeric vector or Rle. genoPlot marks chromosome boundaries and labels positions in
“bp”, “kb”, “Mb”, or “Gb” units as appropriate.

8

Figure 1: Segmented copy number across the genome for 1st sample

Figure 2: Segmented copy number across chromosome 12 for 1st sample

> genoPlot(gs, gs[, 1, "cn"])

> genoPlot(gs, gs[, 1, "cn.segs"], add=TRUE, col="red")

The result is shown in Fig. 1.

> genoPlot(gs,gs[,1,"cn"],chr="chr12")

> genoPlot(gs,gs[,1,"cn.segs"],chr="chr12",add=TRUE, col="red")

The result is shown in Fig. 2.
Plot data without a GenoSet object using numeric or Rle data:

> chr12.ds = gs[chr(gs) == "chr12",]

> genoPlot(pos(chr12.ds),chr12.ds[,1,"cn"],locs=locData(chr12.ds)) # Numeric data and location

> genoPlot(pos(chr12.ds),chr12.ds[,1,"cn.segs"],add=TRUE, col="red") # Rle data and numeric position

9

4 CNSet and BAFSet Objects

Two classes extend GenoSet : CNSet and BAFSet . CNSet is the basic copy number object. It requires that
one assayDataElement be called “cn” slot, similar to the ExpressionSet uses “exprs”. BAFSet is intended to
store “LRR” or Log-R Ratio and “BAF” or B-Allele Frequency data for SNP arrays. LRR and BAF come
from the terms coined by Illumina and are discussed in Peiffer et al., 2008. LRR copy number data, basically
log2(tumor/normal). BAF represents the fraction of signal coming from the “B” allele, relative to the “A”
allele, where A and B are arbitrarily assigned. BAF has the expected value of 0 or 1 for HOM alleles and
0.5 for HET alelles. Deviation from these expected values can be interpreted as Allelic Imbalance, which is a
sign of gain, loss, or copy-neutral LOH. BAFSets require ’lrr’ and ’baf’ matrices as assayDataElements and
have getter/setter methods for these elements.

4.1 Processing B-Allele Frequency Data

B-Allele Frequency (BAF) data can be converted into the “Modified BAF” or mBAF metric, introduced by
Staaf, et al., 2008. mBAF folds the values around the 0.5 axis and makes the HOM positions NA. The
preferred way to identify HOMs is to use genotype calls from a matched normal (AA, AC, AG, etc.), but
NA’ing greater than a certain value works OK. A hom.cutoff of 0.90 is suggested for Affymetrix arrays and
0.95 for Illumina arrays, following Staaf, et al.

Return data as a matrix:

> baf.ds = GenoSet(locData=locData.gr, lrr=fake.lrr, baf=fake.baf, pData=fake.pData, annotation="SNP6")

> baf.ds[, , "mbaf"] = baf2mbaf(baf.ds[, , "baf"], hom.cutoff = 0.90)

... or use compress it to a DataFrame of Rle. This uses 1/3 the space on our random test data.

> mbaf.data = DataFrame(sapply(colnames(baf.ds),

+ function(x) { Rle(baf.ds[,x, "mbaf"]) },

+ USE.NAMES=TRUE, simplify=FALSE))

> as.numeric(object.size(baf.ds[, ,"mbaf"])) / as.numeric(object.size(mbaf.data))

[1] 3.147408

Using the HOM SNP calls from the matched normal works much better. A matrix of genotypes can be
used to set the HOM SNPs to NA. A list of sample names matches the columns of the genotypes to the
columns of your baf matrix. The names of the list should match column names in your baf matrix and the
values of the list should match the column names in your genotype matrix. If this method is used and some
columns in your baf matrix do not have an entry in this list, then those baf columns are cleaned of HOMs
using the hom.cutoff, as above.

Both mBAF and LRR can and should be segmented. Consider storing mBAF as a DataFrame of Rle as
only the 1/1000 HET positions are being used and all those NA HOM positions will compress nicely.

> baf.ds[,,"baf.segs"] = runCBS(baf.ds[, ,"mbaf"], locData(baf.ds))

Working on segmentation for sample number 1 : K

Working on segmentation for sample number 2 : L

Working on segmentation for sample number 3 : M

> baf.ds[,,"lrr.segs"] = runCBS(baf.ds[, , "lrr"], locData(baf.ds))

Working on segmentation for sample number 1 : K

Working on segmentation for sample number 2 : L

Working on segmentation for sample number 3 : M

10

Figure 3: Segmented copy number across the genome for 1st sample

4.2 Plots

> genoPlot(baf.ds,baf.ds[,1,"lrr"],chr="chr12",main="LRR of chr12")

> genoPlot(baf.ds,baf.ds[,1,"lrr.segs"],chr="chr12",add=TRUE,col="red")

The result is shown in Fig. 3.

> par(mfrow=c(2,1))

> genoPlot(baf.ds,baf.ds[,1,"baf"],chr="chr12", main="BAF of chr12")

> genoPlot(baf.ds,baf.ds[,1,"mbaf"],chr="chr12", main="mBAF of chr12")

> genoPlot(baf.ds,baf.ds[,1,"baf.segs"],chr="chr12", add=TRUE,col="red")

The result is shown in Fig. 4.

5 Cross-sample summaries

You can quickly calculate summaries across samples to identify regions with frequent alterations. A bit more
care is necessary to work one sample at a time if your data “matrix” is a DataFrame.

> gain.list = lapply(colnames(baf.ds),

+ function(sample.name) {

+ as.logical(baf.ds[, sample.name, "lrr.segs"] > 0.3)

+ })

> gain.mat = do.call(cbind, gain.list)

> gain.freq = rowMeans(gain.mat,na.rm=TRUE)

GISTIC (by Behroukhim and Getz of the Broad Institute) is the standard method for assessing significance
of such summaries. You’ll find segTable convenient for getting your data formatted for input. I find it
convenient to load GISTIC output as a RangedData for intersection with gene locations.

11

6 Big Data and bigmemoryExtras

Genome-scale data can be huge and keeping everything in memory can get you into trouble quickly, especially
if you like using parallel ’s mclapply.

It is often convenient to use BigMatrix objects from the bigmemoryExtras package as assayDataElements,
rather than base matrices. BigMatrix is based on the bigmemory package, which provides a matrix API to
memory-mapped files of numeric data. This allows for data matrices larger than R’s maximum size with
just the tiniest footprint in RAM. The bigmemoryExtras vignette has more details about using eSet-derived
classes and BigMatrix objects.

12

Figure 4: Segmented copy number across the genome for 1st sample

13

	Introduction
	Creating Objects
	Accessing Genome Information
	Genome Order
	Using the Subset Features

	Processing Data
	Correction of Copy Number for local GC content
	Segmentation
	Segments as tables or runs
	Gene Level Summaries

	Plots
	CNSet and BAFSet Objects
	Processing B-Allele Frequency Data
	Plots

	Cross-sample summaries
	Big Data and bigmemoryExtras

