
geNetClassifier
classify multiple diseases and build associated gene

networks using gene expression profiles

Sara Aibar, Celia Fontanillo, Conrad Droste, and Javier De Las Rivas

Bioinformatics and Functional Genomics Group
Centro de Investigacion del Cancer (CiC-IBMCC, CSIC/USAL)

Salamanca - Spain

August 16, 2015

Version: 1.6

Contents

1 Introduction to geNetClassifier 2

2 Install the package and example data 4

3 Main function of the package: geNetClassifier() 5
3.1 Loading the package and data . 6
3.2 Run geNetClassifier() . 7
3.3 Overview of the data returned by geNetClassifier() 9
3.4 Return I: Genes ranking . 10

3.4.1 Significant genes . 14
3.5 Return II: Classifier . 15

3.5.1 Gene selection procedure . 16
3.5.2 Estimation of performance and generalization error procedure . . 18

3.6 Return III: Gene networks . 21

4 External validation: query with new samples of known class 24
4.1 Assignment conditions . 26

5 Sample classification: query with new samples of unknown class 28

6 Functions to plot the results 30
6.1 Plot Ranked Significant Genes: plot(...@genesRaking) 30
6.2 Plot Gene Expression Profiles: plotExpressionProfiles() 31
6.3 Plot Genes Discriminant Power: plotDiscriminantPower() 33
6.4 Plot Gene Networks: plotNetwork() . 35

1

geNetClassifier 2

1 Introduction to geNetClassifier

geNetClassifier is an algorithm designed to build transparent classifiers and the associ-
ated gene networks based on genome-wide expression data.

geNetClassifier() is also the name of the main function in the package. This function takes
as input the expressionSet or expression matrix of the studied samples and the classes
the samples belong to (i.e. the diseases or disease subtypes). Once the data are analyzed,
geNetClassifier() provides: (i) ranked gene sets (or gene signatures) that identify each
class; (ii) a multiple-class classifier; and (iii) gene networks associated to each class.

� Gene ranking: The genes, probesets, or any other variables that are input in the
expressionSet are considered features for the classification. These features are an-
alyzed by geNetClassifier, and ranked according to the class they best identify, in
order to select the optimum set for training the classifier. This ranking is returned
by geNetClassifier() as well as the parameters calculated for gene selection.

� Classifier: geNetClassifier() also returns a multi-class SVM-based classifier, which
can be queried later on; the genes (features) chosen for classification; their discrimi-
nant power (a parameter that measures the importance that the classifier internally
gives to each gene); and, optionally, the classifier’s generalization error and statistics
about the selected genes.

� Network: The mutual-information (interactions) and the co-expression (correla-
tions) between the genes are also calculated and analyzed by the algorithm. These
allow to estimate the degree of association between the variables and they are used
to generate a gene network for each class. These networks can be plotted, providing
a integrated overview of the genes that characterized each disease (i.e. each class).

Figure 1. Taking an expressionSet as input, geNetClassifier() returns a gene
signature for each class, a classifier to discriminate the classes, and gene networks
associated to each class. The package also includes several analytic and visualizing
tools to explore these results.

geNetClassifier 3

Examples of use

The algorithm shows a robust performance applied to patient-based gene expression
datasets that study disease subtypes or disease classes. In this vignette, we show its per-
formance for a leukemia dataset that includes 60 microarray samples from bone marrow
of patients with four major leukemia subtypes (ALL, AML, CLL, CML) and no-leukemia
controls (NoL). The results outperform a previously published classification analysis of
these data [1].

The method is designed to be applied to the analysis and classification of different disease
subtypes. Therefore, in the R package and this vignette, all the explanations and exam-
ples are disease-oriented. However, geNetClassifier can be applied to the classification of
any other type of biological states, pathological or not.

Methods

The algorithm geNetClassifier() integrates several existing machine learning and statis-
tical methods. The feature ranking is achieved based on a Parametric Empirical Bayes
method (PEB). Double-nested internal cross-validation (CV) [2] is used for the feature
selection process and to estimate the generalization error of the classifier. The machine
learning method implemented in the classifier is a multi-class Support Vector Machine
(SVM) [3]. The gene networks are built calculating the relations derived from gene to
gene co-expression analysis (by default, Pearson correlation) and the interactions derived
from gene mutual information analysis (using minet package) [4]. More details about
these methods are available in the appropriate sections.

Queries

geNetClassifier includes a query function that allows either validation of the classifiers
using external independent samples of known class (section 4) or classification of new
samples whose class is unknown (section 5). This function facilitates the application of
the classification algorithm as a predictor for new samples, and it is designed to resemble
expert behavior by allowing NotAssigned (NA) instances when it is not sure about the
class labelling. In order to assign a sample to a class, the algorithm requires a minimum
certainty (i.e. probability), leaving it unassigned in case it does not achieve a clear call to
a single class. These probability thresholds can be tuned to achieve a more or less strin-
gent assignment. By following this procedure, the algorithm emulates human experts in
the decision-making.

geNetClassifier 4

2 Install the package and example data

To install geNetClassifier from Bioconductor :

> source("http://bioconductor.org/biocLite.R")

> biocLite("geNetClassifier")

To follow the examples presented in this Vignette, we also need to install a sample dataset
called leukemiasEset :

> biocLite("leukemiasEset")

This dataset contains an expresssionSet built with 60 gene expression microarrays (HG-
U133 plus 2.0 from Affymetrix) hybridized with mRNA extracted from bone marrow
biopsies of patients of the 4 major types of leukemia (ALL, AML, CLL and CML) and
from non-leukemia controls (NoL). These data was produced by the Microarray Innova-
tions in LEukemia (MILE) research project [1] and are available at GEO, under accession
number GSE13159. The selected samples are labeled keeping their source GEO IDs.

To have an overview of this ExpressionSet and its available info:

> library(leukemiasEset)

> data(leukemiasEset)

> leukemiasEset

ExpressionSet (storageMode: lockedEnvironment)

assayData: 20172 features, 60 samples

element names: exprs, se.exprs

protocolData

sampleNames: GSM330151.CEL GSM330153.CEL ... GSM331677.CEL (60 total)

varLabels: ScanDate

varMetadata: labelDescription

phenoData

sampleNames: GSM330151.CEL GSM330153.CEL ... GSM331677.CEL (60 total)

varLabels: Project Tissue ... Subtype (5 total)

varMetadata: labelDescription

featureData: none

experimentData: use 'experimentData(object)'

Annotation: genemapperhgu133plus2

> summary(leukemiasEset$LeukemiaType)

ALL AML CLL CML NoL

12 12 12 12 12

> pData(leukemiasEset)

For further information/help about this ExpressionSet :

> ?leukemiasEset

geNetClassifier 5

CEL files were preprocessed using an alternative Chip Description File (CDF), which al-
lows mapping the expression directly to genes (Ensembl IDs ENSG) instead of Affymetrix
probesets. This alternative CDF, with redefines gene-based annotation files for the
Affymetrix expression microarrays, can be found in GATExplorer (a bioinformatic web
platform that integrates a gene loci browser with nucleotide level re-mapping of the oligo
probes from Affymetrix expression microarrays to genes: mRNAs and ncRNAs)[5].

To translate these Ensembl gene IDs into Gene Symbols for easier reading, the optional
argument geneLabels from geNetClassifier can be used. This option allows to extend the
annotation and labelling of the genes by providing a table that contains the gene symbol
and other characteristics of the genes in the expresssionSet. This option can be used with
any annotation (i.e. Bioconductor’s org.Hs.eg.db package) as long as it is provided in the
correct format. However, for increased consistency between versions, when using GAT-
Explorer CDF, we recomend to also use GATExplorer annotation files. Annotation files
with the Gene Symbol corresponding to each Ensembl gene ID can be found at: http://

bioinfow.dep.usal.es/xgate/mapping/mapping.php?content=annotationfiles. The one
used in this example is the Human Genes R annotation file. A subset of this file was
saved into the object geneSymbols for easier use in the examples:

> data(geneSymbols)

> head(geneSymbols)

This annotation file provides further information which can be used to filter the genes.
i.e. To consider only protein-coding genes for the construction of geNetClassifier, use the
following filter:

> load("genes-human-annotation.R")

> leukEset_protCoding <- leukemiasEset[featureNames(leukemiasEset)

+ %in% rownames(genes.human.Annotation[genes.human.Annotation$biotype

+ %in% "protein_coding",]),]

> dim(leukemiasEset)

> dim(leukEset_protCoding)

Please note that geNetClassifier is designed to work with genes. In case the expression
data is not summarized into genes (i.e. it uses the default probesets) geNetClassifier can
still be used but those probesets/features will still be called genes.

3 Main function of the package: geNetClassifier()

geNetClassifier() is the main function of the package. It builds the classifier and the
gene network associated to each class, and also returns the genes ranking and further
information about the selected genes.

The workflow internally followed by geNetClassifier() includes the following steps:

1.- Filtering data and calculating the genes ranking.
2.- Calculating correlations between genes.
3.- Calculating interactions between genes.
Optional - Filter of redundant genes from the ranking (see arguments removeCorrela-
tions and removeInteractions).

http://bioinfow.dep.usal.es/xgate/mapping/mapping.php?content=annotationfiles
http://bioinfow.dep.usal.es/xgate/mapping/mapping.php?content=annotationfiles

geNetClassifier 6

4.- Construction of the classifier: Selects of a subset of genes to train the classifier through
8-fold cross-validation. The selected genes are used to train the classifier with the com-
plete set of samples.
5.- Estimation of performance: calculates the generalization error of the classifier and
the statistics about the genes adding an 5-fold cross-validation around the construction
of the classifier (nested cross-validation).
6.- Construction of the gene networks: a gene network is built for each one of the classes
using the pairwise gene-to-gene correlations and interactions.
7.- Writing and saving the results including a series of plots for visualization.

The following sections show: how to load the package and the data (sec. 3.1); how to
run the algorithm (sec. 3.2); an overview of the results and returned data (sec. 3.3): the
genes ranking (sec. 3.4), the classifier (sec. 3.5) and the gene networks (sec. 3.6).

3.1 Loading the package and data

In order to have geNetClassifier functions available, the first step is to load the package:

> library(geNetClassifier)

To list all available tutorials for this package, or to open this Vignette you can use:

> # List available vignettes for package geNetClassifier:

> vignette(package="geNetClassifier")

> # Open vignette named "geNetClassifier-vignette":

> vignette("geNetClassifier-vignette")

To list all the available functions and objects included in geNetClassifier use the function
objects(). Typing its name with a question mark (?) before any function, will show its
help file. Through this tutorial, we will see how to use the main ones:

> objects("package:geNetClassifier")

[1] "calculateGenesRanking" "externalValidation.probMatrix"

[3] "externalValidation.stats" "gClasses"

[5] "geNetClassifier" "genesDetails"

[7] "getEdges" "getNodes"

[9] "getNumEdges" "getNumNodes"

[11] "getRanking" "getSubNetwork"

[13] "getTopRanking" "initialize"

[15] "network2txt" "numGenes"

[17] "numSignificantGenes" "overview"

[19] "plot.GeNetClassifierReturn" "plot.GenesNetwork"

[21] "plot.GenesRanking" "plotAssignments"

[23] "plotDiscriminantPower" "plotExpressionProfiles"

[25] "plotNetwork" "queryGeNetClassifier"

[27] "querySummary" "setProperties"

[29] "show"

> ?geNetClassifier

geNetClassifier 7

After the package is loaded, you can proceed to analyze your data. In this vignette we
use leukemiasEset : 60 microarrays from bone marrow from patients of the 4 major types
of leukemia (ALL, AML, CLL, CML) and from healthy non-leukemia controls (NoL).(For
installation and further information regarding leukemiasEset data package see Section 2).

> library(leukemiasEset)

> data(leukemiasEset)

In leukemiasEset there are 60 samples: 12 of each class (ALL, AML, CLL, CML and
NoL). We will select 10 samples from each class to execute geNetClassifier(), and leave
2 for external validation of the resulting classifier. In this way, it makes a total of 50
samples for the training and 10 samples for the validation.

> trainSamples <- c(1:10, 13:22, 25:34, 37:46, 49:58)

> summary(leukemiasEset$LeukemiaType[trainSamples])

ALL AML CLL CML NoL

10 10 10 10 10

3.2 Run geNetClassifier()

The essential input elements that geNetClassifier needs are:

1.- An expressionSet : R object defined in Bioconductor that contains a genome-
wide expression matrix with data for multiple samples; see ?ExpressionSet.
Note that since the ranking is built though package EBarrays, the data in
the expression set should be normalized intensity values (positive and on raw
scale, not on a logarithmic scale).

2.- The sampleLabels: a vector with the class name of each sample or the
ExpressionSet phenoData object containing this information. Note that to
run geNetClassifier it is highly recommended to have the same number of
samples in each class. A balanced number of samples allows an even ex-
ploration of each class and provides better classification.

The algorithm input also includes many other arguments that allow to personalize the
execution or modify some of the parameters internally used. All of them have a default
value and there is no need to modify them. In the following step we will see examples on
how to use the main ones. Information about them can be found using the help options
(i.e. ?geNetClassifier). This is the full list of arguments with their default values:

geNetClassifier(eset, sampleLabels, plotsName=NULL, buildClassifier=TRUE,

estimateGError=FALSE, calculateNetwork=TRUE, labelsOrder=NULL,

geneLabels=NULL, numGenesNetworkPlot=100, minGenesTrain=1,

maxGenesTrain=100, continueZeroError=FALSE, numIters=6, lpThreshold=0.95,

numDecimals=3, removeCorrelations=FALSE, correlationsThreshold=0.8,

correlationMethod="pearson", removeInteractions=FALSE, interactionsThreshold=0.5,

skipInteractions=FALSE, minProbAssignCoeff=1, minDiffAssignCoeff=0.8,

IQRfilterPercentage=0, precalcGenesNetwork=NULL, precalcGenesRanking=NULL,

returnAllGenesRanking=TRUE, verbose=TRUE)

geNetClassifier 8

The execution time will depend on the computer and the size of the dataset. To avoid
waiting now for the construction of a new classifier to continue this tutorial, a pre-executed
example is included in the package:

> data(leukemiasClassifier)

This classifier was built running the following code:

> leukemiasClassifier <- geNetClassifier(leukEset_protCoding[,trainSamples],

+ sampleLabels="LeukemiaType", plotsName="leukemiasClassifier",

+ estimateGError=TRUE, geneLabels=geneSymbols)

These are some examples of standard use:

� The fastest execution would be training the classifier exploring a reduced number of
genes (by default maxGenesTrain=100). In order ot skip calculating the network
within the genes, set calculateNetwork=FALSE. However, since the correlations are
relatively fast to calculate, we recommend keeping calculateNetwork=TRUE, and
set skipInteractions=TRUE instead.

> leukemiasClassifier <- geNetClassifier(eset=leukemiasEset[,trainSamples],

+ sampleLabels="LeukemiaType", plotsName="leukemiasClassifier",

+ skipInteractions=TRUE, maxGenesTrain=20, geneLabels=geneSymbols)

� The default execution (buildClassifier=TRUE, calculateNetwork=TRUE) only re-
quires the expressionSet and the sampleLabels. Providing plotsName is also recom-
mended in order to produce the plots:

> leukemiasClassifier <- geNetClassifier(eset=leukemiasEset[,trainSamples],

+ sampleLabels="LeukemiaType", plotsName="leukemiasClassifier")

� In order to also estimate the classifier’s performance, set estimateGError=TRUE.
This option will take longer to execute

> leukemiasClassifier <- geNetClassifier(eset=leukemiasEset[,trainSamples],

+ sampleLabels="LeukemiaType", plotsName="leukemiasClassifier",

+ estimateGError=TRUE)

Some of the parameters allow to provide extra information for an easier reading of the
results:
- labelsOrder allows to show and plot the classes in a specific order (i.e. labelsOr-
der=c(’ALL’, ’CLL’, ’AML’, ’CML’, ’NoL’))
- geneLabels can be used to add a label to the genes to show in the outputs instead of
the featureNames from the ExpressionSet.
In the example, the genes were labeled with the gene symbols provided by GATExplorer
gene-based probe mapping (geneLabels=geneSymbols), as it was indicated in section 3.1.

After running geNetClassifier(), we recommend to save the output:

> getwd()

> save(leukemiasClassifier, file="leukemiasClassifier.RData")

geNetClassifier 9

3.3 Overview of the data returned by geNetClassifier()

The main results that leukemiasClassifier() provides are: the genes ranking (sec. 3.4),
the classifier (sec.3.5) and the gene networks (sec. 3.6). All this information is returned
by geNetClassifier() in an object of class GeNetClassifierReturn. This objec tontains
several slots which can be seen with the function names():

> names(leukemiasClassifier)

[1] "call" "classifier"

[3] "classificationGenes" "generalizationError"

[5] "genesRanking" "genesRankingType"

[7] "genesNetwork" "genesNetworkType"

The slot @call contains the R sentence that was used to execute geNetClassifier(). It is
the only slot that will always be returned by geNetClassifier(), the presence and contents
of the other components returned by the algorithm will depend on the arguments used
to run it.

> leukemiasClassifier@call

geNetClassifier(eset = leukEset_protCoding[, trainSamples], sampleLabels = "LeukemiaType",

plotsName = "leukemiasClassifier", buildClassifier = TRUE,

estimateGError = TRUE, calculateNetwork = TRUE, geneLabels = geneSymbols)

All the outputs and returned components are explained in detail in the following sections:

� @genesRanking in section 3.4

� @classifier and @classificationGenes in section 3.5

� @generalizationError in section 3.5.2

� @genesNetwork in section 3.6

� The plots are explained in section 6

A general view of the output can be seen by just typing the assigned name:

> leukemiasClassifier

R object summary:

Classifier trained with 50 samples.

Total number of genes included in the classifier: 26.

Number of genes per class:

ALL AML CLL CML NoL

9 5 1 5 6

For classificationGenes details: genesDetails(EXAMPLE@classificationGenes)

Generalization error and gene stats calculated through 5-fold cross-validation:

[1] "accuracy" "sensitivitySpecificity"

[3] "confMatrix" "probMatrix"

[5] "querySummary" "classificationGenes.stats"

geNetClassifier 10

[7] "classificationGenes.num"

The ranking of all genes contains (genes per class):

ALL AML CLL CML NoL

2342 3023 2824 2539 3049

The networks calculated for the topGenes genes of each class contain:

ALL AML CLL CML NoL

Number of genes 1027 400 1916 949 400

Number of relations 1942 296 18506 6540 1993

Available slots in this R object:

[1] "call" "classifier" "classificationGenes"

[4] "generalizationError" "genesRanking" "genesRankingType"

[7] "genesNetwork" "genesNetworkType"

To see an overview of all available slots type "overview(EXAMPLE)"

3.4 Return I: Genes ranking

The first step of geNetClassifier algorithm is to determine a ranking of genes for each
class based in the analysis of the expression signal. To create this ranking, it uses the
function emfit, a Parametric Empirical Bayes method [6], included in package EBarrays
[7]. This method implements an expectation-maximization (EM) algorithm for gene ex-
pression mixture models, which compares the patterns of differential expression across
multiple conditions and provides a posterior probability.

The posterior probability is calculated for each gene-class pair, and represents how much
each gene differentiates a class from the other classes; being 1 the best value, and 0 the
worst. In this way, the posterior probability allows to find the genes that show signifi-
cant differential expression when comparing the samples of one class versus all the other
samples (One-versus-Rest comparison).

A first version of the ranking is built by ordering the genes decreasingly by their pos-
terior probability for each class. To resolve the ties, geNetClassifier uses the expression
difference between the mean for each gene in the given class and the mean in the closest
class. In addition, the genes with a posterior probability greater or equal to 0.95 for the
’no difference’ -the genes that do not show any difference between classes- are filtered out
before proceeding into further steps.

The final version of the ranking is built assigning each gene to the class in which it has the
best ranking. In this way the separation between classes is optimized, and the method
will choose first the genes that best differentiate any of the classes. As a result of this
process, even if a gene is found associated to several classes during the expression analy-
sis, each gene can only be on the ranking of one class.

Note that in case of an analysis performed for only two classes (i.e. a control vs case
study, or a comparison between two diseases), the one vs rest approach only provides
one list of genes. This list of genes, the genes that differentiate the classes, is labeled

geNetClassifier 11

BothClasses. The sign of the expression value reflects in which class it is up or down.
geNetClassifier will use the first label as reference and print a message when executed:
i.e. Expression difference calculated for AML (Reference/control: ALL). In this way, a
positive value means the mean expression value is higher in the second class (AML).

Figure 2. Scheme representing the overlap between the sets of genes that each
disease may affect. geNetClassifier explores all the genes that affect each disease
(ovals) and selects as significant, the genes that are unique (differentially expressed)
to each disease (coloured circles).

The genes ranking obtained for each class is used for the gene selection in the classifi-
cation procedure and it is also provided as an output of geNetClassifier() in the slot:
...@genesRanking.

> leukemiasClassifier@genesRanking

Top ranked genes for the classes: ALL AML CLL CML NoL

ALL AML CLL CML NoL

[1,] "VPREB1" "HOXA9" "TYMS" "GJB6" "FGF13"

[2,] "ZNF423" "MEIS1" "FCER2" "PRG3" "NMU"

[3,] "DNTT" "CD24L4" "NUCB2" "LY86" "SMPDL3A"

[4,] "EBF1" "ANGPT1" "RRAS2" "ABP1" "KLRB1"

[5,] "PXDN" "CCNA1" "PNOC" "TRIM22" "RNF182"

[6,] "S100A16" "ZNF521" "C6orf105" "NLRC3" "RFESD"

[7,] "CSRP2" "HOXA5" "RRM2" "LPXN" "SLC25A21"

[8,] "SOCS2" "DEPDC6" "KIAA0101" "GBP3" "CD160"

[9,] "CTGF" "NKX2-3" "UHRF1" "TNS3" "CLIC2"

[10,] "COL5A1" "NPTX2" "ABCA6" "ZC3H12D" "TMEM56"

...

Number of ranked significant genes (posterior probability over threshold):

ALL AML CLL CML NoL

799 213 1579 658 154

geNetClassifier 12

To see the whole ranking (3049 rows) use: getRanking(...)

Details of the top X ranked genes of each class: genesDetails(..., nGenes=X)

This ranking an object of class GenesRanking. This class provides some utility functions
which will help working with the information contained in the object. The total number
of genes in the ranking for each class can be queried using the function numGenes().
These numbers include all the genes that have some ability to distinguish between classes,
although only the top ones are really significant.

> numGenes(leukemiasClassifier@genesRanking)

ALL AML CLL CML NoL

2342 3023 2824 2539 3049

With getTopRanking() a subset of the ranking containing only the given number of top
genes can be obtained. Since the returned object is also a GenesRanking object, no
information is lost and other functions (i.e. genesDetails()) can be used afterwards.

> subRanking <- getTopRanking(leukemiasClassifier@genesRanking, 10)

In order to retrieve the whole ranking in the form of a matrix (i.e. to print the full version
or get a subset of it), the function getRanking() can be used. This function provides the
option to show the ranking with the gene IDs or the gene Labels.

> getRanking(subRanking)

$geneLabels

ALL AML CLL CML NoL

[1,] "VPREB1" "HOXA9" "TYMS" "GJB6" "FGF13"

[2,] "ZNF423" "MEIS1" "FCER2" "PRG3" "NMU"

[3,] "DNTT" "CD24L4" "NUCB2" "LY86" "SMPDL3A"

[4,] "EBF1" "ANGPT1" "RRAS2" "ABP1" "KLRB1"

[5,] "PXDN" "CCNA1" "PNOC" "TRIM22" "RNF182"

[6,] "S100A16" "ZNF521" "C6orf105" "NLRC3" "RFESD"

[7,] "CSRP2" "HOXA5" "RRM2" "LPXN" "SLC25A21"

[8,] "SOCS2" "DEPDC6" "KIAA0101" "GBP3" "CD160"

[9,] "CTGF" "NKX2-3" "UHRF1" "TNS3" "CLIC2"

[10,] "COL5A1" "NPTX2" "ABCA6" "ZC3H12D" "TMEM56"

> getRanking(subRanking, showGeneID=TRUE)$geneID[,1:4]

ALL AML CLL CML

[1,] "ENSG00000169575" "ENSG00000078399" "ENSG00000176890" "ENSG00000121742"

[2,] "ENSG00000102935" "ENSG00000143995" "ENSG00000104921" "ENSG00000156575"

[3,] "ENSG00000107447" "ENSG00000185275" "ENSG00000070081" "ENSG00000112799"

[4,] "ENSG00000164330" "ENSG00000154188" "ENSG00000133818" "ENSG00000002726"

[5,] "ENSG00000130508" "ENSG00000133101" "ENSG00000168081" "ENSG00000132274"

[6,] "ENSG00000188643" "ENSG00000198795" "ENSG00000111863" "ENSG00000167984"

[7,] "ENSG00000175183" "ENSG00000106004" "ENSG00000171848" "ENSG00000110031"

[8,] "ENSG00000120833" "ENSG00000155792" "ENSG00000166803" "ENSG00000117226"

[9,] "ENSG00000118523" "ENSG00000119919" "ENSG00000034063" "ENSG00000136205"

[10,] "ENSG00000130635" "ENSG00000106236" "ENSG00000154262" "ENSG00000178199"

geNetClassifier 13

The function genesDetails() allows to show all the available info of the genes in the
ranking.

> genesDetails(subRanking)$AML

GeneName ranking class postProb exprsMeanDiff exprsUpDw

ENSG00000078399 HOXA9 1 AML 1 4.4362 UP

ENSG00000143995 MEIS1 2 AML 1 3.2785 UP

ENSG00000185275 CD24L4 3 AML 1 -4.4926 DOWN

ENSG00000154188 ANGPT1 4 AML 1 2.7427 UP

ENSG00000133101 CCNA1 5 AML 1 2.5558 UP

ENSG00000198795 ZNF521 6 AML 1 2.5697 UP

ENSG00000106004 HOXA5 7 AML 1 3.1729 UP

ENSG00000155792 DEPDC6 8 AML 1 2.4803 UP

ENSG00000119919 NKX2-3 9 AML 1 2.1962 UP

ENSG00000106236 NPTX2 10 AML 1 2.0582 UP

isRedundant

ENSG00000078399 FALSE

ENSG00000143995 TRUE

ENSG00000185275 FALSE

ENSG00000154188 FALSE

ENSG00000133101 FALSE

ENSG00000198795 TRUE

ENSG00000106004 TRUE

ENSG00000155792 TRUE

ENSG00000119919 FALSE

ENSG00000106236 FALSE

NOTE: If the console splits the table into several lines, try:

> options(width=200)

By default, the rownames are the ID included in the expressionSet : in our case the EN-
SEMBL IDs. The GeneName column has been added by setting the argument geneLa-
bels=geneSymbols (see sec. 3.2).

To see the description of the content of this table write: ?genesDetails.

More details about GenesRanking class is available at: ?GenesRanking.

geNetClassifier 14

3.4.1 Significant genes

The set of genes considered significant for each of the classes is determined by a com-
mon threshold for the posterior probability (by default lpThreshold=0.95). This common
threshold provides a way to quantify the size of the gene signature assigned to each dis-
ease (as always: compared to the other diseases in the study). In this way, the algorithm
provides a framework to compare biological states, i.e. the biological or pathological con-
ditions represented in the samples.

plotSignificantGenes() provides a plot of the distribution of the posterior probabilities of
the genes within the rankings for each class:

0 500 1000 1500 20 00

0
0.

2
0.

4
0.

6
0.

8
1.

0

Gene Rank

P
os

te
rio

r P
ro

ba
bi

lit
y

Significant genes in Leukemia

Threshold=0.75

ALL (1027 genes)
AML (273 genes)
CLL (1916 genes)
CML (949 genes)

Figure 3. Plot of the posterior probabilities of the genes of 4 leukemia classes,
ordering the genes according to their rank.

This example shows the big differences in size of the gene sets assigned to a disease: at
lpThreshold 0.95 CLL has been assigned 2028 genes, while AML only 308 genes. The
biological interpretation of this observation will depend on the specific study. Larger gene
signatures may be an indication of more systemic diseases (i.e. a disease affect more genes
than another), but it may also be an indication of the relative differences between the
diseases in the study (i.e. one of the diseases affects different genes than the others). In
any case, the results provided by geNetClassifier may help to unravel disease sub-types
differences based on the gene signatures.

numSignificantGenes() provides the number of significant genes, the number of genes
with posterior probability over the threshold:

> numSignificantGenes(leukemiasClassifier@genesRanking)

ALL AML CLL CML NoL

799 213 1579 658 154

geNetClassifier 15

The plot of the posterior probability (plotSignificantGenes()) is the default plot for objects
of class GenesRanking. (More details in section 6.1).

> plot(leukemiasClassifier@genesRanking)

In both functions, the threshold can be modified through lpThreshold :

> plot(leukemiasClassifier@genesRanking,

+ numGenesPlot=3000, lpThreshold=0.80)

3.5 Return II: Classifier

The information regarding the classifier is saved into the slots: @classifier, @classifcation-
Genes and @generalizationError.

The @classifier slot contains the SVM classifier that can later be used to make queries.
The SVM method included in the algorithm is a linear kernel implementation from R
package e1071. This implementation allows multi-class classification by using a One-
versus-One (OvO) approach, in which all the binary classifications are fitted and the
correct class is found based on a voting system.

> leukemiasClassifier@classifier

$SVMclassifier

Call:

svm.default(x = t(esetFilteredDataFrame[buildGenesVector, trainSamples]),

y = sampleLabels[trainSamples], kernel = "linear", probability = T,

C = 1)

Parameters:

SVM-Type: C-classification

SVM-Kernel: linear

cost: 1

gamma: 0.03846154

Number of Support Vectors: 29

@classificationGenes contains the final genes selected to build the classifier. Since
@classificationGenes is an object of class GenesRanking, functions such as numGenes()
or genesDetails() can be used to explore it.

> leukemiasClassifier@classificationGenes

Top ranked genes for the classes: ALL AML CLL CML NoL

ALL AML CLL CML NoL

[1,] "VPREB1" "HOXA9" "TYMS" "GJB6" "FGF13"

[2,] "ZNF423" "MEIS1" NA "PRG3" "NMU"

[3,] "DNTT" "CD24L4" NA "LY86" "SMPDL3A"

[4,] "EBF1" "ANGPT1" NA "ABP1" "KLRB1"

geNetClassifier 16

[5,] "PXDN" "CCNA1" NA "TRIM22" "RNF182"

[6,] "S100A16" NA NA NA "RFESD"

[7,] "CSRP2" NA NA NA NA

[8,] "SOCS2" NA NA NA NA

[9,] "CTGF" NA NA NA NA

Details of the top X ranked genes of each class: genesDetails(..., nGenes=X)

> numGenes(leukemiasClassifier@classificationGenes)

ALL AML CLL CML NoL

9 5 1 5 6

> genesDetails(leukemiasClassifier@classificationGenes)$ALL

GeneName ranking gERankMean class postProb exprsMeanDiff

ENSG00000169575 VPREB1 1 1.0 ALL 1 6.3307

ENSG00000102935 ZNF423 2 3.0 ALL 1 5.0980

ENSG00000107447 DNTT 3 2.8 ALL 1 6.8948

ENSG00000164330 EBF1 4 3.8 ALL 1 5.4171

ENSG00000130508 PXDN 5 5.2 ALL 1 5.0387

ENSG00000188643 S100A16 6 5.4 ALL 1 4.3434

ENSG00000175183 CSRP2 7 7.8 ALL 1 4.0479

ENSG00000120833 SOCS2 8 10.8 ALL 1 4.5383

ENSG00000118523 CTGF 9 14.8 ALL 1 3.6167

exprsUpDw discriminantPower discrPwClass isRedundant

ENSG00000169575 UP 9.416945 ALL FALSE

ENSG00000102935 UP 13.240579 ALL TRUE

ENSG00000107447 UP 8.978735 ALL TRUE

ENSG00000164330 UP 10.515557 ALL TRUE

ENSG00000130508 UP 8.657167 ALL TRUE

ENSG00000188643 UP 12.385161 ALL TRUE

ENSG00000175183 UP 8.782649 ALL TRUE

ENSG00000120833 UP 8.697958 ALL FALSE

ENSG00000118523 UP 5.551344 ALL FALSE

Note that besides the common information about the genes provided by the genes ranking
(sec. 3.4), the classification genes also have information about the discriminant power
of the genes (sec. 6.3).

For details on the gene selection procedure (sec. 3.5.1) and the estimation of performance
and generalization error procedure (slot @generalization) (sec. 3.5.2), see the next two
sections.

3.5.1 Gene selection procedure

The optimum number of genes to train the classifier is selected by evaluating the clas-
sifiers trained with increasing number of genes. This is done using several iterations of
8-fold cross-validation. Each cross-validation iteration starts with the first ranked gene of
each class: it trains an internal classifier with these genes, and evaluates its performance.

geNetClassifier 17

One more gene is added in each step to those classes for which a ’perfect prediction’ is not
achieved (i.e. not all samples correctly identified). The genes are taken in order from the
genes ranking of each class until any of the classes reaches gets to the maximum number of
genes (maxGenesTrain=100) or until zero error is reached (continueZeroError=FALSE).
The error for each of the classifiers and the number of genes used to construct them are
saved. Once the cross-validation loop is finished, it saves the minimum number of genes
per class which produced the classifier with minimum error.

To achieve the best stability in the number of selected genes, the cross-validation is
not run just once, but it is repeated several times with new samplings. This process is
repeated as many times as indicated by the optional parameter numIters (6 by default).
In each of these iterations, the minor number of genes that provided the smallest error is
selected.

Gene selection iterations−

Total number of genes

E
rr

or
 r

at
e

0 10 20 30 40

0.
00

0.
05

0.
10

0.
15

0.
20

Error 0: 23 genes
Error 0: 18 genes
Error 0: 25 genes
Error 0: 26 genes
Error 0: 25 genes
Error 0: 25 genes

Figure 4. Plot of the gene-selection iterations. Each line represents an iteration
and the error rates observed for each number of genes (starting at 5, one per
class). The algorithm runs until exploring a maximum number of genes in any class
(maxGeneTrain=100) or until zero error is reached (continueZeroError=FALSE).
In each iteration the minimum number of genes with minimum error is selected.

geNetClassifier 18

The final selection is done based on the genes selected in each of the iterations. For each
class, the top ranked genes are selected by taking the highest number of genes –excluding
outliers– selected in the cross-validaton iterations. This allows to identify a stable number
of genes, while accounting for the diffences in sampling.

ALL AML CLL CML NoL

Number of genes selected in each iteration

Total number of selected genes: 26
Classes

N
um

be
r

of
 g

en
es

0
2

4
6

8

ALL AML CLL CML NoL

0
2

4
6

8

Figure 5. Plot of the number of genes selected in each iteration. The bars
represent the number of genes with minimum error rates in each iteration. Each
color represents an iteration. The filled bar is the final number of genes of each
class selected to train the classifier.

Figures 4 and 5 show the gene selection for the leukemia’s example.

3.5.2 Estimation of performance and generalization error procedure

The estimation of the generalization error (GE) of the classification algorithm is an option
that can be included using the parameter estimateGError=TRUE. When this option is
chosen, an independent validation is simulated by adding a second loop of cross-validation
(CV) around the construction of the classifier. In each iteration of this loop, a few sam-
ples are left out of the training and used as test samples. This step allows to estimate

geNetClassifier 19

and provide statistics and metrics regarding the quality of the classifier and the genes
selected for classification. The parameters measured for the classifier are the following:

- Sensitivity: Proportion of samples from a given class which were correctly identified.
In statistical terms it is the rate of true positives (TP). Sensitivity relates to the ability
of the test to identify positive results.

Sensitivity =
TP

TP + FN
= TruePositiveRate

- Specificity: Proportion of samples assigned to a given class which really belonged to
the class. In statistical terms it is the rate of true negatives (TN). Specificity relates to
the ability of the test to identify negative results.

Specificity =
TN

TN + FP
= TrueNegativeRate

Note: In order to truly evaluate the classification, both sensitivity and specificity need
to be taken into account. For example, 100% sensitivity for AML will be achieved by
assigning all AML samples to AML. In the same way, 100% specificity will be achieved by
not assigning any sample from other class to AML. Therefore, the classification will only
be reliable if both -sensitivity and specificity- are optimized, by identifying all samples
from one class while not having samples from another classes miss-classified.

- Matthews Correlation Coefficient (MCC): It is a measure which takes into account
both true and false positives and negatives. It is generally regarded as a balanced mea-
sure of performance. In machine learning it is used as a measure of the quality of binary
classifications.

MCC =
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)

- Global Accuracy: Proportion of true results within the assigned samples.

- Call Rate per class and Global Call Rate: Proportion of assigned samples within
a class or in the whole prediction.

CallRate =
Assigned

Assigned + NotAssigned

The results about the estimation of performance and the generalization error are saved
in the slot: @generalizationError

> leukemiasClassifier@generalizationError

Estimated accuracy, sensitivity and specificity for the classifier:

Accuracy CallRate

Global 100 90

Sensitivity Specificity MCC CallRate

ALL 100 100 100 90

AML 100 100 100 70

geNetClassifier 20

CLL 100 100 100 100

CML 100 100 100 100

NoL 100 100 100 90

To see all available statistics type "overview(EXAMPLE@generalizationError)"

To see all the available info gathered during estimation of performance use the overview()
function:

> overview(leukemiasClassifier@generalizationError)

This object contains all the information regarding estimation of performance in different
slots: @accuracy, @sensitivitySpecificity, @confMatrix, @probMatrix, @querySummary.

The slot ...@confMatrix contains the confusion matrix. A confusion matrix is a table used
to quickly visualize and evaluate the performance of a classification algorithm. The rows
represent the real class of the samples, while the columns represent the class to which the
samples were assigned. Therefore, the correctly assigned samples are in the diagonal.

> leukemiasClassifier@generalizationError@confMatrix

prediction

testLabels ALL AML CLL CML NoL NotAssigned

ALL 9 0 0 0 0 1

AML 0 7 0 0 0 3

CLL 0 0 10 0 0 0

CML 0 0 0 10 0 0

NoL 0 0 0 0 9 1

The slot ...@probMatrix presents the probabilities of assignment to each class that are
calculated during the 5-fold cross-validation. This probability matrix provides a good
estimation of how easy or difficult is to assign each sample to its class. It also provides
an indication about the likelihood to confuse one class with others:

> leukemiasClassifier@generalizationError@probMatrix

ALL AML CLL CML NoL

ALL 0.697 0.060 0.073 0.067 0.102

AML 0.058 0.770 0.083 0.044 0.045

CLL 0.088 0.094 0.673 0.064 0.080

CML 0.055 0.107 0.064 0.633 0.141

NoL 0.073 0.072 0.055 0.145 0.654

The slot ...@classificationGenes.stats includes calculations about the number of times
that each gene was selected for classification in the 5-fold cross-validation executions:
- timesChosen, number of times that each gene is chosen for classification in the 5 CV.
- chosenRankMean, average rank of the gene only within the CV loops in which the gene
was chosen for classification.
- chosenRankSD, standard deviation of the gene rank only within the CV loops in which
the gene was chosen for classification.
- geRankMean, average rank of the gene in the 5 CV loops performed during the gener-
alization error estimation.
- geRankSD, standard deviation of the rank of the gene in the 5 CV loops performed
during the generalization error estimation.

geNetClassifier 21

> leukemiasClassifier@generalizationError@classificationGenes.stats$CLL

timesChosen chosenRankMean chosenRankSD gERankMean gERankSD

ENSG00000176890 4 1.25 0.50 1.8 1.30

ENSG00000070081 2 1.50 0.71 2.4 0.89

ENSG00000104921 1 1.00 0.00 2.8 1.48

The slot ...@classificationGenes.num includes calculations about the number of genes
selected for each class in the 5 runs of the 5-fold cross-validation applied for the estimation
of performance. These numbers allow to explore the number of genes that are used per
class. However, the proper calculation of the final number of genes selected for each
class in the classifier is done with the other 8-fold cross-validation which includes all the
available samples (as indicated in section 3.5.1).

> leukemiasClassifier@generalizationError@classificationGenes.num

ALL AML CLL CML NoL

CV 1: 6 7 1 3 10

CV 2: 3 2 1 8 6

CV 3: 9 2 2 6 5

CV 4: 2 16 2 9 16

CV 5: 3 5 1 8 10

3.6 Return III: Gene networks

Together to the classifier and the genes ranking, the third major result that the algorithm
geNetClassifier produces are the gene networks associated to each class.

The gene networks for each class are built based on association parameters between genes.
These association parameters are gene to gene co-expression calculated using a correla-
tion coefficient (Pearson by default) and gene to gene interactions derived from mutual
information (MI) analysis (mi.empirical entropy estimator from the R package minet
[4]); both calculated along all the samples of each class of the studied dataset.

The correlations and interactions also allow to find possible redundancy between the
genes as features in the classification procedure. Such redundancy can be tested by pro-
ducing comparative classifiers that include or not the associated genes. Usually, classifiers
without redundant genes need less features for classification.

The ...@genesNetwork slot contains the list of networks.

> leukemiasClassifier@genesNetwork

$ALL

Attribute summary of the GenesNetwork:

Number of nodes (genes): [1] 1027

Number of edges (relationships): [1] 1942

$AML

Attribute summary of the GenesNetwork:

geNetClassifier 22

Number of nodes (genes): [1] 400

Number of edges (relationships): [1] 296

$CLL

Attribute summary of the GenesNetwork:

Number of nodes (genes): [1] 1916

Number of edges (relationships): [1] 18506

$CML

Attribute summary of the GenesNetwork:

Number of nodes (genes): [1] 949

Number of edges (relationships): [1] 6540

$NoL

Attribute summary of the GenesNetwork:

Number of nodes (genes): [1] 400

Number of edges (relationships): [1] 1993

> overview(leukemiasClassifier@genesNetwork$AML)

getNodes(...)[1:10]:

[1] "ENSG00000078399" "ENSG00000143995" "ENSG00000185275" "ENSG00000154188"

[5] "ENSG00000133101" "ENSG00000198795" "ENSG00000106004" "ENSG00000155792"

[9] "ENSG00000119919" "ENSG00000106236"

... (400 nodes)

getEdges(...)[1:5,]:

gene1 class1 gene2 class2 relation

[1,] "ENSG00000078399" "AML" "ENSG00000143995" "AML" "Correlation - pearson"

[2,] "ENSG00000154188" "AML" "ENSG00000198795" "AML" "Correlation - pearson"

[3,] "ENSG00000078399" "AML" "ENSG00000106004" "AML" "Correlation - pearson"

[4,] "ENSG00000154188" "AML" "ENSG00000155792" "AML" "Correlation - pearson"

[5,] "ENSG00000119919" "AML" "ENSG00000108511" "AML" "Correlation - pearson"

value

[1,] "0.922460476283629"

[2,] "0.804443836092871"

[3,] "0.836149615702043"

[4,] "0.815177435058601"

[5,] "0.940367679337551"

... (296 edges)

Each of the networks in this list is an object of the class GenesNetwork. This class offers
some functions to retrieve and count the edges and nodes, and also to subset the network
(getSubNetwork()). Note that getNodes() includes all possible nodes even if they are no
linked by edges.

> getNumEdges(leukemiasClassifier@genesNetwork$AML)

[1] 296

geNetClassifier 23

> getNumNodes(leukemiasClassifier@genesNetwork$AML)

[1] 400

> getEdges(leukemiasClassifier@genesNetwork$AML)[1:5,]

gene1 class1 gene2 class2 relation

[1,] "ENSG00000078399" "AML" "ENSG00000143995" "AML" "Correlation - pearson"

[2,] "ENSG00000154188" "AML" "ENSG00000198795" "AML" "Correlation - pearson"

[3,] "ENSG00000078399" "AML" "ENSG00000106004" "AML" "Correlation - pearson"

[4,] "ENSG00000154188" "AML" "ENSG00000155792" "AML" "Correlation - pearson"

[5,] "ENSG00000119919" "AML" "ENSG00000108511" "AML" "Correlation - pearson"

value

[1,] "0.922460476283629"

[2,] "0.804443836092871"

[3,] "0.836149615702043"

[4,] "0.815177435058601"

[5,] "0.940367679337551"

> getNodes(leukemiasClassifier@genesNetwork$AML)[1:12]

[1] "ENSG00000078399" "ENSG00000143995" "ENSG00000185275" "ENSG00000154188"

[5] "ENSG00000133101" "ENSG00000198795" "ENSG00000106004" "ENSG00000155792"

[9] "ENSG00000119919" "ENSG00000106236" "ENSG00000148154" "ENSG00000108511"

The function network2txt() allows to save or export the networks as text files. This
function produces two text files: one with the information about the nodes and another
with the information about the edges. They are flat text files (.txt). In the case of the
edges file, it includes the nodes that interact (gene1 – gene2), the type of link (correlation
or interaction) and the value of such relation.

> network2txt(leukemiasClassifier@genesNetwork, filePrefix="leukemiasNetwork")

To produce just the files with the information about the edges :

> geneNtwsInfo <- lapply(leukemiasClassifier@genesNetwork,

+ function(x) write.table(getEdges(x),

+ file=paste("leukemiaNtw_",getEdges(x)[1,"class1"],".txt",sep="")))

These flat text files allow to export the networks to external software (e.g. Cytoscape,
http://www.cytoscape.org).

The networks can also be exported using direct R connectors (e.g. RCytoscape) with the
igraph objects returned by the function plotNetwork (sec. 6.4).

For more information see the class help ?GenesNetwork.

geNetClassifier 24

4 External validation: query with new samples of

known class

Once a classifier is built for a group of diseases or disease subtypes, it can be queried
with new samples to know their class. However, before proceeding with samples whose
class is unknown, an external validation is normally performed. An external validation
consists on querying the classifier with several samples whose class is a priori known, in
order to see if the classification is done correctly. As indicated in section 3.5.2, if the
number of known samples is limited (as it is usually the case) to avoid leaving a sub-set
of known samples out of the training, geNetClassifier() provides the generalization error
option, which will simulate an external validation by using cross-validation. Despite this
possibility, it is clear that using external samples (totally independent to the classifier
built) is the best option to validate its performance.

In this section, we will proceed with an example of external validation with the leukemia’s
classifier. In leukemiasEset, the class of all the available samples is known a priori. Since
we had 60 samples in the initial leukemia dataset and only 50 were used to train the
classifier, the 10 remaining can be used for external validation.

The first step is to select the 10 samples that were not used for training:

> testSamples <- c(1:60)[-trainSamples]

> testSamples

[1] 11 12 23 24 35 36 47 48 59 60

The classifier is then be asked about the class of these 10 samples using queryGeNetClas-
sifier():

> queryResult <- queryGeNetClassifier(leukemiasClassifier,

+ leukemiasEset[,testSamples])

This query will return the class that each sample has been assigned to, which will be
saved into $class. It also returns the probabilities of assignment of each sample to each
class in $probabilities.

> queryResult$class

GSM330195.CEL GSM330201.CEL GSM330611.CEL GSM330612.CEL GSM331037.CEL

ALL ALL AML AML CLL

GSM331048.CEL GSM331392.CEL GSM331393.CEL GSM331675.CEL GSM331677.CEL

CLL CML CML NoL NoL

Levels: ALL AML CLL CML NoL

> queryResult$probabilities

GSM330195.CEL GSM330201.CEL GSM330611.CEL GSM330612.CEL GSM331037.CEL

ALL 0.82480476 0.72132949 0.04584317 0.03853380 0.04233982

AML 0.04145204 0.05669690 0.68053161 0.84706650 0.09093176

CLL 0.02591494 0.03200663 0.09622283 0.02028114 0.75041107

CML 0.04409894 0.08325862 0.08198307 0.07359096 0.04732196

geNetClassifier 25

NoL 0.06372931 0.10670835 0.09541932 0.02052760 0.06899539

GSM331048.CEL GSM331392.CEL GSM331393.CEL GSM331675.CEL GSM331677.CEL

ALL 0.04115917 0.04569346 0.02645151 0.05492039 0.02213885

AML 0.09742257 0.17443163 0.02549073 0.05510842 0.04907441

CLL 0.71914364 0.13181179 0.03923288 0.09748276 0.01016039

CML 0.07715866 0.56354463 0.87901701 0.04714128 0.03225649

NoL 0.06511596 0.08451848 0.02980787 0.74534715 0.88636986

Since the real class of the samples is known, we can create a confusion matrix. Note: For
using this matrix as input in upcoming functions the real classes should be placed as row
names (rownames) and the predicted classes (assigned by the classifier) as column names
(colnames).

> confusionMatrix <- table(leukemiasEset[,testSamples]$LeukemiaType,

+ queryResult$class)

Once we have executed the query, externalValidation.stats() can be used to calculate the
parameters to evaluate the classifier (Section 3.5.2).

> externalValidation.stats(confusionMatrix)

$byClass

Sensitivity Specificity MCC CallRate

ALL 100 100 100 100

AML 100 100 100 100

CLL 100 100 100 100

CML 100 100 100 100

NoL 100 100 100 100

$global

Accuracy CallRate

Global 100 100

$confMatrix

ALL AML CLL CML NoL NotAssigned

ALL 2 0 0 0 0 0

AML 0 2 0 0 0 0

CLL 0 0 2 0 0 0

CML 0 0 0 2 0 0

NoL 0 0 0 0 2 0

The class to class assignment probability matrix, that gives support to the confusion
matrix, can be also created for the external validation analysis:

> externalValidation.probMatrix(queryResult,

+ leukemiasEset[,testSamples]$LeukemiaType, numDecimals=3)

ALL AML CLL CML NoL

ALL 0.773 0.049 0.029 0.064 0.085

AML 0.042 0.764 0.058 0.078 0.058

CLL 0.042 0.094 0.735 0.062 0.067

CML 0.036 0.100 0.086 0.721 0.057

NoL 0.039 0.052 0.054 0.040 0.816

geNetClassifier 26

4.1 Assignment conditions

queryGeNetClassifier() includes an expert-like approach to decide if a sample is assigned
to a class: instead of directly assigning a sample to the class with the highest probability,
it takes into account the probability of belonging to the class and the probability of the
closest class before taking the final decision.

By default, the probability to assign a sample to a given class should be at least double
than the random probability, and the difference with the next likely class should also be
higher than 0.8 times the random probability. For example, to assign a sample in a 5
class classifier, the highest probability should be at least 40% (2 x 0.20 = 0.40) and the
probability of belonging to the closest class should be at least 16% lower than the highest
(0.8 x 0.20 = 0.16). This implies that if a sample’s probability to belong to one class is
55% and to belong to another class is 40%, since the the difference is lower than 16%,
it is not clear enough, and it will be left as a NotAssigned (NA). This feature allows
modulation of the assignment to resembles expert decision-making.

To allow adapting these conditions, queryGeNetClassifier() includes two coefficients that
determine the minimum probability for assignment (minProbAssignCoeff), and the min-
imum difference between the of the first and the second classes (minDiffAssignCoeff). If
these two coefficients are set up to 0 all samples will be assigned to the most likely class
and therefore no samples will be left as NotAssigned.

> queryResult_AssignAll <- queryGeNetClassifier(leukemiasClassifier,

+ leukemiasEset[,testSamples], minProbAssignCoeff=0, minDiffAssignCoeff=0)

> which(queryResult_AssignAll$class=="NotAssigned")

integer(0)

On the contrary, the thresholds can be raised to increase the the certainty of the as-
signments: i.e. by setting the coefficients to 1.5 and 1, the minimum probability to be
assigned is 0.6 (1.5 x 2 x 0.20) and the minimum difference between first and second class
probabilities is 0.2 (1 x 0.20).

> queryResult_AssignLess <- queryGeNetClassifier(leukemiasClassifier,

+ leukemiasEset[,testSamples], minProbAssignCoeff=1.5, minDiffAssignCoeff=1)

> queryResult_AssignLess$class

GSM330195.CEL GSM330201.CEL GSM330611.CEL GSM330612.CEL GSM331037.CEL

ALL ALL AML AML CLL

GSM331048.CEL GSM331392.CEL GSM331393.CEL GSM331675.CEL GSM331677.CEL

CLL NotAssigned CML NoL NoL

Levels: ALL AML CLL CML NoL NotAssigned

In this case, these samples were left as NotAssigned :

> t(queryResult_AssignLess$probabilities[,

+ queryResult_AssignLess$class=="NotAssigned", drop=FALSE])

ALL AML CLL CML NoL

GSM331392.CEL 0.04569346 0.1744316 0.1318118 0.5635446 0.08451848

geNetClassifier 27

To help understanding how these thresholds behave for a specific dataset, if geNetClassi-
fier() is executed with estimateGError=TRUE, it generates a plot presenting the assign-
ment probabilities for each sample. This plot shows the probability of the most likely
class versus the probability difference with next likely class for each sample. Therefore, it
allows to view the effects of the 2 coefficients (minProbAssignCoeff and minDiffAssign-
Coeff) in the assignment.

0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Thresholds to assign query samples

Probability of the most likely class

D
iff

e
re

n
ce

 w
ith

 n
e

xt
 c

la
ss

AssignedNot Assigned

m
in

P
ro

b

minDiff
Most likely class

Correct
Incorrect

Figure 6. Assignment probabilities plot: It shows for each sample the probability
of its most likely class versus the difference in probability with the next likely class.
Green dots indicate that the probability of the most likely class is the correct class.
Red dots indicate that the probability of the most likely class is not the correct
class and, if assigned, such sample would have been missclassified. Dotted lines
represent the chosen thresholds. The green area between them shows the samples
that are actually assigned, those out of the green area are left as NotAssigned.

The plot in Figure 6 was obtained through the execution of geNetClassifier() with the
leukemia’s dataset. It shows that there are several samples under the assignment thresh-
olds: these samples are left as NotAssigned. Out of these not assigned samples, the
highest probability of some of them was to the real class (green), but some others was to
an incorrect class (red). If the classifier had assigned the samples in red, it would have
been an incorrect assignment.

geNetClassifier 28

5 Sample classification: query with new samples of

unknown class

Once a classifier is built for a group of diseases or biological states, we can take external
samples from new patients or new studies to query the classifier and know their class type.

Since we had 60 samples in the initial leukemia dataset and only 50 were used in the
classifier, the 10 not used for training can be used as new samples to query the classifier
and find out their class. In this case we will consider that the class of these samples is
unknown.

> testSamples <- c(1:60)[-trainSamples]

queryGeNetClassifier() can then be used to ask the classifier about the class of the new
samples.

> queryResult_AsUnkown <- queryGeNetClassifier(leukemiasClassifier,

+ leukemiasEset[,testSamples])

In the field $class of the return, we can see the class that each sample has been assigned
to.

> names(queryResult_AsUnkown)

[1] "call" "class" "probabilities"

> queryResult_AsUnkown$class

GSM330195.CEL GSM330201.CEL GSM330611.CEL GSM330612.CEL GSM331037.CEL

ALL ALL AML AML CLL

GSM331048.CEL GSM331392.CEL GSM331393.CEL GSM331675.CEL GSM331677.CEL

CLL CML CML NoL NoL

Levels: ALL AML CLL CML NoL

If there were samples that had not been assigned to any class, they would be marked
asNotAssigned. In the field $probabilities, we could see the probability of each sample to
belong to each class. All these steps are very similar to the ones describes in section 4.1.

> t(queryResult_AsUnkown$probabilities[,

+ queryResult$class=="NotAssigned"])

ALL AML CLL CML NoL

The function querySummary() provides a summary of the results by counting the number
of samples that were assigned to each class and with which probabilities. It is a good way
to have an overview of the classification results. In this case, the 100% call rate indicates
that all samples have been assigned.

> querySummary(queryResult_AsUnkown, numDecimals=3)

geNetClassifier 29

$callRate

[1] 100

$assigned

Count MinProb MaxProb Mean SD

ALL 2 0.721 0.825 0.773 0.073

AML 2 0.681 0.847 0.764 0.118

CLL 2 0.719 0.750 0.735 0.022

CML 2 0.564 0.879 0.721 0.223

NoL 2 0.745 0.886 0.816 0.100

$notAssigned

[1] "All samples have been assigned."

geNetClassifier 30

6 Functions to plot the results

6.1 Plot Ranked Significant Genes: plot(...@genesRaking)

As indicated in section 3.4.1, the default plot of a genesRanking can be obtained through
the plot() function. This plot represents the gene rank obtained for each class versus the
posterior probability of the genes.

> plot(leukemiasClassifier@genesRanking)

Some of the parameters to personalize this plot are:

� lpThreshold to set the value of the posterior probability threshold (marked as an
horizontal line in the plot)

� numGenesPlot to determine the maximum number of genes that will be plot

> plot(leukemiasClassifier@genesRanking, numGenesPlot=3000,

+ plotTitle="5 classes: ALL, AML, CLL, CML, NoL", lpThreshold=0.80)

0 500 1000 1500 2000 2500 3000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Gene Rank

P
o

st
e

ri
o

r
P

ro
b

a
b

ili
ty

5 classes: ALL, AML, CLL, CML, NoL

Threshold=0.8

ALL (978 genes)
AML (262 genes)
CLL (1862 genes)
CML (895 genes)
NoL (182 genes)

Figure 7. Plot of the posterior probabilities of the genes of 4 leukemia classes and
the non-leukemia controls, ordering the genes according to their rank and setting
the lpThreshold at 0.80.

calculateGenesRanking() allows to calculate (and plot) the ranking for a given data set
without building the classifier:

> ranking <- calculateGenesRanking(leukemiasEset[,trainSamples],

+ "LeukemiaType")

geNetClassifier 31

6.2 Plot Gene Expression Profiles: plotExpressionProfiles()

The function plotExpressionProfiles() generates an overview of the expression profile of
each gene along all the samples contained in the studied dataset. The plot will be saved
as a PDF if fileName is indicated. The parameter geneLabels can be used to show a
different name to the one included in the expression matrix (i.e. gene symbol instead of
ENSEMBL ID or Affymetrix ID).

To plot the expression of 4 specific genes across the samples included in the leukemia’s
set:

> data(geneSymbols)

> topGenes <- getRanking(

+ getTopRanking(leukemiasClassifier@classificationGenes,numGenesClass=1),

+ showGeneID=TRUE)$geneID

> plotExpressionProfiles(leukemiasEset, topGenes[,c("ALL","AML"), drop=FALSE],

+ sampleLabels="LeukemiaType", geneLabels=geneSymbols)

0 10 20 30 40 50 60

0
2

4
6

8
10

12
14

Sample index

E
xp

re
ss

io
n

va
lu

es

ALL
ENSG00000169575 (VPREB1)
ALL AML CLL CML NoL

0 10 20 30 40 50 60

0
2

4
6

8
10

12
14

Sample index

E
xp

re
ss

io
n

va
lu

es

AML
ENSG00000078399 (HOXA9)

ALL AML CLL CML NoL

Figure 8. Plot of the expression profiles across 60 samples of 2 genes.

If a geNetClassifierReturn object is provided instead of a list of genes, it will plot the
expression of all the genes used for training the classifier:

> plotExpressionProfiles(leukemiasEset[,trainSamples], leukemiasClassifier,

+ sampleLabels="LeukemiaType", fileName="leukExprs_trainSamples.pdf")

To plot the expression of all the genes chosen for classification for a specific class, for
example AML:

> classGenes <- getRanking(leukemiasClassifier@classificationGenes,

+ showGeneID=TRUE)$geneID[,"AML"]

> plotExpressionProfiles(leukemiasEset, genes=classGenes,

+ sampleLabels="LeukemiaType", geneLabels=geneSymbols, fileName="AML_genes.pdf")

geNetClassifier 32

These plots can be modified in several ways, for example coloring specific samples or
classes, or plotting the expression as boxplot

� Coloring specific samples or classes:

> plotExpressionProfiles(leukemiasEset, genes=topGenes[,3, drop=FALSE],

+ sampleLabels="LeukemiaType",

+ showMean=TRUE, identify=FALSE,

+ sampleColors=c("grey","red")

+ [(sampleNames(leukemiasEset)%in% c("GSM331386.CEL","GSM331392.CEL"))+1])

> plotExpressionProfiles(leukemiasEset, genes=topGenes[,3, drop=FALSE],

+ sampleLabels="LeukemiaType",

+ showMean=TRUE, identify=FALSE,

+ classColors=c("red","red", "blue","red","red"))

� Plotting the expression as boxplot (grouped by classes):

> plotExpressionProfiles(leukemiasEset, genes=topGenes[,3, drop=FALSE],

+ sampleLabels="LeukemiaType",

+ type="boxplot", geneLabels=geneSymbols, sameScale=FALSE)

0 10 20 30 40 50 60

0
2

4
6

8
10

12

Sample index

E
xp

re
ss

io
n

va
lu

es

CLL
ENSG00000176890 (TYMS)

ALL AML CLL CML NoL

A
LL

A
M

L

C
LL

C
M

L

N
oL

4

6

8

10

E
xp

re
ss

io
n

va
lu

es

CLL
ENSG00000176890 (TYMS)

Figure 9. Two different versions of expression plot.

See ?plotExpressionProfiles for more details.

geNetClassifier 33

6.3 Plot Genes Discriminant Power: plotDiscriminantPower()

The discriminant power is a parameter derived from the classifier’s support vectors which
resembles the power of each gene to mark the difference between classes.

The multi-class SVM algorithm (One-versus-One, OvO) produces a set of support vectors
for each binary comparison between classes. Such support vectors include the Lagrange
coefficients (alpha) for all the genes selected for the classification. Therefore, we can
assign to each gene the sum of the Lagrange coefficients of all the support vectors of
each class (represented as piled up bars in the plot). The discriminant power is then
calculated as the difference between the value of the largest class and the closest (the
distance marked by two red lines in the plot). In conclusion, the discriminant power
is a parameter that allows the characterization of the genes based in their capacity to
separate different classes (i.e. different diseases or diseases subtypes compared).

The discriminant power is calculated for each gene included in the classifier (the @classi-
ficationGenes) when it is built geNetClassifier()). The plotDiscriminantPower() function
is included in the package to generate a graphic representation of the discriminant power.

> plotDiscriminantPower(leukemiasClassifier,

+ classificationGenes="ENSG00000169575")

ENSG00000169575 (VPREB1)
Discriminant power: 9.42 (ALL)

−
10

−
5

0
5

10
−

10
−

5
0

5
10

−
10

−
5

0
5

10

A
LL

A
M

L

C
LL

C
M

L

N
oL

Figure 10. Plot of the discriminant power of gene VPREB1 (ENSG00000169575).
The plot shows that this gene identifies class ALL and the closest class is NoL.

The next example shows the discriminant power of the top genes of a class. In order to
plot more than 20 genes, or to save the plots as PDF, provide a fileName.

geNetClassifier 34

> discPowerTable <- plotDiscriminantPower(leukemiasClassifier,

+ classificationGenes=getRanking(leukemiasClassifier@classificationGenes,

+ showGeneID=TRUE)$geneID[1:4,"AML",drop=FALSE], returnTable=TRUE)

ENSG00000078399 (HOXA9)
Discriminant power: 8.01 (AML)

−
10

0
5

10
−

10
0

5
10

−
10

0
5

10

A
LL

A
M

L

C
LL

C
M

L

N
oL

ENSG00000143995 (MEIS1)
Discriminant power: 10.32 (AML)

−
10

0
5

10
−

10
0

5
10

−
10

0
5

10

A
LL

A
M

L

C
LL

C
M

L

N
oL

ENSG00000185275 (CD24L4)
Discriminant power: 5.73 (AML)

−
10

0
5

10
−

10
0

5
10

−
10

0
5

10

A
LL

A
M

L

C
LL

C
M

L

N
oL

ENSG00000154188 (ANGPT1)
Discriminant power: 9.22 (AML)

−
10

0
5

10
−

10
0

5
10

−
10

0
5

10

A
LL

A
M

L

C
LL

C
M

L

N
oL

Figure 11. Plot of the discriminant power of the 4 genes that best dis-
criminate AML class from the other classes. The figures indicate that MEIS1
(ENSG00000143995) presents the highest discriminant power. This gene encodes a
homeobox protein that has been involved in myeloid leukemia. A high discriminant
power can help to identify gene markers.

Some of the options to personalize the plot are classNames to provide a different name for
the classes and textitgeneLabels to provide a alias for the genes. As usual, more details
about the function are available at ?plotDiscriminantPower.

geNetClassifier 35

6.4 Plot Gene Networks: plotNetwork()

The package also includes some functions to manipulate the networks produced by geNet-
Classifier() (i.e. select part of a network and personalize the plots).

Step 1: Select a network or sub-network.
getSubNetwork() allows to select sub-networks. i.e. the sub-network containing only the
classification genes:

> clGenesSubNet <- getSubNetwork(leukemiasClassifier@genesNetwork,

+ leukemiasClassifier@classificationGenes)

Step 2: Get the info of the genes to plot.
genesDetails() provides the available information about the genes. This information can
be shown in the network: The gene name will be the node label. The expression of the
gene will be shown with the node color, and the discriminant power will determine its size.
In case the network includes genes selected for classification and genes which were not
selected, the genes selected for classification will be plot as squares and the not selected
as circles (only available for PDF plot, not on the dynamic view). For more details see
the network legend in figure 14.

> clGenesInfo <- genesDetails(leukemiasClassifier@classificationGenes)

Step 3: Plot the network.
The network plots can be produced either using R interactive view (tkplot from igraph)
or plotted as saved PDF files. Use plotType=”pdf” to save the network as a static PDF
file. This option is recommended to produce an overview of several networks. To produce
interactive networks skip this argument. Iteractive plotscan be exported as a postscript
files (.eps).

Some plot examples:
Network of ALL classification genes:

> plotNetwork(genesNetwork=clGenesSubNet$ALL, genesInfo=clGenesInfo)

Figure 12. Gene network obtained for class ALL including the 9 classification
genes selected for this disease.

geNetClassifier 36

Only connected nodes from ALL classification genes network:

> plotNetwork(genesNetwork=clGenesSubNet$ALL, genesInfo=clGenesInfo,

+ plotAllNodesNetwork=FALSE, plotOnlyConnectedNodesNetwork=TRUE)

AML network of the top 30 genes from the ranking (calculated as co-expression and
mutual information):

> top30g <- getRanking(leukemiasClassifier@genesRanking,

+ showGeneID=TRUE)$geneID[1:30,]

> top30gSubNet <- getSubNetwork(leukemiasClassifier@genesNetwork, top30g)

> top30gInfo <- lapply(genesDetails(leukemiasClassifier@genesRanking),

+ function(x) x[1:30,])

> plotNetwork(genesNetwork=top30gSubNet$AML, genesInfo=top30gInfo$AML)

Figure 13. Gene network obtained for class AML including the top 30 genes
selected from the gene ranking of this disease.

Network of the top 100 genes from AML ranking.
A preview of this network is automatically plotted for every class by geNetClassifier() if
plotsName is provided.

> top100gRanking <- getTopRanking(leukemiasClassifier@genesRanking,

+ numGenes=100)

> top100gSubNet <- getSubNetwork(leukemiasClassifier@genesNetwork,

+ getRanking(top100gRanking, showGeneID=TRUE)$geneID)

> plotNetwork(genesNetwork=top100gSubNet,

+ classificationGenes=leukemiasClassifier@classificationGenes,

+ genesRanking=top100gRanking, plotAllNodesNetwork=TRUE,

+ plotOnlyConnectedNodesNetwork=TRUE, labelSize=0.4,

+ plotType="pdf", fileName="leukemiasNetwork")

geNetClassifier 37

AML
(Only connected nodes)

HOXA9

ANGPT1 NKX2­3

MEIS1HOXA5

HOXB6

HOXA10

DEPDC6

HOXA4

MAMDC2

HOXA7

TFPI

PGDS

RP11­357H14.4

GPR124

NPTX2

TANC1

DLK1

CCL23

TWIST1

EPS8

HPGD

NPR3

MMP2

SLC27A6

SLC44A2

AGR2

MEIS2

MS4A2

PHACTR3

TSLP

HOXA6

FOXC1

F3

HOXB3

AC112641.1

ME1

UGCG

OLIG1

ZNF521

ARHGAP22

LRP12

MEG3

C20orf197

TDRD9

RBPMS

NR1H3

GAS2

RBM38

SLITRK5

SDSL

RXFP1

MS4A14

CAV2

HOXA3

DPP10

HOXB5

HOXA11

SPP1

Network legend

Node color: Expression

Repressed Overexpressed

Unknown

Node shape: Chosen/Not chosen for classification

Chosen Not chosen/Unknown

Node size: Discriminant power (if available)

High DP Low DP

Line color: Relation type

Correlation Mutual information

Figure 14. Gene network obtained for class AML selecting the 100 top genes
from the gene ranking of this disease, but presenting only the connected nodes.
The figure also includes the network legend indicating the meaning of the shapes
and colors given to the nodes and edges.

geNetClassifier 38

Acknowledgements

This work was supported by Instituto de Salud Carlos III and by a grant from the Junta
de Castilla y Leon and the European Social Fund to S.A and C.D.

References

[1] Haferlach T, Kohlmann A, Wieczorek L, Basso G, Kronnie GT, Bene MC, De Vos J,
Hernandez JM, Hofmann WK, Mills KI, Gilkes A, Chiaretti S, Shurtleff SA, Kipps
TJ, Rassenti LZ, Yeoh AE, Papenhausen PR, Liu WM, Williams PM, Foa R (2010).
Clinical utility of microarray-based gene expression profiling in the diagnosis and sub-
classification of leukemia: report from the International Microarray Innovations in
Leukemia Study Group. J Clin Oncol. 28: 2529-2537.

[2] Barrier A, Lemoine A, Boelle PY, Tse C, Brault D, Chiappini F, Breittschneider J,
Lacaine F, Houry S, Huguier M, Van der Laan MJ, Speed T, Debuire B, Flahault
A, Dudoit S (2005) Colon cancer prognosis prediction by gene expression profiling.
Oncogene. 24: 6155-6164.

[3] Meyer D, Leischa F, Hornik K (2005). The supportvector machine under test. Neuro-
computing. 55: 169-186

[4] Meyer PE, Lafitte F, Bontempi G (2008). minet: A R/Bioconductor package for infer-
ring large transcriptional networks using mutual information. BMC Bioinformatics.
9: 461.

[5] Risueno A, Fontanillo C, Dinger ME, De Las Rivas J (2010). GATExplorer: genomic
and transcriptomic explorer; mapping expression probes to gene loci, transcripts, exons
and ncRNAs. BMC Bioinformatics. 11: 221.

[6] Morris C (1983). Parametric empirical Bayes inference: theory and applications.
JASA. 78: 47-65.

[7] Kendziorski CM, Newton MA, Lan H, Gould MN (2003). On parametric empirical
Bayes methods for comparing multiple groups using replicated gene expression profiles.
Statistics in Medicine 22: 3899-3914.

[8] Benjamini Y, Hochberg Y (1995). Controlling the false discovery rate: A practical and
powerful approach to multiple testing. J. Roy. Statist. Soc. Ser. B. 57: 289-300.

	Introduction to geNetClassifier
	Install the package and example data
	Main function of the package: geNetClassifier()
	Loading the package and data
	Run geNetClassifier()
	Overview of the data returned by geNetClassifier()
	Return I: Genes ranking
	Significant genes

	Return II: Classifier
	Gene selection procedure
	Estimation of performance and generalization error procedure

	Return III: Gene networks

	External validation: query with new samples of known class
	Assignment conditions

	Sample classification: query with new samples of unknown class
	Functions to plot the results
	Plot Ranked Significant Genes: plot(...@genesRaking)
	Plot Gene Expression Profiles: plotExpressionProfiles()
	Plot Genes Discriminant Power: plotDiscriminantPower()
	Plot Gene Networks: plotNetwork()

