
flowcatchR : A framework for tracking and analyzing flowing blood cells in

time lapse microscopy images

Federico Marini1, Johanna Mazur, Harald Binder

Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI),
University Medical Center - Mainz (Germany)

1marinif@uni-mainz.de

Edited: August 20, 2015; Compiled: August 20, 2015

Abstract

flowcatchR is a set of tools to analyze in vivo microscopy imaging data, focused on tracking flowing blood
cells. flowcatchR guides throughout all the steps of bioimage processing, from segmentation to calculation
of features, filtering out particles not of interest, providing also a set of utilities to help checking the quality
of the performed operations. The main novel contribution investigates the issue of tracking flowing cells
such as the ones in blood vessels, to categorize the particles in flowing, rolling, and adherent by providing a
comprehensive analysis of the identified trajectories. The extracted information is then applied in the study
of phenomena such as hemostasis and thrombosis development. We expect this package to be potentially
applied to a variety of assays, covering a wide range of applications founded on time-lapse microscopy.

Contents

1 Introduction 2
1.1 Why flowcatchR? . 2
1.2 Purpose of this document . 3

2 Getting started 3
2.1 Installation . 3
2.2 Getting help . 3
2.3 Citing flowcatchR . 3

3 Processing overview 4

4 Image acquisition 5

5 Image preprocessing and analysis 7

6 Particle tracking 11

7 Trajectory analysis 13

1

http://bioconductor.org/packages/release/bioc/html/flowcatchR.html
mailto:1marinif@uni-mainz.de
http://bioconductor.org/packages/release/bioc/html/flowcatchR.html
http://bioconductor.org/packages/release/bioc/html/flowcatchR.html
http://bioconductor.org/packages/release/bioc/html/flowcatchR.html
http://bioconductor.org/packages/release/bioc/html/flowcatchR.html

flowcatchR: A framework for tracking and analyzing flowing blood cells in time lapse microscopy images 2

8 Interactive tools for a user-friendly workflow solution 20
8.1 The shinyFlow Shiny Application . 21
8.2 flowcatchR in Jupyter notebooks . 22

9 Supplementary information 22

10 Acknowledgements 22

11 Session Information 23

1 Introduction

This document offers an introduction and overview of the R/Bioconductor [1, 2] package flowcatchR, which
provides a flexible and comprehensive set of tools to detect and track flowing blood cells in time-lapse mi-
croscopy.

1.1 Why flowcatchR?

flowcatchR builds upon functionalities provided by the EBImage package [3], and extends them in order
to analyze time-lapse microscopy images. Here we list some of the unique characteristics of the datasets
flowcatchR is designed for:

• The images come from intravital microscopy experiments. This means that the Signal-to-Noise Ratio
(SNR) is not optimal, and, very importantly, there are potential major movements of the living specimen
that can be confounded with the true movements of the particles of interest [4]
• Cells are densely distributed on the images, with particles that can enter and leave the field of view
• The acquisition frame rate is a compromise between allowing the fluorescent cells to be detected and

detecting the movements properly
• Cells can flow, temporarily adhere to the endothelial layer and/or be permanently adherent. Therefore,

all movement modalities should be detected correctly throughout the entire acquisition. Cells can also
cluster together and form (temporary) conglomerates

Essential features flowcatchR delivers to the user are:

• A simple and flexible, yet complete framework to analyze flowing blood cells (and more generally time-
lapse) image sets, with a system of S4 classes such as Frames, ParticleSet, and TrajectorySet constituting
the backbone of the procedures
• Techniques for aiding the detection of objects in the segmentation step
• An algorithm for tracking the particles, adapted and improved from the proposal of Sbalzarini and

Koumoutsakos (2005) [5], that reflects the directional aspect of the motion
• A wide set of functions inspecting the kinematic properties of the identified trajectories [6, 7], providing

publication-ready summary statistics and visualization tools to help classifying identified objects

This guide includes a brief overview of the entire processing flow, from importing the raw images to the
analysis of kinematic parameters derived from the identified trajectories. An example dataset will be used
to illustrate the available features, in order to track blood platelets in consecutive frames derived from an
intravital microscopy acquisition (also available in the package). All steps will be dissected to explore available
parameters and options.

http://bioconductor.org/packages/release/bioc/html/flowcatchR.html
http://bioconductor.org/packages/release/bioc/html/flowcatchR.html
http://bioconductor.org/packages/release/bioc/html/flowcatchR.html
http://bioconductor.org/packages/release/bioc/html/flowcatchR.html
http://bioconductor.org/packages/release/bioc/html/flowcatchR.html
http://bioconductor.org/packages/release/bioc/html/EBImage.html
http://bioconductor.org/packages/release/bioc/html/flowcatchR.html
http://bioconductor.org/packages/release/bioc/html/flowcatchR.html

flowcatchR: A framework for tracking and analyzing flowing blood cells in time lapse microscopy images 3

To install the package flowcatchR , please start a current version of R and type

1.2 Purpose of this document

This vignette includes a brief overview of the entire processing flow, from importing the raw images to the
analysis of kinematic parameters derived from the identified trajectories. An example dataset will be used
to illustrate the available features, in order to track blood platelets in consecutive frames derived from an
intravital microscopy acquisition (also available in the package). All steps will be dissected to explore available
parameters and options.

2 Getting started

2.1 Installation

flowcatchR is an R package distributed as part of the Bioconductor project. To install flowcatchR, please start
R and type:

source("http://bioconductor.org/biocLite.R")

biocLite("flowcatchR")

In case you might prefer to install the latest development version, this can be done with these two lines below:

install.packages("devtools") # if needed

devtools::install_github("federicomarini/flowcatchR")

Installation issues should be reported to the Bioconductor support site (http://support.bioconductor.
org/).

2.2 Getting help

The flowcatchR package was tested on a variety of datasets provided from cooperation partners, yet it may
require some extra tuning or bug fixes. For these issues, please contact the maintainer - if required with a copy
of the error messages, the output of sessionInfo function:

maintainer("flowcatchR")

[1] "Federico Marini <marinif@uni-mainz.de>"

Despite our best efforts to test and develop the package further, additional functions or interesting suggestions
might come from the specific scenarios that the package users might be facing. Improvements of existing
functions or development of new ones are always most welcome! We also encourage to fork the GitHub
repository of the package (https://github.com/federicomarini/flowcatchR), develop and test the new
feature(s), and finally generate a pull request to integrate it to the original repository.

2.3 Citing flowcatchR

The work underlying the development of flowcatchR has not been formally published yet. A manuscript has
been submitted for peer-review. For the time being, users of flowcatchR are encouraged to cite it using the

http://bioconductor.org/packages/release/bioc/html/flowcatchR.html
http://bioconductor.org/packages/release/bioc/html/flowcatchR.html
http://bioconductor.org/packages/release/bioc/html/flowcatchR.html
http://bioconductor.org/packages/release/bioc/html/flowcatchR.html
http://support.bioconductor.org/
http://support.bioconductor.org/
http://bioconductor.org/packages/release/bioc/html/flowcatchR.html
https://github.com/federicomarini/flowcatchR
http://bioconductor.org/packages/release/bioc/html/flowcatchR.html
http://bioconductor.org/packages/release/bioc/html/flowcatchR.html
http://bioconductor.org/packages/release/bioc/html/flowcatchR.html

flowcatchR: A framework for tracking and analyzing flowing blood cells in time lapse microscopy images 4

output of the citation function in the utils, as it follows:

citation("flowcatchR")

##

To cite package 'flowcatchR' in publications use:

##

Federico Marini (2015). flowcatchR: Tools to analyze in vivo

microscopy imaging data focused on tracking flowing blood cells. R

package version 1.2.2. https://github.com/federicomarini/flowcatchR

##

A BibTeX entry for LaTeX users is

##

@Manual{,

title = {flowcatchR: Tools to analyze in vivo microscopy imaging data focused on

tracking flowing blood cells},

author = {Federico Marini},

year = {2015},

note = {R package version 1.2.2},

url = {https://github.com/federicomarini/flowcatchR},

}

3 Processing overview

flowcatchR works primarily with sets of fluorescent time-lapse images, where the particles of interest are marked
with a fluorescent label (e.g., red for blood platelets, green for leukocytes). Although different entry spots are
provided (such as the coordinates of identified points in each frame via tab delimited files), we will illustrate
the characteristics of the package starting from the common protocol starting point. In this case, we have
a set of 20 frames derived from an intravital microscopy acquisition, which for the sake of practicality were
already registered to reduce the unwanted specimen movements (Fiji [8] was used for this purpose).

library("flowcatchR")

Loading required package: EBImage

data("MesenteriumSubset")

printing summary information for the MesenteriumSubset object

MesenteriumSubset

Frames

colorMode : Color

storage.mode : double

dim : 271 131 3 20

frames.total : 60

frames.render: 20

##

imageData(object)[1:5,1:6,1,1]

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0.1647059 0.2117647 0.1882353 0.1803922 0.1607843 0.1333333

[2,] 0.2352941 0.1882353 0.1803922 0.1568627 0.1411765 0.1372549

[3,] 0.2352941 0.2000000 0.1764706 0.1490196 0.1333333 0.1333333

[4,] 0.2352941 0.2117647 0.1764706 0.1529412 0.1411765 0.1411765

[5,] 0.2313725 0.2078431 0.1725490 0.1411765 0.1294118 0.1411765

http://bioconductor.org/packages/release/bioc/html/flowcatchR.html
http://bioconductor.org/packages/release/bioc/html/flowcatchR.html

flowcatchR: A framework for tracking and analyzing flowing blood cells in time lapse microscopy images 5

##

Channel(s): all

To obtain the set of trajectories identified from the analysis of the loaded frames, a very compact one-line
command is all that is needed:

one command to seize them all :)

fullResults <- kinematics(trajectories(particles(channel.Frames(MesenteriumSubset,"red"))))

On a MAC OS X machine equipped with 2.8 Ghz Intel Core i7 processor and 16 GB RAM, the execution of
this command takes 2.32 seconds to run (tests performed with the microbenchmark).

The following sections will provide additional details to the operations mentioned above, with more also on
the auxiliary functions that are available in flowcatchR .

4 Image acquisition

A set of images is acquired, after a proper microscopy setup has been performed. This includes for example
a careful choice of spatial and temporal resolution; often a compromise must be met to have a good frame
rate and a good SNR to detect the particles in the single frames. For a good review on the steps to be taken,
please refer to Meijering’s work [4, 7].

flowcatchR provides an S4 class that can store the information of a complete acquisition, namely Frames. The
Frames class extends the Image class, defined in the EBImage package, and thus exploits the multi-dimensional
array structures of the class. The locations of the images are stored as dimnames of the Frames object. To
construct a Frames object from a set of images, the read.Frames function is used:

initialization

fullData <- read.Frames(image.files="/path/to/folder/containing/images/", nframes=100)

printing summary information for the Frames object

fullData

nframes specifies the number of frames that will constitute the Frames object, whereas image.files is a
vector of character strings with the full location of the (raw) images, or the path to the folder containing
them (works automatically if images are in TIFF/JPG/PNG format). In this case we just loaded the full
dataset, but for the demonstrational purpose of this vignette, we will proceed with the subset available in the
MesenteriumSubset object, which we previously loaded in Section 3.

It is possible to inspect the images composing a Frames object with the function inspect.Frames (Fig.1).

inspect.Frames(MesenteriumSubset, nframes=9, display.method="raster")

By default, display.method is set to ”browser”, as in the EBImage function display. This opens up a window
in the predefined browser (e.g. Mozilla Firefox), with navigable frames (arrows on the top left corner). For the
vignette, we will set it to raster, for viewing them as raster graphics using R’s native functions.

Importantly, these image sets were already registered and rotated in such a way that the overall direction of
the movement of interest flows from left to right, as a visual aid and also to fit with some assumptions that
will be done in the subsequent step of particle tracking. To register the images, we recommend the general
purpose tools offered by suites such as ImageJ/Fiji [9, 8].

For the following steps, we will focus on the information contained in the red channel, corresponding in this
case to blood platelets. We do so by calling the channel.Frames function:

http://bioconductor.org/packages/release/bioc/html/flowcatchR.html
http://bioconductor.org/packages/release/bioc/html/flowcatchR.html
http://bioconductor.org/packages/release/bioc/html/flowcatchR.html
http://bioconductor.org/packages/release/bioc/html/EBImage.html
http://bioconductor.org/packages/release/bioc/html/EBImage.html

flowcatchR: A framework for tracking and analyzing flowing blood cells in time lapse microscopy images 6

Figure 1: The first 9 frames of the MesenteriumSubset dataset. The red channel stores information about platelets, while
the green channel is dedicated to leukocytes

plateletsMesenterium <- channel.Frames(MesenteriumSubset, mode="red")

plateletsMesenterium

Frames

colorMode : Grayscale

storage.mode : double

dim : 271 131 20

frames.total : 20

frames.render: 20

##

imageData(object)[1:5,1:6,1]

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0.1647059 0.2117647 0.1882353 0.1803922 0.1607843 0.1333333

[2,] 0.2352941 0.1882353 0.1803922 0.1568627 0.1411765 0.1372549

[3,] 0.2352941 0.2000000 0.1764706 0.1490196 0.1333333 0.1333333

[4,] 0.2352941 0.2117647 0.1764706 0.1529412 0.1411765 0.1411765

[5,] 0.2313725 0.2078431 0.1725490 0.1411765 0.1294118 0.1411765

##

Channel(s): red

This creates another instance of the class Frames, and we inspect it in its first 9 frames (Fig.2).

inspect.Frames(plateletsMesenterium, nframes=9, display.method="raster")

http://bioconductor.org/packages/release/bioc/html/flowcatchR.html

flowcatchR: A framework for tracking and analyzing flowing blood cells in time lapse microscopy images 7

Figure 2: The first 9 frames of the MesenteriumSubset dataset, just displaying the GrayScale signal for the red channel
stored in plateletsMesenterium (for the thrombocytes)

5 Image preprocessing and analysis

Steps such as denoising, smoothing and morphological operations (erosion/dilation, opening/closing) can be
performed thanks to the general functions provided by EBImage. flowcatchR offers a wrapper around a series
of operations to be applied to all images in a Frames object. The function preprocess.Frames is called via
the following command:

preprocessedPlatelets <- preprocess.Frames(plateletsMesenterium,

brush.size=3, brush.shape="disc",

at.offset=0.15, at.wwidth=10, at.wheight=10,

kern.size=3, kern.shape="disc",

ws.tolerance=1, ws.radius=1)

preprocessedPlatelets

Frames

colorMode : Grayscale

storage.mode : double

dim : 271 131 20

frames.total : 20

frames.render: 20

##

imageData(object)[1:5,1:6,1]

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0 0 0 0 0 0

[2,] 0 0 0 0 0 0

[3,] 0 0 0 0 0 0

[4,] 0 0 0 0 0 0

http://bioconductor.org/packages/release/bioc/html/flowcatchR.html
http://bioconductor.org/packages/release/bioc/html/EBImage.html
http://bioconductor.org/packages/release/bioc/html/flowcatchR.html

flowcatchR: A framework for tracking and analyzing flowing blood cells in time lapse microscopy images 8

Figure 3: The first 9 frames after preprocessing of the MesenteriumSubset dataset. The binarized image shows the
detected objects after thresholding.

[5,] 0 0 0 0 0 0

##

Channel(s): red

The result of this is displayed in Fig.3. For a detailed explanation of the parameters to better tweak the
performances of this segmentation step, please refer to the help of preprocess.Frames. To obtain an
immediate feedback about the effects of the operations performed in the full preprocessing phase, we can call
again inspect.Frames on the Frames of segmented images (Fig.3).

inspect.Frames(preprocessedPlatelets, nframes=9, display.method="raster")

The frames could be cropped, if e.g. it is needed to remove background noise that might be present close to
the edges. This is done with the function crop.Frames.

croppedFrames <- crop.Frames(plateletsMesenterium,

cutLeft=6, cutRight=6,

cutUp=3, cutDown=3,

testing=FALSE)

croppedFrames

Frames

colorMode : Grayscale

storage.mode : double

dim : 260 126 20

frames.total : 20

frames.render: 20

##

imageData(object)[1:5,1:6,1]

http://bioconductor.org/packages/release/bioc/html/flowcatchR.html

flowcatchR: A framework for tracking and analyzing flowing blood cells in time lapse microscopy images 9

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0.1803922 0.1568627 0.1372549 0.1372549 0.1333333 0.1176471

[2,] 0.2039216 0.1843137 0.1490196 0.1254902 0.1215686 0.1215686

[3,] 0.1843137 0.1764706 0.1568627 0.1294118 0.1176471 0.1019608

[4,] 0.1921569 0.1568627 0.1529412 0.1333333 0.1254902 0.1333333

[5,] 0.2000000 0.1647059 0.1490196 0.1450980 0.1333333 0.1411765

##

Channel(s): red

If testing is set to true, the function just displays the first cropped frame, to get a feeling whether the choice
of parameters was adequate. Similarly, for the function rotate.Frames the same behaviour is expected,
whereas the rotation in degrees is specified by the parameter angle.

rotatedFrames <- rotate.Frames(plateletsMesenterium, angle=30)

rotatedFrames

Frames

colorMode : Grayscale

storage.mode : double

dim : 300 248 20

frames.total : 20

frames.render: 20

##

imageData(object)[1:5,1:6,1]

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0 0 0 0 0 0

[2,] 0 0 0 0 0 0

[3,] 0 0 0 0 0 0

[4,] 0 0 0 0 0 0

[5,] 0 0 0 0 0 0

##

Channel(s): red

If desired, it is possible to select just a subset of the frames belonging to a Frames. This can be done via the
select.Frames function:

subsetFrames <- select.Frames(plateletsMesenterium,

framesToKeep=c(1:10,14:20))

subsetFrames

Frames

colorMode : Grayscale

storage.mode : double

dim : 271 131 17

frames.total : 17

frames.render: 17

##

imageData(object)[1:5,1:6,1]

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0.1647059 0.2117647 0.1882353 0.1803922 0.1607843 0.1333333

[2,] 0.2352941 0.1882353 0.1803922 0.1568627 0.1411765 0.1372549

[3,] 0.2352941 0.2000000 0.1764706 0.1490196 0.1333333 0.1333333

[4,] 0.2352941 0.2117647 0.1764706 0.1529412 0.1411765 0.1411765

[5,] 0.2313725 0.2078431 0.1725490 0.1411765 0.1294118 0.1411765

##

http://bioconductor.org/packages/release/bioc/html/flowcatchR.html

flowcatchR: A framework for tracking and analyzing flowing blood cells in time lapse microscopy images 10

Channel(s): red

If required, the user can decide to perform a normalization step (via normalizeFrames), to correct for
systematic variations in the acquisition conditions, in case the overall intensity levels change, e.g., when the
acquisition spans long time scales. In this case, the median of the intensity sums is chosen as a scaling factor.

normFrames <- normalizeFrames(plateletsMesenterium,normFun = "median")

The user can choose any combination of the operations in order to segment the images provided as input,
but preprocess.Frames is a very convenient high level function for proceeding in the workflow. It is also
possible, as it was shown in the introductory one-liner, to call just particles on the raw Frames object. In
this latter case, particles computes the preprocessed Frames object according to default parameters. Still,
in either situation, the output for this step is an object of the ParticleSet class.

platelets <- particles(plateletsMesenterium, preprocessedPlatelets)

platelets

Computing features in parallel...

Done!

An object of the ParticleSet class.

##

Set of particles for 20 images

##

Displaying a subset of the features of the 14 particles found in the first image...

cell.0.m.cx cell.0.m.cy cell.0.m.majoraxis cell.0.m.eccentricity

1 186.70833 47.937500 8.916405 0.6353715

2 256.19048 35.857143 7.746554 0.4606665

3 251.09524 63.523810 8.552466 0.6843186

4 15.79412 8.058824 8.419655 0.7892764

5 215.54688 51.828125 13.694783 0.8788344

cell.0.m.theta cell.0.s.area cell.0.s.perimeter cell.0.s.radius.mean

1 0.3380463 48 20 3.487042

2 0.9165252 42 19 3.194559

3 0.9370618 42 19 3.247531

4 1.4806734 34 18 2.847459

5 0.7172299 64 28 4.308530

##

Particles identified on the red channel

The particles leverages on the multi-core architecture of the systems where the analysis is run, and this is
implemented via BiocParallel (updated since Version 1.0.3).

As it can be seen from the summary information, each ParticleSet stores the essential information on all particles
that were detected in the original images, alongside with a complete set of features, which are computed by
integrating the information from both the raw and the segmented frames.

A ParticleSet can be seen as a named list, where each element is a data.frame for a single frame, and
the image source is stored as names to help backtracking the operations performed, and the slot channelis
retained as selected in the initial steps.

It is possible to filter out particles according to their properties, such as area, shape and eccentricity. This is
possible with the function select.particles. The current implementation regards only the surface extension,
but any additional feature can be chosen and adopted to restrict the number of candidate particles according to
particular properties which are expected and/or to remove potential noise that went through the preprocessing

http://bioconductor.org/packages/release/bioc/html/flowcatchR.html
http://bioconductor.org/packages/release/bioc/html/BiocParallel.html

flowcatchR: A framework for tracking and analyzing flowing blood cells in time lapse microscopy images 11

phase.

selectedPlatelets <- select.particles(platelets, min.area=3)

selectedPlatelets

Filtering the particles...

An object of the ParticleSet class.

##

Set of particles for 20 images

##

Displaying a subset of the features of the 14 particles found in the first image...

cell.0.m.cx cell.0.m.cy cell.0.m.majoraxis cell.0.m.eccentricity

1 186.70833 47.937500 8.916405 0.6353715

2 256.19048 35.857143 7.746554 0.4606665

3 251.09524 63.523810 8.552466 0.6843186

4 15.79412 8.058824 8.419655 0.7892764

5 215.54688 51.828125 13.694783 0.8788344

cell.0.m.theta cell.0.s.area cell.0.s.perimeter cell.0.s.radius.mean

1 0.3380463 48 20 3.487042

2 0.9165252 42 19 3.194559

3 0.9370618 42 19 3.247531

4 1.4806734 34 18 2.847459

5 0.7172299 64 28 4.308530

##

Particles identified on the red channel

This step can be done iteratively, with the help of the function add.contours. If called with the parameter
mode set to particles, then it will automatically generate a Frames object, with the contours of all particles
drawn around the objects that passed the segmentation (and filtering) step (Fig.4).

paintedPlatelets <- add.contours(raw.frames=MesenteriumSubset,

binary.frames=preprocessedPlatelets,

mode="particles")

inspect.Frames(paintedPlatelets, nframes=9, display.method="raster")

To connect the particles from one frame to the other, we perform first the detection of particles on all images.
Only in a successive phase, we establish the links between the so identified objects. This topic will be covered
in detail in the following section.

6 Particle tracking

To establish the connections between particles, the function to be called is link.particles. The algorithm
used to perform the tracking itself is an improved version of the original implementation of Sbalzarini and
Koumotsakos [5]. To summarize the method, it is a fast and efficient self-initializing feature point tracking
algorithm (using the centroids of the objects as reference) [10]. The initial version is based on a particle
matching algorithm, approached via a graph theory technique. It allows for appearances/disappearances of
particles from the field of view, also temporarily as it happens in case of occlusions and objects leaving the
plane of focus.

Our implementation adds to the existing one by redefining the cost function used in the optimization phase
of the link assignment. It namely adds two terms, such as intensity variation and area variation, and mostly
important implements a function to penalize the movements that are either perpendicular or backwards with

http://bioconductor.org/packages/release/bioc/html/flowcatchR.html

flowcatchR: A framework for tracking and analyzing flowing blood cells in time lapse microscopy images 12

Figure 4: Particles detected in the first 9 frames are shown in yellow, with their contours defined by the segmentation
procedure.

respect to the oriented flow of cells. Small unwanted movements, which may be present even after the
registration phase, are handled with two jitter terms in a defined penalty function. Multiplicative factors can
further influence the penalties given to each term.

In its default value, the penalty function is created via the penaltyFunctionGenerator. The user can exploit
the parameter values in it to create a custom version of it, to match the particular needs stemming from the
nature of the available data and phenomenon under inspection.

defaultPenalty <- penaltyFunctionGenerator()

print(defaultPenalty)

function (angle, distance)

{

lambda1 * (distance/(1 - lambda2 * (abs(angle)/(pi + epsilon1))))

}

<environment: 0x44bf9f8>

As mentioned above, to perform the linking of the particles, we use link.particles. Fundamental parameters
are L and R, named as in the original implementation. L is the maximum displacement in pixels that a particle
is expected to have in two consecutive frames, and R is the value for the link range, i.e. the number of future
frames to be considered for the linking (typically assumes values between 1 - when no occlusions are known
to happen - and 3). An extended explanation of the parameters is in the documentation of the package.

linkedPlatelets <- link.particles(platelets,

L=26, R=3,

epsilon1=0, epsilon2=0,

lambda1=1, lambda2=0,

penaltyFunction=penaltyFunctionGenerator(),

http://bioconductor.org/packages/release/bioc/html/flowcatchR.html

flowcatchR: A framework for tracking and analyzing flowing blood cells in time lapse microscopy images 13

include.area=FALSE)

linkedPlatelets

An object of the LinkedParticleSet class.

##

Set of particles for 20 images

##

Particles are tracked throughout the subsequent 3 frame(s)

##

Displaying a subset of the features of the 14 particles found in the first image...

cell.0.m.cx cell.0.m.cy cell.0.m.majoraxis cell.0.m.eccentricity

1 186.70833 47.937500 8.916405 0.6353715

2 256.19048 35.857143 7.746554 0.4606665

3 251.09524 63.523810 8.552466 0.6843186

4 15.79412 8.058824 8.419655 0.7892764

5 215.54688 51.828125 13.694783 0.8788344

cell.0.m.theta cell.0.s.area cell.0.s.perimeter cell.0.s.radius.mean

1 0.3380463 48 20 3.487042

2 0.9165252 42 19 3.194559

3 0.9370618 42 19 3.247531

4 1.4806734 34 18 2.847459

5 0.7172299 64 28 4.308530

##

Particles identified on the red channel

As it can be seen, linkedPlatelets is an object of the LinkedParticleSet class, which is a subclass of the
ParticleSet class.

After inspecting the trajectories (see Section 7) it might be possible to filter a LinkedParticleSet class object
and subsequently reperform the linking on its updated version (e.g. some detected particles were found to be
noise, and thus removed with select.particles).

flowcatchR provides functions to export and import the identified particles, in order to offer an additional entry
point for tracking and analyzing the trajectories (if particles were detected with other routines) and also to
store separately the information per each frame about the objects that were primarily identified.

An example is provided in the lines below, with the functions export.particles and read.particles :

export to csv format

export.particles(platelets, dir="/path/to/export/folder/exportParticleSet/")

re-import the previously exported, in this case

importedPlatelets <- read.particles(particle.files="/path/to/export/folder/exportParticleSet/")

7 Trajectory analysis

It is possible to extract the trajectories with the correspondent trajectories function:

trajPlatelets <- trajectories(linkedPlatelets)

trajPlatelets

Generating trajectories...

An object of the TrajectorySet class.

##

http://bioconductor.org/packages/release/bioc/html/flowcatchR.html
http://bioconductor.org/packages/release/bioc/html/flowcatchR.html

flowcatchR: A framework for tracking and analyzing flowing blood cells in time lapse microscopy images 14

TrajectorySet composed of 25 trajectories

##

Trajectories cover a range of 20 frames

Displaying a segment of the first trajectory...

xCoord yCoord trajLabel frame frameobjectID

1_1 186.7083 47.93750 1 1 1

1_2 186.9649 48.26316 1 2 4

1_3 186.8136 48.18644 1 3 2

1_4 186.2807 47.70175 1 4 1

1_5 186.6897 47.87931 1 5 2

1_6 186.8269 48.11538 1 6 2

1_7 186.9643 48.30357 1 7 1

1_8 186.6207 48.36207 1 8 3

1_9 186.3273 48.05455 1 9 3

1_10 186.9821 48.19643 1 10 3

##

Trajectories are related to particles identified on the red channel

A TrajectorySet object is returned in this case. It consists of a two level list for each trajectory, reporting the
trajectory as a data.frame, the number of points npoints (often coinciding with the number of nframes,
when no gaps ngaps are present) and its ID. A keep flag is used for subsequent user evaluation purposes.

Before proceeding with the actual analysis of the trajectories, it is recommended to evaluate them by vi-
sual inspection. flowcatchR provides two complementary methods to do this, either plotting them (plot or
plot2D.TrajectorySet) or drawing the contours of the points on the original image (add.contours).

By plotting all trajectories in a 2D+time representation, it’s possible to have an overview of all trajectories.

The following command gives an interactive 3D (2D+time) view of all trajectories (output is not included in
this vignette):

plot(trajPlatelets, MesenteriumSubset)

The plot2D.TrajectorySet focuses on additional information and a different ”point of view”, but can just
display a two dimensional projection of the identified trajectories (Fig.5).

plot2D.TrajectorySet(trajPlatelets, MesenteriumSubset)

To have more insights on single trajectories, or on a subset of them, add.contours offers an additional mode
called trajectories. Particles are drawn on the raw images with colours corresponding to the trajectory
IDs. add.contours plots by default all trajectories, but the user can supply a vector of the IDs of interest to
override this behaviour.

paintedTrajectories <- add.contours(raw.frames=MesenteriumSubset,

binary.frames=preprocessedPlatelets,

trajectoryset=trajPlatelets,

mode="trajectories")

paintedTrajectories

Frames

colorMode : Color

storage.mode : double

dim : 271 131 3 20

frames.total : 60

frames.render: 20

http://bioconductor.org/packages/release/bioc/html/flowcatchR.html
http://bioconductor.org/packages/release/bioc/html/flowcatchR.html

flowcatchR: A framework for tracking and analyzing flowing blood cells in time lapse microscopy images 15

0 50 100 150 200 250

0
20

60
10

0
Overview of the identified trajectories

Pixel Coordinates − x axis

P
ix

el
 C

oo
rd

in
at

es
 −

 y
 a

xi
s

1
2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21 22

232425

Figure 5: A 2D ”flat” representation of the trajectories, more suitable to give an indication of the global movement

##

imageData(object)[1:5,1:6,1,1]

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0.1647059 0.2117647 0.1882353 0.1803922 0.1607843 0.1333333

[2,] 0.2352941 0.1882353 0.1803922 0.1568627 0.1411765 0.1372549

[3,] 0.2352941 0.2000000 0.1764706 0.1490196 0.1333333 0.1333333

[4,] 0.2352941 0.2117647 0.1764706 0.1529412 0.1411765 0.1411765

[5,] 0.2313725 0.2078431 0.1725490 0.1411765 0.1294118 0.1411765

##

Channel(s): all

As with any other Frames object, it is recommended to take a peek at it via the inspect.Frames function
(Fig.6):

inspect.Frames(paintedTrajectories,nframes=9,display.method="raster")

To allow for a thorough evaluation of the single trajectories, export.Frames is a valid helper, as it creates
single images corresponding to each frame in the Frames object. We first extract for example trajectory 11
(Fig.7) with the following command:

traj11 <- add.contours(raw.frames=MesenteriumSubset,

binary.frames=preprocessedPlatelets,

trajectoryset=trajPlatelets,

mode="trajectories",

trajIDs=11)

traj11

inspect.Frames(traj11, nframes=9, display.method="raster")

http://bioconductor.org/packages/release/bioc/html/flowcatchR.html

flowcatchR: A framework for tracking and analyzing flowing blood cells in time lapse microscopy images 16

Figure 6: Particles detected in the first 9 frames are shown this time in colours corresponding to the identified trajectories,
again with their contours defined by the segmentation procedure.

Figure 7: First 9 frames for trajectory with ID 11, as supplied to the trajIds argument of add.contours

http://bioconductor.org/packages/release/bioc/html/flowcatchR.html

flowcatchR: A framework for tracking and analyzing flowing blood cells in time lapse microscopy images 17

Frames

colorMode : Color

storage.mode : double

dim : 271 131 3 20

frames.total : 60

frames.render: 20

##

imageData(object)[1:5,1:6,1,1]

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0.1647059 0.2117647 0.1882353 0.1803922 0.1607843 0.1333333

[2,] 0.2352941 0.1882353 0.1803922 0.1568627 0.1411765 0.1372549

[3,] 0.2352941 0.2000000 0.1764706 0.1490196 0.1333333 0.1333333

[4,] 0.2352941 0.2117647 0.1764706 0.1529412 0.1411765 0.1411765

[5,] 0.2313725 0.2078431 0.1725490 0.1411765 0.1294118 0.1411765

##

Channel(s): all

The data for trajectory 11 in the TrajectorySet object can be printed to the terminal:

trajPlatelets[[11]]

$trajectory

xCoord yCoord trajLabel frame frameobjectID

11_1 16.89744 70.82051 11 1 11

11_2 35.00000 69.82051 11 2 5

11_3 41.94286 68.97143 11 3 4

11_4 47.48485 69.78788 11 4 5

11_5 61.68750 71.12500 11 5 6

11_6 82.56818 71.27273 11 6 9

11_7 99.64103 68.10256 11 7 8

11_8 110.37500 69.72500 11 8 5

11_9 119.63158 72.73684 11 9 6

11_10 127.40541 74.94595 11 10 6

11_11 137.57143 73.88095 11 11 5

11_12 144.25641 73.56410 11 12 7

11_13 152.83333 72.71429 11 13 7

11_14 157.47500 74.15000 11 14 4

11_15 159.71795 75.69231 11 15 7

11_16 163.56410 77.56410 11 16 6

11_17 165.02564 80.15385 11 17 2

11_18 169.94595 79.56757 11 18 6

11_19 175.00000 79.50000 11 19 5

11_20 178.71795 81.07692 11 20 7

##

$npoints

[1] 20

##

$nframes

[1] 20

##

$ngaps

[1] 0

##

$keep

[1] NA

http://bioconductor.org/packages/release/bioc/html/flowcatchR.html

flowcatchR: A framework for tracking and analyzing flowing blood cells in time lapse microscopy images 18

##

$ID

[1] 11

After that, it can also be exported with the following command (the dir parameter must be changed accord-
ingly):

export.Frames(traj11, dir=tempdir(), nameStub="vignetteTest_traj11",

createGif=TRUE, removeAfterCreatingGif=FALSE)

export.Frames offers multiple ways to export - animated gif (if ImageMagick is available and installed on
the system) or multiple jpeg/png images.

Of course the user might want to singularly evaluate each trajectory that was identified, and this can be done
by looping over the trajectory IDs.

evaluatedTrajectories <- trajPlatelets

for(i in 1:length(trajPlatelets))

{
paintedTraj <- add.contours(raw.frames=MesenteriumSubset,

binary.frames=preprocessedPlatelets,

trajectoryset=trajPlatelets,

mode="trajectories",

col="yellow",

trajIDs=i)

export.Frames(paintedTraj,

nameStub=paste0("vignetteTest_evaluation_traj_oneByOne_",i),

createGif=TRUE, removeAfterCreatingGif=TRUE)

uncomment the code below to perform the interactive evaluation of the single trajectories

cat("Should I keep this trajectory? --- 0: NO, 1:YES --- no other values allowed")

userInput <- readLines(n=1L)

if neither 0 nor 1, do not update

otherwise, this becomes the value for the field keep in the new TrajectoryList

evaluatedTrajectories@.Data[[i]]£keep <- as.logical(as.numeric(userInput))

}

Always using trajectory 11 as example, we would set evaluatedTrajectories[[11]]$keep to TRUE, since
the trajectory was correctly identified, as we just checked.

Once all trajectories have been selected, we can proceed to calculate (a set of) kinematic parameters, for
a single or all trajectories in a TrajectorySet object. The function kinematics returns the desired output,
respectively a KinematicsFeatures object, a KinematicsFeaturesSet, a single value or a vector (or list, if not
coercible to vector) of these single values (one parameter for each trajectory).

allKinematicFeats.allPlatelets <- kinematics(trajPlatelets,

trajectoryIDs=NULL, # will select all trajectory IDs

acquisitionFrequency=30, # value in milliseconds

scala=50, # 1 pixel is equivalent to ... micrometer

feature=NULL) # all kinematic features available

Warning in extractKinematics.traj(trajectoryset, i, acquisitionFrequency = acquisitionFrequency,

: The trajectory with ID 17 had 3 or less points, no features were computed.

Warning in extractKinematics.traj(trajectoryset, i, acquisitionFrequency = acquisitionFrequency,

http://bioconductor.org/packages/release/bioc/html/flowcatchR.html

flowcatchR: A framework for tracking and analyzing flowing blood cells in time lapse microscopy images 19

: The trajectory with ID 19 had 3 or less points, no features were computed.

Warning in extractKinematics.traj(trajectoryset, i, acquisitionFrequency = acquisitionFrequency,

: The trajectory with ID 21 had 3 or less points, no features were computed.

Warning in extractKinematics.traj(trajectoryset, i, acquisitionFrequency = acquisitionFrequency,

: The trajectory with ID 25 had 3 or less points, no features were computed.

As it is reported from the output, the function raises a warning for trajectories which have 3 or less points, as
they might be spurious detections. In such cases, no kinematic features are computed.

allKinematicFeats.allPlatelets

An object of the KinematicsFeaturesSet class.

##

KinematicsFeaturesSet composed of 25 KinematicsFeatures objects

##

Available features (shown for the first trajectory):

[1] "delta.x" "delta.t"

[3] "delta.v" "totalTime"

[5] "totalDistance" "distStartToEnd"

[7] "curvilinearVelocity" "straightLineVelocity"

[9] "linearityForwardProgression" "trajMSD"

[11] "velocityAutoCorr" "instAngle"

[13] "directChange" "dirAutoCorr"

[15] "paramsNotComputed"

##

Curvilinear Velocity: 0.009970094

Total Distance: 5.682953

Total Time: 570

##

Average values (calculated on 4 trajectories where parameters were computed)

Average Curvilinear Velocity: 0.1146995

Average Total Distance: 48.49261

Average Total Time: 484.2857

A summary for the returned object (in this case a KinematicsFeaturesSet) shows some of the computed
parameters. By default, information about the first trajectory is reported in brief, and the same parameters
are evaluated on average across the selected trajectories. The true values can be accessed in this case for
each trajectory by the subset operator for lists ([[]]), followed by the name of the kinematic feature (e.g.,
$totalDistance).

A list of all available parameters is printed with an error message if the user specifies an incorrect name, such
as here:

allKinematicFeats.allPlatelets <- kinematics(trajPlatelets, feature="?")

Available features to compute are listed here below.

Please select one among delta.x, delta.t, delta.v, totalTime,

totalDistance, distStartToEnd, curvilinearVelocity,

straightLineVelocity, linearityForwardProgression, trajMSD,

velocityAutoCorr, instAngle, directChange or dirAutoCorr

When asking for a single parameter, the value returned is structured in a vector, such that it is straightforward
to proceed with further analysis, e.g. by plotting the distribution of the curvilinear velocities (Fig.8).

http://bioconductor.org/packages/release/bioc/html/flowcatchR.html

flowcatchR: A framework for tracking and analyzing flowing blood cells in time lapse microscopy images 20

Trajectory Analysis: Curvilinear Velocities

Curvilinear Velocities Distribution

D
en

si
ty

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0
2

4
6

8
10

12

Figure 8: Histogram of the curvilinear velocities for all trajectories identified in the MesenteriumSubset dataset

allVelocities <- kinematics(trajPlatelets, feature="curvilinearVelocity")

hist(allVelocities, breaks=10, probability=TRUE, col="cadetblue",

xlab="Curvilinear Velocities Distribution",

main="Trajectory Analysis: Curvilinear Velocities")

lines(density(allVelocities, na.rm=TRUE), col="steelblue", lwd=2)

For this code chunk, we are suppressing the warning messages, as they would be exactly the same as in the
former where all features were computed for each trajectory.

8 Interactive tools for a user-friendly workflow solution

To enhance the Frames objects and deliver an immediate feedback to the user, the function snap leverages
on both the raw and binary Frames, as well as on the corresponding ParticleSet and TrajectorySet objects.
It integrates the information available in all the mentioned objects, and it plots a modified instance of the
Frames object, identifying the particles closest to the mouse click, and showing additional trajectory-related
information, such as the trajectory ID and the instantaneous velocity of the cell. The function can be called
as in the command below:

http://bioconductor.org/packages/release/bioc/html/flowcatchR.html

flowcatchR: A framework for tracking and analyzing flowing blood cells in time lapse microscopy images 21

Figure 9: Output generated by the snap function, where the user wanted to identify the particle and additionally display
the trajectory information (ID, instantaneous velocity) on it.

snap(MesenteriumSubset,preprocessedPlatelets,

platelets,trajPlatelets,

frameID = 1,showVelocity = T)

An example output for the snap is shown below in Fig.9, where the information (trajectory ID, as well as the
velocity in the selected frame) is shown in yellow to offer a good contrast with the fluorescent image.

8.1 The shinyFlow Shiny Application

Additionally, since Version 1.0.3, flowcatchR delivers shinyFlow, a Shiny Web Application ([11]), which is
built on the backbone of the analysis presented in this vignette, and is portable across all main operating
systems. The user is thus invited to explore datasets and parameters with immediate reactive feedback, that
can enable better understanding of the effects of single steps and changes in the workflow.

To launch the Shiny App, use the command below to open an external window either in the browser or in the
IDE (such as RStudio):

shinyFlow()

http://bioconductor.org/packages/release/bioc/html/flowcatchR.html
http://bioconductor.org/packages/release/bioc/html/flowcatchR.html

flowcatchR: A framework for tracking and analyzing flowing blood cells in time lapse microscopy images 22

8.2 flowcatchR in Jupyter notebooks

A further integration are a number of Jupyter/IPython notebooks ([12]), as a way to provide easy reproducibility
as well as communication of results, by combining plain text, commands and output in single documents.
The R kernel used on the back-end was developed by Thomas Kluyver (https://github.com/takluyver/
IRkernel), and instructions for the installation are available at the Github repository website. The notebooks
are available in the installation folder of the package flowcatchR , which can be found with the command below.

list.files(system.file("extdata",package = "flowcatchR"),pattern = "*.ipynb")

[1] "template_DetectionOfTransmigrationEvents.ipynb"

[2] "template_flowcatchR_vignetteSummary.ipynb"

The notebooks are provided as template for further steps in the analysis. The user is invited to set up the
IPython notebook framework as explained on the official website for the project (http://ipython.org/
notebook.html). As of February, 3rd 2015, the current way to obtain the Jupyter environment is via the
3.0.dev version, available via Github (https://github.com/ipython/ipython). The notebooks can be
opened and edited by navigating to their location while the IPython notebook server is running; use the
following command in the shell to launch it:

$ ipython notebook

Alternatively, these documents can be viewed with the nbviewer tool, available at http://nbviewer.

ipython.org/.

9 Supplementary information

For more information on the method adapted for tracking cells, see Sbalzarini and Koumotsakos (2005) [5].
For additional details regarding the functions of flowcatchR, please consult the documentation or write an
email to marinif@uni-mainz.de.

Due to space limitations, the complete dataset for the acquired frames used in this vignette is not in-
cluded as part of the flowcatchR package. If you would like to get access to it, you can write an email
to marinif@uni-mainz.de.

10 Acknowledgements

This package was developed at the Institute of Medical Biostatistics, Epidemiology and Informatics at the
University Medical Center, Mainz (Germany), with the financial support provided by the TRP-A15 Translational
Research Project grant.

flowcatchR incorporates suggestions and feedback from the wet-lab biology units operating at the Center for
Thrombosis and Hemostasis (CTH), in particular Sven Jäckel and Kerstin Jurk. Sven Jäckel also provided us
with the sample acquisition which is available in this vignette.

We would like to thank the members of the Biostatistics division for valuable discussions, and additionally
Isabella Zwiener for contributing to the first ideas on the project.

http://bioconductor.org/packages/release/bioc/html/flowcatchR.html
http://bioconductor.org/packages/release/bioc/html/flowcatchR.html
https://github.com/takluyver/IRkernel
https://github.com/takluyver/IRkernel
http://bioconductor.org/packages/release/bioc/html/flowcatchR.html
http://ipython.org/notebook.html
http://ipython.org/notebook.html
https://github.com/ipython/ipython
http://nbviewer.ipython.org/
http://nbviewer.ipython.org/
http://bioconductor.org/packages/release/bioc/html/flowcatchR.html
mailto:marinif@uni-mainz.de
http://bioconductor.org/packages/release/bioc/html/flowcatchR.html
mailto:marinif@uni-mainz.de
http://bioconductor.org/packages/release/bioc/html/flowcatchR.html

flowcatchR: A framework for tracking and analyzing flowing blood cells in time lapse microscopy images 23

11 Session Information

This vignette was generated using the following package versions:

toLatex(sessionInfo())

• R version 3.2.2 (2015-08-14), x86_64-pc-linux-gnu
• Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_US.UTF-8, LC_COLLATE=C,
LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8, LC_PAPER=en_US.UTF-8, LC_NAME=C,
LC_ADDRESS=C, LC_TELEPHONE=C, LC_MEASUREMENT=en_US.UTF-8, LC_IDENTIFICATION=C
• Base packages: base, datasets, grDevices, graphics, methods, parallel, stats, utils
• Other packages: EBImage 4.10.1, flowcatchR 1.2.2, knitr 1.11
• Loaded via a namespace (and not attached): BiocGenerics 0.14.0, BiocParallel 1.2.20, BiocStyle 1.6.0,

abind 1.4-3, colorRamps 2.3, digest 0.6.8, evaluate 0.7.2, fftwtools 0.9-7, formatR 1.2,
futile.logger 1.4.1, futile.options 1.0.0, grid 3.2.2, highr 0.5, jpeg 0.1-8, lambda.r 1.1.7, lattice 0.20-33,
locfit 1.5-9.1, magrittr 1.5, png 0.1-7, rgl 0.95.1247, stringi 0.5-5, stringr 1.0.0, tiff 0.1-5, tools 3.2.2

http://bioconductor.org/packages/release/bioc/html/flowcatchR.html

flowcatchR: A framework for tracking and analyzing flowing blood cells in time lapse microscopy images 24

References

[1] R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical
Computing, Vienna, Austria, 2014. URL: http://www.R-project.org/.

[2] Robert C Gentleman, Vincent J. Carey, Douglas M. Bates, and others. Bioconductor: Open software
development for computational biology and bioinformatics. Genome Biology, 5:R80, 2004. URL: http:
//genomebiology.com/2004/5/10/R80.

[3] Grégoire Pau, Florian Fuchs, Oleg Sklyar, Michael Boutros, and Wolfgang Huber. EBImage–an R
package for image processing with applications to cellular phenotypes. Bioinformatics, 26(7):979–
81, April 2010. URL: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2844988&
tool=pmcentrez&rendertype=abstract, doi:10.1093/bioinformatics/btq046.

[4] Erik Meijering and Ihor Smal. Time-lapse imaging. In Microscope Image Processing, pages 401–440.
Academic Press, 2008. URL: http://www.imagescience.org/meijering/publications/download/
tlmi2008.pdf.

[5] I F Sbalzarini and P Koumoutsakos. Feature point tracking and trajectory analysis for video imaging in
cell biology. Journal of structural biology, 151(2):182–95, August 2005. URL: http://www.ncbi.nlm.
nih.gov/pubmed/16043363, doi:10.1016/j.jsb.2005.06.002.

[6] JB Beltman, AFM Marée, and RJ de Boer. Analysing immune cell migration. Nature Reviews Immunology,
9(11):789–798, 2009. URL: http://dx.doi.org/10.1038/nri2638http://www.nature.com/nri/

journal/v9/n11/abs/nri2638.html, doi:10.1038/nri2638.

[7] Erik Meijering, Oleh Dzyubachyk, and Ihor Smal. Methods for cell and particle tracking. Methods in
enzymology, 504(February):183–200, January 2012. URL: http://www.ncbi.nlm.nih.gov/pubmed/
22264535, doi:10.1016/B978-0-12-391857-4.00009-4.

[8] Johannes Schindelin, I Arganda-Carreras, and Erwin Frise. Fiji: an open-source platform for biological-
image analysis. Nature methods, 9(7):676–682, 2012. URL: http://www.nature.com/nmeth/journal/
v9/n7/full/nmeth.2019.html%3FWT.ec_id%3DNMETH-201207, doi:10.1038/nmeth.2019.

[9] Caroline a Schneider, Wayne S Rasband, and Kevin W Eliceiri. NIH Image to ImageJ: 25 years of image
analysis. Nature Methods, 9(7):671–675, June 2012. URL: http://www.nature.com/doifinder/10.
1038/nmeth.2089, doi:10.1038/nmeth.2089.

[10] Nicolas Chenouard, Ihor Smal, Fabrice de Chaumont, Martin Maška, Ivo F Sbalzarini, Yuanhao Gong,
Janick Cardinale, Craig Carthel, Stefano Coraluppi, Mark Winter, Andrew R Cohen, William J Godinez,
Karl Rohr, Yannis Kalaidzidis, Liang Liang, James Duncan, Hongying Shen, Yingke Xu, Klas E G Magnus-
son, Joakim Jaldén, Helen M Blau, Perrine Paul-Gilloteaux, Philippe Roudot, Charles Kervrann, François
Waharte, Jean-Yves Tinevez, Spencer L Shorte, Joost Willemse, Katherine Celler, Gilles P van Wezel,
Han-Wei Dan, Yuh-Show Tsai, Carlos Ortiz de Solórzano, Jean-Christophe Olivo-Marin, and Erik Mei-
jering. Objective comparison of particle tracking methods. Nature methods, 11(3):281–9, March 2014.
URL: http://www.ncbi.nlm.nih.gov/pubmed/24441936, doi:10.1038/nmeth.2808.

[11] RStudio, Inc. Easy web applications in R., 2013. URL: http://www.rstudio.com/shiny/.

[12] Fernando Pérez and Brian E. Granger. IPython: a system for interactive scientific computing. Computing
in Science and Engineering, 9(3):21–29, May 2007. URL: http://ipython.org, doi:10.1109/MCSE.
2007.53.

http://bioconductor.org/packages/release/bioc/html/flowcatchR.html
http://www.R-project.org/
http://genomebiology.com/2004/5/10/R80
http://genomebiology.com/2004/5/10/R80
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2844988&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2844988&tool=pmcentrez&rendertype=abstract
http://dx.doi.org/10.1093/bioinformatics/btq046
http://www.imagescience.org/meijering/publications/download/tlmi2008.pdf
http://www.imagescience.org/meijering/publications/download/tlmi2008.pdf
http://www.ncbi.nlm.nih.gov/pubmed/16043363
http://www.ncbi.nlm.nih.gov/pubmed/16043363
http://dx.doi.org/10.1016/j.jsb.2005.06.002
http://dx.doi.org/10.1038/nri2638 http://www.nature.com/nri/journal/v9/n11/abs/nri2638.html
http://dx.doi.org/10.1038/nri2638 http://www.nature.com/nri/journal/v9/n11/abs/nri2638.html
http://dx.doi.org/10.1038/nri2638
http://www.ncbi.nlm.nih.gov/pubmed/22264535
http://www.ncbi.nlm.nih.gov/pubmed/22264535
http://dx.doi.org/10.1016/B978-0-12-391857-4.00009-4
http://www.nature.com/nmeth/journal/v9/n7/full/nmeth.2019.html%3FWT.ec_id%3DNMETH-201207
http://www.nature.com/nmeth/journal/v9/n7/full/nmeth.2019.html%3FWT.ec_id%3DNMETH-201207
http://dx.doi.org/10.1038/nmeth.2019
http://www.nature.com/doifinder/10.1038/nmeth.2089
http://www.nature.com/doifinder/10.1038/nmeth.2089
http://dx.doi.org/10.1038/nmeth.2089
http://www.ncbi.nlm.nih.gov/pubmed/24441936
http://dx.doi.org/10.1038/nmeth.2808
http://www.rstudio.com/shiny/
http://ipython.org
http://dx.doi.org/10.1109/MCSE.2007.53
http://dx.doi.org/10.1109/MCSE.2007.53

	1 Introduction
	1.1 Why flowcatchR?
	1.2 Purpose of this document

	2 Getting started
	2.1 Installation
	2.2 Getting help
	2.3 Citing flowcatchR

	3 Processing overview
	4 Image acquisition
	5 Image preprocessing and analysis
	6 Particle tracking
	7 Trajectory analysis
	8 Interactive tools for a user-friendly workflow solution
	8.1 The shinyFlow Shiny Application
	8.2 flowcatchR in Jupyter notebooks

	9 Supplementary information
	10 Acknowledgements
	11 Session Information

