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1 Introduction 3

1 Introduction

DEXUS identifies differentially expressed transcripts in RNA-Seq data under all possible study
designs such as studies without replicates, without sample groups, and with unknown conditions.
DEXUS works also for known conditions, for example for RNA-Seq data with two or multiple
conditions.

RNA-Seq read count data can be provided both by the S4 class CountDataSet and by read
count matrices. Differentially expressed transcripts can be visualized by heatmaps, in which un-
known conditions, replicates, and samples groups are also indicated. This software is fast as the
core algorithm is written in C. For very large data sets, a parallel version of DEXUS is provided
in this .

DEXUS is a statistical model that is selected in a Bayesian framework by an EM algorithm.
DEXUS does not need replicates to detect differentially expressed transcript, since the repli-
cates (or conditions) are estimated by the EM method for each transcript. This is an unsuper-
vised machine learning approach that does not require labeled data. The method provides an
informative/non-informative (I/NI) value to extract differentially expressed transcripts at a desired
significance level or power.

Detection of differential expression in RNA-Seq data is currently limited to studies in which
two or more sample conditions are known a priori. However, these biological conditions are
typically unknown in cohort, cross-sectional, and non-randomized controlled studies such as the
HapMap, the ENCODE, or the 1000 Genomes project. DEXUS models read counts as a finite
mixture of negative binomial distributions.

See http://www.bioinf.jku.at/software/dexus for additional information, data sets,
and R scripts.

2 Getting Started and Quick Guide

To load the package, enter the following in the R session:

> library(dexus)

With the package dexus we provide the “Mice strains” (Bottomly et al., 2011), “Primate Liver”
(Blekhman et al., 2010), “Maize leaves” (Li et al., 2010), “European HapMap” (Montgomery
et al., 2010), and the “Nigerian HapMap” (Pickrell et al., 2010) data sets. The read counts
are stored in the objects countsBottomly, countsGilad, countsLi, countsMontgomery, and
countsPickrell, respectively.

> data(dexus)

> ls()

[1] "countsBottomly" "countsGilad" "countsLi"

[4] "countsMontgomery" "countsPickrell" "dexusVersion"

http://www.bioinf.jku.at/software/dexus
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2.1 Unknown Conditions

One can simply run DEXUS by applying the function dexus to the count matrices. This is the
mode in which the conditions are unknown, i.e. no labels that indicate the replicate groups have
to be provided.

> result <- dexus(countsBottomly[1:1000, ])

> plot(result)
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Figure 1: Result of DEXUS for data with unknown conditions. A heatmap of the log read counts
of the top ranked transcripts of the “Mice strains” (Bottomly et al., 2011) data set is shown. Rows
represent transcripts sorted by their I/NI values. The trancript on the top has the highest I/NI
value. Columns represent different samples. The labels “D2” and “B6” represent the two different
strains. Red crossed indicate the samples belonging to the second condition that DEXUS has
identified.

2.2 Known Conditions

To test between two or more replicate groups, DEXUS needs to be provided with the group labels:

> resultSupervised <- dexus(countsBottomly[1:1000, ],

+ labels=substr(colnames(countsBottomly),1,2))

> plot(resultSupervised)
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Figure 2: Result of DEXUS for data with known conditions. A heatmap of the log read counts of
the top ranked transcripts of the “Mice strains” (Bottomly et al., 2011) data set is shown. Rows
represent transcripts sorted by their p-values. The trancript on the top has the lowest p-value.
Columns represent different samples. The labels “D2” and “B6” represent the two different strains.
Red crossed indicate the samples belonging to the second condition, that was given by the labels

3 Input Data: Read Count Matrices or CountDataSets

DEXUS expects a table of counts per transcript, transcript, exon, or any other region of interest
as input in analogy to other RNA-Seq analysis methods (Anders and Huber, 2010; Robinson et
al., 2010; Hardcastle and Kelly, 2010; Li et al., 2012; Wang et al., 2010; Li and Tibshirani, 2011;
Tarazona et al., 2011; Wu et al., 2012). The table should have the transcripts as rows and samples
as columns. An entry should correspond to the number of reads of the sample mapping to the tran-
script. Technical replicates of one sample should be summed up so that each column corresponds
to one sample. There are various ways how to produce count matrices from BAM files:

A full guide on processing RNA-Seq data including the calculation of read count matrices is
provided at http://en.wikibooks.org/wiki/Next_Generation_Sequencing_(NGS)
/RNA.

The function HTSeq-count of HTSeq Python package http://www-huber.embl.de/users/
anders/HTSeq/doc/count.html.

Ready-made count tables for a lot of studies are available at http://bowtie-bio.sourceforge.
net/recount/ (Frazee et al., 2011).

http://en.wikibooks.org/wiki/Next_Generation_Sequencing_(NGS)/RNA
http://en.wikibooks.org/wiki/Next_Generation_Sequencing_(NGS)/RNA
http://www-huber.embl.de/users/anders/HTSeq/doc/count.html
http://www-huber.embl.de/users/anders/HTSeq/doc/count.html
http://bowtie-bio.sourceforge.net/recount/
http://bowtie-bio.sourceforge.net/recount/
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The function countOverlaps of the Bioconductor package GenomicRanges can also be
utilized.

The function getSegmentReadCountsFromBAM of the Bioconductor package cn.mops (Klam-
bauer et al., 2012) can also be utilized to extract read counts from BAM files efficiently.

3.1 Read Count Matrices or Count Tables as Input for DEXUS

A read count matrix or count table should look like the following:

> data(dexus)

> countsBottomly[1:10,1:5]

D2_1_4 D2_2_4 D2_3_4 D2_5_4 B6_6_4

ENSMUSG00000000001 290 440 292 358 453

ENSMUSG00000000003 0 0 0 0 0

ENSMUSG00000000028 17 15 17 10 20

ENSMUSG00000000031 0 0 1 0 1

ENSMUSG00000000037 12 5 4 6 2

ENSMUSG00000000049 0 2 0 0 0

ENSMUSG00000000056 263 303 221 236 323

ENSMUSG00000000058 116 184 122 157 132

ENSMUSG00000000078 300 388 304 407 357

ENSMUSG00000000085 747 928 608 700 899

A numeric matrix of read counts can directly be used with DEXUS.

> result <- dexus(countsBottomly)

3.2 CountDataSets as input for DEXUS

A CountDataSet, such as the ones used in the package DESeq (Anders and Huber, 2010), can
also directly be used it with DEXUS:

> library(DESeq)

> cds <- newCountDataSet(countData=countsBottomly,

+ conditions=substr(colnames(countsBottomly),1,2) )

> result <- dexus(cds)

4 General Study Designs: No Replicates, Unknown Sample Groups
or Conditions

Examples of studies in which the groups are unknown, are the studies of Montgomery et al. (2010)
and Pickrell et al. (2010). They sequenced the RNA of HapMap individuals to investigate eQTLs.
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DEXUS is able to identify differential expression in these data sets. The method estimates the
conditions for each transcript individually.

To run the method simply apply the function dexus to the count table. In the following exam-
ple we run the algorithm only one the first 1000 transcripts.

> resultMontgomery <- dexus(countsMontgomery[1:1000, ])

To show a summary of the result object, simply type the following.

> resultMontgomery

Displaying the 10 top ranked genes of the analyis:

Index Transcript INIcall INI Mean.Condition_1 Mean.Condition_2

1 88 ENSG00000007038 TRUE 1.619 1.0 40.6

2 224 ENSG00000022556 TRUE 1.106 172.0 0.8

3 569 ENSG00000069011 TRUE 0.616 1.1 9.8

4 114 ENSG00000008196 TRUE 0.608 0.8 12.3

5 866 ENSG00000084710 TRUE 0.583 5.3 39.8

6 732 ENSG00000076716 TRUE 0.564 136.7 1.1

7 417 ENSG00000057294 TRUE 0.520 1.1 14.1

8 337 ENSG00000047648 TRUE 0.423 29.6 2.8

9 379 ENSG00000052723 TRUE 0.418 6.6 0.8

10 450 ENSG00000062370 TRUE 0.381 1.1 7.8

Total number of transcripts: 1000

Number of differentially expressed transcripts: 104

Percentage of differentially expressed transcripts: 10.4 %

The transcripts are in their original order; the displayed columns give the whether a transcript
is differentially expressed (INICall), the evidence for differential expression measured by the
I/NI values (INIValues), and the means for each condition.

It is possible to sort the result object such that the transcripts with the highest I/NI values are
ranked highest.

> sort(resultMontgomery)

Transcripts with an I/NI value above 0.1 are classfied as differentially expressed. The function
INI filters the result object for informative transcripts and sorts them by their I/NI calls.

> informativeTranscripts <- INI(resultMontgomery,threshold=0.2)

Total number of transcripts: 1000

Number of differentially expressed transcripts: 32

Percentage of differentially expressed transcripts: 3.2 %
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The result can be visualized by a heatmap using the plot function.

> plot(informativeTranscripts)
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Figure 3: Result of DEXUS in unsupervised mode with unknown conditions. A heatmap of the log
read counts of the top ranked transcripts of the “European HapMap” (Montgomery et al., 2010)
data set is shown. Rows represent transcripts sorted by their I/NI values. The trancript on the
top has the highest I/NI. Columns represent different samples. Red symbols indicate samples that
belong to the minor condition that was identified by DEXUS.

Information about a specific transcript can also be accessed from the result object by subsetting
it with the transcript name.

> resultMontgomery["ENSG00000007038"]

Displaying the 10 top ranked genes of the analyis:

Index Transcript INIcall INI Mean.Condition_1 Mean.Condition_2

1 1 ENSG00000007038 TRUE 1.619 1 40.6

Total number of transcripts: 1

Number of differentially expressed transcripts: 1

Percentage of differentially expressed transcripts: 100 %

Even more information can be obtained by using the as.data.frame function.

> as.data.frame(resultMontgomery["ENSG00000007038"])
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Transcript INIcall INI pval Mean.Condition_1 Mean.Condition_2

1 ENSG00000007038 TRUE 1.619496 NA 0.9659015 40.5991

logFC.Condition_1 logFC.Condition_2 conditionSize.Condition_1

1 0 3.738338 0.5667871

conditionSize.Condition_2 dispersion.Condition_1 dispersion.Condition_2

1 0.4332129 0.07692308 1.082242

To convert the full result object to a data frame that can be exported the function as.data.frame
can be used.

> as.data.frame(sort(resultMontgomery))

For more information on the result object, see Section 6.

5 Case-Control Like Study Designs: Replicates, Known Sample Groups
or Conditions

5.1 Two Known Groups or Conditions

In the study of Bottomly et al. (2011), two strains of mice, C57BL/6J (B6) and DBA/2J (D2),
were compared using both RNA-Seq and microarrays. The data set consists of 21 lanes from male
mice (10 of the B6 strain and 11 of D2 strain), produced using an Illumina GAIIx sequencing
machine. The data set was provided by the ReCount repository (Frazee et al., 2011) that is based
on Ensembl 61 transcript definitions. In this case of two known conditions we provide DEXUS
with the group labels, in order to detect transcripts that are differentially expressed between the
two mice strains.

We apply the function dexus to the count table of the first 1000 transcripts and provide the
labels of the samples, and set the normalization to “Upper Quartile” normalization.

> resultSupervised <- dexus(countsBottomly[1:1000, ],

+ labels=substr(colnames(countsBottomly),1,2),

+ normalization="upperquartile")

To show a list of differentially expressed transcripts, simply type the name of the result object.

> resultSupervised

Displaying the 10 top ranked genes of the analyis:

Index Transcript pvalues Mean.Condition_1 Mean.Condition_2

1 691 ENSMUSG00000004267 0.01075699 11029.5 12489.9

2 112 ENSMUSG00000000632 0.01181238 5748.2 6903.4

3 597 ENSMUSG00000003469 0.01264576 7556.2 8032.5

4 276 ENSMUSG00000001525 0.01326458 4922.6 5479.5

5 973 ENSMUSG00000006273 0.01349587 8199.7 8431.8
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6 683 ENSMUSG00000004187 0.01403671 4448.6 5012.4

7 402 ENSMUSG00000002265 0.01406697 8999.1 9080.6

8 118 ENSMUSG00000000701 0.01438271 0.0 0.0

9 849 ENSMUSG00000005442 0.01484236 3061.5 3636.0

10 92 ENSMUSG00000000538 0.01485909 4481.5 4924.3

Total number of transcripts: 1000

Number of differentially expressed transcripts: 252

Percentage of differentially expressed transcripts: 25.2 %

To sort the transcripts in the result object by p-values use the sort method.

> resultSupervised <- sort(resultSupervised)

To obtain a heatmap of the differentially expressed transcripts, type plot.

> plot(resultSupervised)

To get the full list of transcripts together with additional information, such as the I/NI values,
conditions, dispersions, and means the function as.data.frame can be used.

> as.data.frame(resultSupervised)

For more information on the result object, see Section 6.

5.2 Multiple Known Groups or Conditions

Blekhman et al. (2010) investigated the differences in alternative splicing in liver tissue between
humans, chimpanzees and rhesus macaques. For this purpose they performed RNA-Seq on three
male and three female liver samples from each species. They focused on the expression values of
exons that had reliably determined orthologs in all species. Read counts for exons were provided
by Blekhman et al. (2010), who used transcript models from Ensemble (Release 50). In this case
the three species are three distinct groups. The aim is to find transcripts, that show large differences
between these groups.

We run DEXUS on this data set and provide the method with the group labels, i.e. the species.

> resultMultipleGroups <- dexus(countsGilad[1:1000, ],

+ labels=substr(colnames(countsGilad),1,2))

To show a list of differentially expressed transcripts, simply type the name of the result object.

> resultMultipleGroups
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Displaying the 10 top ranked genes of the analyis:

Index Transcript pvalues Mean.Condition_1 Mean.Condition_2

1 26 ENSG00000002726 8.680312e-06 27.6 1.1

2 253 ENSG00000010379 5.191181e-05 177.9 39.2

3 168 ENSG00000007174 5.364664e-05 0.7 0.7

4 432 ENSG00000025423 6.321030e-05 1187.6 41.2

5 521 ENSG00000037042 8.129194e-05 25.9 50.7

6 257 ENSG00000010626 8.867209e-05 9.1 15.2

7 951 ENSG00000066629 9.086187e-05 44.0 119.2

8 667 ENSG00000050628 9.132719e-05 2.3 1.4

9 240 ENSG00000010219 1.089026e-04 38.5 64.1

10 707 ENSG00000054277 1.141968e-04 127.3 90.3

Mean.Condition_3

1 17710.6

2 1.2

3 51.3

4 1850.5

5 1.9

6 0.5

7 498.2

8 91.5

9 1.3

10 18.2

Total number of transcripts: 1000

Number of differentially expressed transcripts: 841

Percentage of differentially expressed transcripts: 84.1 %

To sort the transcripts in the result object by p-values use the sort method.

> resultMultipleGroups <- sort(resultMultipleGroups)

To obtain a heatmap of the top-ranked transcripts use the plot function.

> plot(resultMultipleGroups)
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Figure 4: Result of DEXUS in supervised mode with multiple known groups. A heatmap of the
log read counts of the top ranked transcripts of the “Primate Liver” (Blekhman et al., 2010) data
set is shown. Rows represent transcripts sorted by their p-values. The trancript on the top has the
lowest p-value. Columns represent different samples. The labels “HS”,“PT” and “MM” represent
the three different species. Red symbols indicate the different species.

To get the full list of transcripts together with their p-values the function getResult can be
used.

> as.data.frame(resultMultipleGroups)

For more information on the result object, see Section 6.

6 Calling Differential Expression, Visualization and the Result Ob-
ject

6.1 Calling Differential Expression by the Informative/Non-Informative Call

In a setting in which the conditions or sample groups are unknown, or in which there are no
replicates, the I/NI value measures the evidence for differential expression. At different thresholds
DEXUS has different detection powers (sensitivity) and significance levels (specificity). On 2,400
simulated data sets, I/NI value thresholds of 0.025, 0.05, and 0.1 yielded average specificities of
92%, 97%, and 99% at sensitivities of 76%, 61%, and 38% respectively. The threshold for the
I/NI values is set by the function INIThreshold. The function INI filters out non-informative
transcripts.
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> informativeTranscripts2 <- INI(resultMontgomery,threshold=0.25)

Total number of transcripts: 1000

Number of differentially expressed transcripts: 23

Percentage of differentially expressed transcripts: 2.3 %

The object informativeTranscripts2 contains only the informative, i.e. the differentially
expressed transcripts.

6.2 Visualization

There is a generic plotting function that can be applied to the result object of DEXUS. The log
read counts are visualized as a heatmap, in which we also indicate the identified sample condition.
We can select which transcripts we want to plot by using the parameter idx.

> #plots the top 8 transcripts

> plot(sort(informativeTranscripts2), idx=1:8)
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Figure 5: Result of DEXUS in unsupervised mode with unknown conditions. A heatmap of the log
read counts of the top ranked transcripts of the “European HapMap” (Montgomery et al., 2010)
data set is shown. Rows represent transcripts sorted by their I/NI values. The trancript on the
top has the highest I/NI. Columns represent different samples. Red symbols indicate samples that
belong to the minor condition that was identified by DEXUS.
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6.3 The Structure of the Result Object

DEXUS returns an instance of “DEXUSResult” that contains the following slots:

transcriptNames: The names of the transcripts, genes, exons, or regions of interest.

sampleNames: The sample names, as they were given in the input matrix.

inputData: The original read count matrix.

normalizedData: The normalized read count matrix.

sizeFactors: The size factors that were calculated for the normalization. This is that
factor that scales each column or sample.

INIValues: An informative/non-informative (I/NI) value for each sample that measures the
evidence for differential expression.

INIThreshold: The threshold for the I/NI values. Transcript with I/NI values above the
threshold will be considered as differentially expressed.

INICalls: A binary value for each transcript indicating whether it is differentially ex-
pressed.

pvals: In case of two known conditions or multiple known conditions it is possible to
calculate a p-value for each transcript. This value is given in this slot.

responsibilites: A matrix of the size of the input matrix. It indicates the condition
for each sample and transcript. The condition named “1” is the major condition. All other
conditions are minor conditions. In case of supervised (two known conditions or multiple
known conditions) analyses this clustering matrix will be the same for all transcripts.

posteriorProbs: An array of the dimension of transcripts times samples times conditions.
It gives the probability that a certain read count x was generated under a condition.

logFC: The log foldchanges between the conditions. The reference is always condition “1”.

conditionSizes: The ratio of samples belonging to that condition. These are the αi values
of the model.

sizeParameters: The size parameter estimates for each condition. These are the ri values
of the model.

means: The mean of each condition. The µi values of the model.

dispersions: The dispersion estimates for each condition. The inverse size parameters.

params: The input parameters of the DEXUS algorithm.
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7 Parameter Settings of DEXUS

The input parameters of the DEXUS algorithm are the following:

X: The read count matrix. If the reads are already normalized, then set normalization to
“none”.

nclasses: The number of conditions that DEXUS should model. The number should be
much smaller than the number of samples. In supervised mode (two known conditions or
multiple known conditions) the algorithm uses the number of different labels as nclasses.
Needs not be specified in supervised mode.

alphaInit: The initialization of the αi values of the model. A vector with length of the
number of conditions. The algorithm internally scales this vector to sum 1. Needs not be
specified in supervised mode.

G: The weight of the Dirichlet prior. An important parameter that guides the EM algorithm.
The higher this value the more transcripts will be explained by one condition and will there-
fore be classified as not differentially expressed. The lower the value of G the more tran-
scripts will be found to be differentially expressed. Needs not be specified in supervised
mode.

cyc: The number of cycles of the EM algorithm per transcript. Needs not be specified in
supervised mode.

labels: If the conditions, groups, or classes are known, then they can be passed to the
algorithm through this parameter.

normalization: The normalization method to be used. Choices are “RLE”, “upperquar-
tile”, and “none”.

kmeansIter: For the initialization of the algorithm a k-means clustering is run. This is the
number of iterations of the clustering.

ignoreIfAllCountsSmaller: A transcript is considered as “not expressed”, if counts of
all samples are below this value. The algorithm is not applied to these transcripts.

theta: The weight of the exponential prior on the size parameter of the negative binomial
distributions. The higher this parameter, the lower the estimates of the size parameters, and
consequently the higher the estimates of the overdispersions.

minMu: The minimal value for the mean parameter of the negative binomial distribution.

rmax: An upper bound for the size parameter and thereby a lower bound for the overdisper-
sion. The value is set to the value that DESeq uses for this purpose.

initializiation: How the initial estimates of the conditions are determined. Possible
choices are “kmeans” and “quantiles”. Needs not be specified in supervised mode.

multiClassPhiPoolingFunction: In case of multiple known conditions it is possible to
calculate one overdispersion value per transcript. This can be calculated over all condi-
tions or as mean, maximum or minimum over the specified conditions. Usually the option
“NULL” (calculation of the overdispersion across all conditions) performs best.
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8 The Method

DEXUS models read counts as a finite mixture of negative binomial distributions in which each
mixture component corresponds to a condition. DEXUS classifies a transcript as differentially
expressed if modeling of its read counts requires more than one condition. To account for the high
overdispersion observed in RNA-Seq data, DEXUS assumes that under each condition the read
counts are drawn from a negative binomial distribution. Read count x is explained by a mixture of
n negative binomial distributions:

p(x) =

n∑
i=1

αi NB(x ; µi, ri) , (1)

where αi is the probability of being in condition i out of n possible conditions. In condition i, read
counts are drawn from a negative binomial distribution with mean µi and size ri, where the size
parameter ri is the inverse of the overdispersion φi. An expectation maximization (EM) algorithm
is used to estimate mean and overdispersion parameters of the negative binomials as well as the
condition under which a particular read count was generated. DEXUS decomposes read count
variation into variation due to noise and variation due to differential expression. The evidence
for differential expression is measured by an informative/non-informative (I/NI) value. DEXUS
applies a threshold to the I/NI value to extract differentially expressed transcripts with a desired
specificity (significance level) or sensitivity (power).

DEXUS performs excellently in identifying differentially expressed transcripts on data with
unknown conditions. DEXUS was tested on 2,400 simulated data sets. For I/NI value thresholds
of 0.025, 0.05, and 0.1, it yielded average specificities of 92%, 97%, and 99% at sensitivities of
76%, 61%, and 38%, respectively. Subsequently, DEXUS was tested on real-world data sets, in
which it identified differentially expressed transcripts between subgroups defined by sex, species,
or tissue although information about these subgroups was withheld. On HapMap individuals,
DEXUS detected several differentially expressed transcripts, the vast majority of which are re-
lated to sex, eQTLs, or copy number variable regions. However, we were unable to interpret the
conditions for some differentially expressed transcripts which hints at the existence of another
cause of differential expression.

9 A MAP Estimate for the Size Parameter and the Overdispersion of
a Negative Binomial

We provide the function getSizeNB that gives an estimate for the size parameter of a negative
binomial distribution from given data. In this function the maximum-likelihood estimate is used,
if the argument eta is set to 0, and if eta is set to a value greater than 0, a maximum-a-posteriori
estimator for the size parameter is calculated. In that case an exponential prior is used. The
argument eta determines the weight of this prior.

The maximum-likelihood estimator overestimates the size parameter and, thus, underestimates
the overdispersion parameter Piegorsch (1990). The maximum-a-posteriori estimator can correct
for this bias and decreases the variance of the estimator, as we show in the following example. An-
other problem is that, if the mean of the given data exceeds the variance, the maximum-likelihood-
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estimator tends to infinity Anscombe (1950). By setting the argument rmax to a positive value, one
can infer an upper bound on the size parameter and, thereby, a lower bound on the overdispersion.

> trueSizeParameter <- 2

> x <- rnbinom(n=5, size=trueSizeParameter, mu=40)

> (sizeML <- getSizeNB(x,eta=0))

[1] 59.26277

> (sizeMAP <- getSizeNB(x,eta=1))

[1] 2.32336

> (trueDispersion <- 1/trueSizeParameter)

[1] 0.5

> (dispersionML <- 1/getSizeNB(x,eta=0))

[1] 0.016874

> (dispersionMAP <- 1/getSizeNB(x,eta=1))

[1] 0.4304112
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