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1 Introduction

This package implements the Neighbourhood Consistent PC Algorithm (NCPC)
and Direct Dependence Graphs (DDGraphs) which show the dependence struc-
ture of a single target variable.

The main goal of the NCPC algorithm is to infer direct from indirect depen-
dencies to a target variable. Direct dependencies make up the causal neighbour-
hood of the target variable and in context of transcription binding profiles and
gene regulation can be interpreted as the combinatorial code. This is achieved
by performing conditional independence tests and therefore establishing statis-
tical independence properties. NCPC has been shown to have a larger recall
rate in scenarios with highly correlated variables (such as transcription factor
binding profiles) which are weakly associated to a sparse target variable. For
more details on the NCPC algorithm see (Stojnic et al., 2012).

These methods are applicable to any data that come in a matrix format
(both binary and continuous) as long as there is one biological target variable.
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The variables could for instance be either thresholded or threshold-free ChIP-
chip/seq profiles, TF binding sites predictions, or indeed any set of biological
features that are thought to influence (or are influenced by) a biological target
variable.

The package also implements a unified front-end to a number of other meth-
ods for inferring causal neighbourhood and Markov Blanket, as provided by
packages bnlearn and pcalg. These methods include: Bayesian Network re-
construction using Hill-Climbing with BIC and BDe scores, IAMB, FastIAMB,
InterTAMB, MMPC, MMHC with BIC/BDe scores and PC algorithm.

The package is using the S4 class systems but with a limited number of gener-
ics. Accessors to data stored in S4 objects are implemented in more traditional
list-like fashion using the $ operator (similar to S3 and RefClass objects).

2 A toy example of finding the combinatorial
code

In this section we present a motivating example and explain the statistical and
computational context for the NCPC algorithm. For more information about
how to usage the package in a typical real-world application please skip to
Section 3.

Assume we are interested in finding transcription factors (TFs) that confer
tissue-specificity to a set of cis-regulatory modules (CRMs), and we have the
following datasets for a set of CRMs:

e A - a binary vector representing if transcription factor A binds to a CRM
(e.g. obtained by thresholding a ChIP-chip signal)

e B - a binary vector representing if transcription factor B binds to a CRM
(e.g. obtained by thresholding a ChIP-chip signal)

e T - a binary vector representing if a CRM is tissue specific (e.g. from
transgenic reporter assays, proximity of tissue-specific genes, etc).

This fictional dataset can be accessed with data(toyExample). This is a
DDDataSet object containing a data frame where columns are the two TFs and
“class” representing the target variable T. See Section 3.5 on how to create a
DDDataSet from a custom matrix.

> library(ddgraph)
> data(toyExample)
> toyExample

DDDataSet object: T
with 200 data points of 2 variables with binary values

> head(rawData (toyExample))



A
1
0
0
1
0
1

DO WN

We are interested if A and/or B have a different binding pattern in those
CRMs that are tissue specific (T=1) and those that are not (T=0). Tradition-
ally, this is done by performing a Fisher’s exact test. We would make a contin-
gency table of T vs A, and T vs B and see if there is a statistical dependence
between them. This gives us information about T-A and T-A independently of
each other. We can do this with function ciTest:

> ciTest (toyExample, "class", "A", test="fisher")

Conditional independence test results using fisher
class[3] vs A[1], cond=[], reliable=TRUE, p.value=4.345314e-06

> ciTest (toyExample, "class", "B", test="fisher")

Conditional independence test results using fisher
class[3] vs B[2], cond=[], reliable=TRUE, p.value=0.0002472066

Both A and B show strong marginal dependence with the target variable (T
internally represented as ”class”), A more than B but both with fairly low P-
values. Thus, both A and B are significantly associated with T. Next we might
be interested in the combinatorial pattern of these two TFs. For instance, we
might want to cluster our data (1 represented as black, and 0 as white):

> heatmap(as.matrix(rawData(toyExample)), scale="none", col=c("white", "black"))
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Visually we can see that there are clusters when A and B are bound where
T=1 (top part of the diagram, T is represented with "class”), but we observe
similar clusters for T=0 as well. Thus, it is unclear if there is any tissue-specific
combinatorial pattern.

The question if there is a tissue-specific combinatorial pattern can also be
framed as: is T still dependent on B in the context of A? And vica versa, is T
still dependent on A in the context of B.

The question framed like this can be answered using a conditional indepen-
dence test. This test is similar to marginal dependence test (e.g. Fisher’s exact
test), except that the data is grouped by one or more variables. If we suspect
that A is a tissue-specific TF, and B not tissue specific then we would perform
the T vs B test on two sub-datasets: one on CRMs where A=1 and one on
CRMs where A=0. If the hypothesis is true, splitting the dataset by A should
remove any dependence between T and B.

Indeed, when we split the dataset by A, we find that in the two partitions
(A=0 and A=1) there is no significant association between T and N (here rep-
resented as a single P-value):

> ciTest (toyExample, "class", "B", "A")

Conditional independence test results using mc-x2-c
class[3] vs B[2], cond=A[1], reliable=TRUE, p.value=0.5802

Conversely, if we split the dataset by B, we still find significant association
between T and A:



> ciTest(toyExample, "class", "A", "B")

Conditional independence test results using mc-x2-c
class[3] vs A[1], cond=B[2], reliable=TRUE, p.value=0.0064

This suggests that A is directly associated with T ("class”), while B is asso-
ciated only via its correlation with A. In terms of theory of causation, we say
that A constitutes the causal neighbourhood of T.

Biologically this results suggests that A confers tissue-specificity, while B is
associated with tissue-specific CRMs (T) via its correlation with A, possibly due
to chromatin structure or other reasons independent of T.

The NCPC algorithm works by running many such tests and contains ad-
ditional checks for tests consistency which are especially important when the
variables (in our case A and B) are highly correlated, which is the case for many
TF binding profiles (Stojnic et al., 2012).

Front-end function calcDependence() will by default run the NCPC al-
gorithm but can also run a number of other algorithms that infer the causal
neighbourhood and the Markov Blanket.

> res <- calcDependence (toyExample)
> causalNeigh <- res$nbr
> causallNeigh

[1] npn

The variables A, B and T need not to be binary. For instance, A and B could
be raw ChIP-chip/seq signals over the CRMs, while T could be a probability of
a CRM being tissue-specific. In that case, partial correlations would be used as
a conditional independence test. That is, a linear relationship would be assumed
between variables, and conditioning would be performed by building a regression
model.

3 Case study - mesodermal CRMs in D. melanogaster

To demonstrate a typical pipeline we will use the example of mesodermal cis-
regulatory modules (CRMSs) in D. melanogaster (Zinzen et al., 2009). This
dataset comprises of genome-wide binding measurements (using ChIP-chip) for
5 transcription factors (TFs) at 1-5 time points. The binding sites were clustered
into putative CRMs that were tested in transgenic reporter assays.

In this section we assume that the user is familiar with the NCPC algorithm
and the DDGraph visualisation vocabulary (Stojnic et al., 2012).

3.1 Example data

The dataset is stored in a matrix format where rows are different observations
(CRMs), while columns are different variables (TFs at time points). A column
of name ”class” is a reserved variable name for the target variable for which we
are finding the causal neighbourhood and Markov Blanket.



> library(ddgraph)
> data(mesoBin)
> names (mesoBin)

[1] unegu

(7] "vM_sM"

> head(rawData(mesoBin$VM))

IIMeSOII

IIVMII

IISM

n CM

"Meso_SM"

Tin 2-4h Tin 4-6h Tin 6-8h Bin 6-8h Bin 8-10h Bin 10-12h Twi 2-4h

1 0 0 1 0
2 0 0 0 0
3 0 0 0 0
4 1 1 1 1
5 0 0 0 0
6 0 0 1 1
Twi 4-6h Twi 6-8h Bap 6-8h Mef2 2-4
1 0 1 0
2 0 0 0
3 1 0 0
4 0 0 1
5 0 0 0
6 0 0 0
Mef2 10-12h class
1 0 0
2 0 0
3 0 0
4 0 1
5 0 0
6 0 0

The example dataset mesoBin is a list of DDDataSet objects, each corre-
sponding to a different target CRM class. Each of the DDDataSet objects con-
tains the binarized TF binding profiles.
binding profiles and target variable (CRM class membership) for the Visceral
Muscle (VM) class of CRMs.

In the example above we show the
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3.2 Inferring direct from indirect dependencies

The front-end function calcDependence() calls various algorithm to infer the

causal neighbourhood and Markov Blanket.

> data(mesoBin)

> calcDependence (mesoBin$VM, "ncpc", verbose=FALSE)

$obj

DDGraph produced with ncpc algorithm

O O O O OO



Direct:

Joint: Bin 6-8h Bin 8-10h

Indirect: Tin 6-8h Bin 10-12h Twi 2-4h Twi 4-6h Bap 6-8h

Using P-value alpha cutoff = 0.05 with conditional independence test = "mc-x2-c"

$nbr
[1] "Bin 6-8h" "Bin 8-10h"

$labels
$labels$direct
NULL

$labels$joint
[1] "Bin 6-8h" "Bin 8-10h"

$labels$indirect
[1] "Tin 6-8h" "Bin 10-12h" "Twi 2-4h" "Twi 4-6h" "Bap 6-8h"
$table
name type explained.by explained.pval

4 Bin 6-8h joint Bin 8-10h 0.0758
5 Bin 8-10h joint Bin 6-8h 0.0622
10 Bap 6-8h weak indirect Bin 6-8h 0.0544
7 Twi 2-4h weak indirect Bin 6-8h 0.1476
6 Bin 10-12h weak indirect Bin 8-10h 1.0000
8 Twi 4-6h weak indirect Bin 8-10h 0.1474
3 Tin 6-8h weak indirect Bin 6-8h 0.6296
2 Tin 4-6h no dependence NA
9 Twi 6-8h no dependence NA
15 Mef2 10-12h no dependence NA
13 Mef2 6-8h no dependence NA
12 Mef2 4-6h no dependence NA
14 Mef2 8-10h no dependence NA
1 Tin 2-4h no dependence NA
11 Mef2 2-4h no dependence NA

marginal.pval log2FC
4 0.0006 1.9517448
5 0.0006 2.6147098
10 0.0064 1.6147098
7 0.0132 -1.7776076
6 0.0146 1.8211607
8 0.0216 -2.4441838
3 0.0316 1.1243842
2 0.3912 0.4627068
9 0.4170 -0.6416299



15 0.4662 -1.2921808
13 0.5696 -0.5729172
12 0.5832 -0.4002405
14 0.7396 -0.5816874
1 1.0000 0.1996723
11 1.0000 -0.5007674

> calcDependence (mesoBin$VM, "hc-bic")

$obj
Bayesian network learned via Score-based methods

model:

[Tin 2-4h] [Tin 4-6h|Tin 2-4h] [Twi 4-6h|Tin 2-4h:Tin 4-6h]

[Mef2 4-6h|Tin 4-6h:Twi 4-6h] [Mef2 6-8h|Mef2 4-6h]

[Tin 6-8h|Tin 4-6h:Mef2 6-8h] [Twi 6-8h|Tin 4-6h:Mef2 6-8h]

[Bap 6-8h|Tin 6-8h] [Bin 6-8h|Bap 6-8h] [Twi 2-4h|Twi 4-6h:Bap 6-8h]
[Bin 8-10h|Bin 6-8h] [Mef2 8-10h|Twi 2-4h:Mef2 6-8h]

[Bin 10-12h|Bin 8-10h:Twi 2-4h] [Mef2 10-12h|Mef2 4-6h:Mef2 8-10h]
[targetIBin 8-10h] [Mef2 2-4h|Tin 4-6h:Mef2 10-12h]

nodes: 16
arcs: 24
undirected arcs: 0
directed arcs: 24
average markov blanket size: 3.75
average neighbourhood size: 3.00
average branching factor: 1.50
learning algorithm: Hill-Climbing
score: BIC (disc.)
penalization coefficient: 2.868286
tests used in the learning procedure: 480
optimized: TRUE
$nbr

[1] "Bin 8-10h"
$mb
[1] "Bin 8-10h"
The result of calcDependence() is a list of:

e obj - the resulting S3/S4 object depending on the method. This object
can be used for plotting and obtain further information about the results.

e nbr - the inferred causal neighbourhood of target variable



e mb - the inferred Markov Blanket of target variable (if available for the
method)

e labels - a set of labels for the variables marking their dependence patterns
(if available for the method)

e table - a tabular representation of the results, sorted by P-value of marginal
dependence (if available for the method). The "type” column represents
the type of conditional independence pattern found.

Each of the different algorithm take a number of parameters, e.g. the con-
ditional independence test, P-value threshold, etc. For more information about
these parameters consult the help page ?calcDependence.

3.3 Direct Dependence Graphs

The result of NCPC and NCPC* algorithm is a Direct Dependence Graph (DD-
Graph). The properties of this graph can be accessed using the $ operator.

> data(mesoBin)
> res <- calcDependence (mesoBin$VM, "ncpc", verbose=FALSE)
> names(res)

[1] "obj" "nbr" "labels" "table"

> dd <- res$obj
> class(dd)

[1] "DDGraph"
attr(, "package")
[1] "ddgraph"

> names (dd)

[1] "params" "final.calls"

[3] "stats" "direct"

[6] "joint" "indirect"

[7] "conditional" "conditionalJoint"

[9] "directAndJoint" "directAndJointAndConditional"

> dd$params

$alpha
[1] 0.05

$p.value.adjust.method
[1] "none"

$test.type



[1] "mc-x2-c"

$mc.replicates
[1] 5000

$verbose
[1] FALSE

$star
[1] FALSE

$min.table.size
[1] 10

$max.set.size
[1]1 2

> dd$joint

Bin 6-8h Bin 8-10h
4 5

For the VM CRM class we identified two variables: Bin 6-8h and Bin 8-10h
as having the joint dependence pattern. To further explore this results we can
plot the DDGraph that summarizes the conditional independence tests that lead
to this result. P-values of conditional independencies are given on top of each

edge.

The DDGraph can be plotted by calling the plot() function. The extra
col=TRUE specifies to colour-code the node according to marginal enrichment
(red) or depletion (blue). For more options see help page for ?plot.

> plot(dd, col=TRUE)

10
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3.4 Testing combinations of values

Once we identified Bin 6-8h and Bin 8-10h as candidates for the causal neigh-
bourhood, we can examine which combinations of their values show most pro-
nounced differences between the CRMs in the VM class, and the rest of CRMs.
For binary data this can be achieved using the combinationsTest () function.

> combinationsTest (mesoBin$VM, c("Bin 6-8h", "Bin 8-10h"),

+ p.adjust.method="fdr", verbose=FALSE)
combination p.value freq.pos freq.neg

1 00 0.0009870705 7 251 depleted

4 11 0.0021694910 5 13 enriched

3 10 0.2216949488 3 25 enriched

2 01 0.2743017082 1 5 enriched

type fold.difference

1.95
7.07
2.21
3.67

The output contains P-values adjusted using the Benjamini-Hochberg method

for controlling false discovery rate, and is sorted in ascending P-value order.

3.5 Creating a new dataset

A dataset can be created from scratch by invoking the function makeDDDataSet ().
The input is a matrix with rows as observations, columns as variables and the
corresponding target variable. Only one target variable can be specified. Cur-
rently only binary and continuous data types are supported.

11



> data <- matrix(rbinom(50, 1, 0.5), ncol=5)

> target <- c(0, 0, 0, 0, 0, 1, 1, 1, 1, 1)

> d <- makeDDDataSet(data, name="example data", classLabels=target)
> d

DDDataSet object: example data
with 10 data points of 5 variables with binary values

> rawData(d)

V1 V2 V3 V4 V5 class
1 1 0 1 0 O 0
2 1 0 1 1 O 0
3 0 0 0 0 O 0
4 0 1 0 0 O 0
5 1 0 1 0 O 0
6 1 0 1 1 O 1
7 o 1 1 1 1 1
8 1 1 1 1 1 1
9 1 0 0 0 1 1
10 0 1 0 1 1 1
> names (d)
[1] "Vl" "V2" Ilv3’l Ilv4ll I|V5l| "ClaSS"

> d$vi1

[1 11100110110
> d$class

[t oo0OOO1T1111

If the data is already stored in an S4 object, we recommend implementing the
toDDDataSet () generic to provide a unified mechanism for obtaining DDDataSet
instances.

4 Session info

e R version 3.2.0 (2015-04-16), x86_64-unknown-linux-gnu

e Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_US.UTF-8,
LC_COLLATE=C, LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8,
LC_PAPER=en_US.UTF-8, LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C,
LC_MEASUREMENT=en_US.UTF-8, LC_IDENTIFICATION=C

e Base packages: base, datasets, grDevices, graphics, grid, methods, stats,
utils
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e Other packages: Rcpp 0.11.5, Rgraphviz 2.12.0, ddgraph 1.12.0,
graph 1.46.0

e Loaded via a namespace (and not attached): BiocGenerics 0.14.0,
DEoptimR 1.0-2, MASS 7.3-40, RBGL 1.44.0, RColorBrewer 1.1-2,
abind 1.4-3, bdsmatrix 1.3-2, bnlearn 3.7.1, corpcor 1.6.7, ggm 2.3,
gtools 3.4.2, igraph 0.7.1, parallel 3.2.0, pcalg 2.0-10, plotrix 3.5-11,
robustbase 0.92-3, sfsmisc 1.0-27, stats4 3.2.0, tools 3.2.0
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