bioassayR: small molecule bioactivity analysis

Tyler Backman, Thomas Girke
Email contact: thomas.girke@ucr.edu

June 10, 2015

1 Introduction

bioassayR is a flexible computational tool for statistical analysis of biological screening data. It allows users to store,
organize, and systematically analyze data from a large number of small molecule bioactivity experiments. Users have
the option of supplying their own bioactivity data for analysis, or downloading a database from the authors website
(http://chemmine.ucr.edu/bioassayr) pre-loaded with bioactivity data sourced from NCBI PubChem Bioassay|[1, 2].
The pre-loaded database contains the results of hundreds of thousands of bioassay experiments, where small molecules
were screened against a defined biological target. bioassayR allows users to powerfully leverage these data as a reference
to identify small molecules active against a protein or organism of interest, identify target selective compounds that may
be useful as drugs or chemical genomics probes, and identify and compare the activity profiles of small molecules.

Contents
1 Introduction 1
2 Recently Added Features 1
3 Getting Started 2
3.1 Installation L e 2
3.2 Loading the Package and Documentation L 2
3.3 Quick Tutorial . . . o, 2
4 Loading User Supplied Data 5
5 Prebuilt Database Example: Investigate Activity of a Known Drug 6
6 Identify Target Selective Compounds 8
7 Cluster Compounds by Activity Profile 10
8 Analyze and Load Raw Screening Data 12
9 Version Information 14
10 Funding 14

2 Recently Added Features

e added inactiveTargets which finds targets a compound is inactive against

http://chemmine.ucr.edu/bioassayr

bioassayR Manual 3 Getting Started

added targetSelectivity which computes target selectivity for a list of compounds
added screenedAtLeast which returns a list of CIDs screened at least X times
added loadIdMapping which stores protein identifier mappings

added translateTargetId which retrieves stored protein identifier mappings

3 Getting Started

3.1 Installation

The R software for running bioassayR can be downloaded from CRAN (http://cran.at.r-project.org/). The
bioassayR package can be installed from R using the bioLite install command.

> source("http://bioconductor.org/biocLite.R") # Sources the biocLite.R installation script.
> biocLite("bioassayR") # Installs the package.

3.2 Loading the Package and Documentation

> library(bioassayR) # Loads the package

> library(help="bioassayR") # Lists all functions and classes
> vignette("bioassayR") # Opens this PDF manual from R

3.3 Quick Tutorial

This example walks you through creating a new empty database, adding example small molecule bioactivity data, and
performing queries on these data.

This example includes real experimental data from an antibiotics discovery experiment. These data are a “confirmatory
bioassay” where 57 small molecules were screened against the mevalonate kinase protein from the Streptococcus pneumo-
nia (SP) bacteria. Mevalonate kinase inhibitors are one possible class of antibiotic drugs that may be effective against this
infamous bacteria. These data were published as assay identifier (aid) 1000 in the NCBI PubChem Bioassay database,
by Dr. Thomas S. Leyh.

First, create a new database. For purposes of this manual a temporary file is used, but you can replace the tempfile
function call with a filename of your choice if you wish to save the resulting database for later.

> library(bioassayR)

> library(RSQLite)

> myDatabaseFilename <- tempfile()

> mydb <- newBioassayDB(myDatabaseFilename, indexed=F)

Next, specify the source and version of the data you plan to load. This is a required step, which makes it easier to track
the origin of your data later. Feel free to use the current date for a version number, if your data isn't versioned.

> addDataSource (mydb, description="PubChem Bioassay", version="unknown")

After adding a data source, create or import a data.frame which contains the activity scores for each of the molecules
in your assay. This data.frame must contain four columns which includes a cid (unique compound identifier) for each
compound, an sid (often used to distinguish distinct samples of the same compound structure), a binary activity score
(1 = active, 0 = inactive), and a numeric activity score. Consult the bioassay man page for more details on formatting
this data.frame. The bioassayR package contains an example activity score data frame that can be accessed as follows:

> data(samplebioassay)
> samplebioassay[1:10,] # print the first 10 scores

http://cran.at.r-project.org/

bioassayR Manual 3 Getting Started

cid sid activity score
1 730195 26736081 0 0
2 16749973 26736082 1 80
3 16749974 26736083 1 80
4 16749975 26736084 1 80
5 16749976 26736085 1 80
6 16749977 26736086 1 80
7 16749978 26736087 1 80
8 16749979 26736088 1 80
9 16749980 26736089 1 80
10 16749981 26736090 1 80

All bioactivity data is loaded into the database, or retrieved from the database as an bioassay object which contains
details on the assay experimental design, molecular targets, and the activity scores. A bioassay object which incorporates
activity scores can be created as follows. The source id value must exactly match that loaded earlier by addDataSource.
The molecular target(s) for the assay are optional, and an unlimited number can be specified for a single assay as a vector
passed to the targets option. The target types field should be a vector of equal length, describing the type of each target
in the same order.

> myAssay <- new("bioassay",aid="1000", source_id="PubChem Bioassay",

+ assay_type="confirmatory", organism="unknown", scoring="activity rank",
+ targets="116516899", target_types="protein", scores=samplebioassay)
> myAssay

class: bioassay

aid: 1000

source_id: PubChem Bioassay

assay_type: confirmatory

organism: unknown

scoring: activity rank

targets: 116516899

target_types: protein

total scores: 57

The bioassay object can be loaded into the database with the loadBioassay function. By repeating this step with
different data, a large number of distinct assays can be loaded into the database.

> loadBioassay (mydb, myAssay)

Wait a minute! We accidentally labeled that assay as organism “unknown” when we know that it's actually a screen
against a protein from Streptococcus pneumonia. After loading an assay into the database, you can later retrieve these
data with the getAssay function. By combining this with the ability to delete an assay (the dropBioassay function)
one can edit the database by (1) pulling an assay out, (2) deleting it from the database, (3) modifying the pulled out
object, and (4) reloading the assay. For example, we can update the species annotation for our assay as follows:

> tempAssay <- getAssay(mydb, "1000") # get assay from database

> dropBioassay (mydb, "1000") # delete assay from database

> organism(tempAssay) <- "Streptococcus pneumonia" # update organism
> loadBioassay(mydb, tempAssay)

It is recommended to index your database after loading all of your data. This significantly speeds up access to the
database, but can also slow down loading of data if indexing is performed before loading.

> addBioassayIndex (mydb)

After indexing, you can query the database. Here are some example queries. First view the database summary provided
by bioassayR:

> mydb

bioassayR Manual 3 Getting Started

class: BioassayDB
assays: 1
sources: PubChem Bioassay
writeable: yes

Next, you can query the database for active targets for a given compound by cid. In this case, since only one assay has
been loaded only a single target can be found. Experiment with loading more assays for a more interesting result!

> activeTargets (mydb, 16749979)

fraction_active total_screens
116516899 26736088 1

While many pre-built queries are provided (see other examples and man pages) advanced users can also build their own
SQL queries. First you will want to see the structure of the database as follows:

> queryBioassayDB(mydb, "SELECT * FROM sqlite_master WHERE type='table'")

type name tbl_name rootpage
1 table activity activity 2
2 table assays assays 3
3 table domains domains 4
4 table sources sources 5
5 table targets targets 6
6 table targetTranslations targetTranslations 7

DO WN -

As this is a SQLite database, you can consult http://wuw.sqlite.org for specifics on building SQL queries. For
example, you can find all assays a given compound has participated in as follows:

> queryBioassayDB(mydb, "SELECT DISTINCT(aid) FROM activity WHERE cid = '16749979'")
aid

1 1000

This example prints the first 10 activity scores from a specified assay:

> queryBioassayDB(mydb, "SELECT * FROM activity WHERE aid = '1000' LIMIT 10")

aid cid activity score
1000 730195 26736081
1000 16749973 26736082
1000 16749974 26736083
1000 16749975 26736084
1000 16749976 26736085
1000 16749977 26736086
1000 16749978 26736087
1000 16749979 26736088
1000 16749980 26736089
10 1000 16749981 26736090

© 0N O WN -
T e e e e N e N == o

Lastly, disconnecting from the database after analysis reduces the chances of data corruption. If you are using a pre-built
database in read only mode (as demonstrated in the Prebuilt Database Example section) you can optionally skip this
step.

sql

CREATE TABLE activity (aid INTEGER, cid INTEGER, activity INTEGER, score INTEGER)

CREATE TABLE assays (source_id INTEGER, aid INTEGER, assay_type TEXT, organism TEXT, scoring TEXT)
CREATE TABLE domains (domain TEXT, target INTEGER)

CREATE TABLE sources (source_id INTEGER PRIMARY KEY ASC, description TEXT, version TEXT)

CREATE TABLE targets (aid INTEGER, target TEXT, target_type TEXT)

CREATE TABLE targetTranslations (target TEXT, category TEXT, identifier TEXT)

http://www.sqlite.org

bioassayR Manual 4 Loading User Supplied Data

> disconnectBioassayDB (mydb)

4 Loading User Supplied Data

This section demonstrates the process for creating a new bioactivity database from user supplied data. As an example,
we will demonstrate the process of downloading an assay from the NCBI PubChem Bioassay bioactivity data repository,
and loading this into a new database[2].

First, get two files from Pubchem Bioassay for the assay of interest: an XML file containing details on how the experiment
was performed, and a CSV (comma separated value) file which contains the actual activity scores. For the purposes of
this example, we will use the data from assay 1000, which is a confirmatory assay (titration assay) of 57 small molecules
against a mevalonate kinase protein. More details on this assay were provided in the “Quick Tutorial,” where the same
data is used. These files can be downloaded from PubChem Bioassay at http://pubchem.ncbi.nlm.nih.gov/ or
loaded from the example data repository included in this package as follows:

> library(bioassayR)

> extdata_dir <- system.file("extdata", package="bioassayR")

> assayDescriptionFile <- file.path(extdata_dir, "exampleAssay.xml")
> activityScoresFile <- file.path(extdata_dir, "exampleScores.csv")

Next, create a new empty database for loading these data into. This example uses the R tempfile function to create
the database in a random location. If you would like to keep your resulting database, replace myDatabaseFilename with
your desired path and filename.

> myDatabaseFilename <- tempfile()
> mydb <- newBioassayDB(myDatabaseFilename, indexed=F)

We will also add a data source to this database, specifying that our data here mirrors an assay provided by PubChem
Bioassay.

> addDataSource (mydb, description="PubChem Bioassay", version="unknown")

The XML file provided by PubChem Bioassay contains extensive details on how the assay was performed, molecular
targets, and results scoring methods. You can extract these using the parsePubChemBioassay function as follows. The
parsePubChemBioassay function also requires a .csv file which contains the activity scores for each assay, in the standard
CSV format provided by PubChem Bioassay. For data from sources other than PubChem Bioassay, you may need to
write your own code to parse out the assay details- or type them in manually.

> myAssay <- parsePubChemBioassay("1000", activityScoresFile, assayDescriptionFile)
> myAssay

class: bioassay
aid: 1000
source_id: PubChem Bioassay
assay_type: confirmatory
organism: NA

scoring: IC50

targets: 116516899
target_types: protein
total scores: 57

Next, load the resulting data parsed from the XML and CSV files into the database. This creates records in the database
for both the assay itself, and it's molecular targets.

> loadBioassay (mydb, myAssay)

To load additional assays, repeat the above steps. After all data is loaded, you can significantly improve subsequent query
performance by adding an index to the database.

http://pubchem.ncbi.nlm.nih.gov/

bioassayR Manual 5 Prebuilt Database Example: Investigate Activity of a Known Drug

> addBioassayIndex (mydb)
After indexing, perform a test query on your database to confirm that the data loaded correctly.
> activeAgainst (mydb, "116516899")

fraction_active total_assays
16749973 1
16749974
16749975
16749976
16749977
16749978
16749979
16749980
16749981
16749982
16749983
16749984
16749985
16749986
16749987
16749988
16749989
16749990
16749991
16749992
16749993
16749994
16749995
16749996
16749997
16749998
16749999
16750000
16750001
16750002
16750003
16750004
16750005
16750006
16750007
16750016

e e e
PR RrPRrPRRPrRRPRRrRPRPRPRPRPRPPRPRPRPRPRPPRPRPPEPPRPRPEPEPRERPRPERPRRPERRBR

Lastly, disconnect from the database to prevent data corruption.

> disconnectBioassayDB (mydb)

5 Prebuilt Database Example: Investigate Activity of a Known Drug

A pre-built database containing large quantities of public domain bioactivity data sourced from the PubChem Bioassay
database, can be downloaded from http://chemmine.ucr.edu/bioassayr. While downloading the full database is
recommended, it is possible to run this example using a small subset of the database, included within the bioassayR
package for testing purposes. This example demonstrates the utility of bioassayR for identifying the bioactivity patterns

http://chemmine.ucr.edu/bioassayr

bioassayR Manual 5 Prebuilt Database Example: Investigate Activity of a Known Drug

of a small drug-like molecule. In this example, we look at the binding activity patterns for the drug acetylsalicylic acid
(aka Aspirin) and compare these binding data to annotated targets in the DrugBank.ca drug database[3].

The DrugBank database is a valuable resource containing numerous data on drug activity in humans, including known
molecular targets. In this exercise, first take a look at the annotated molecular targets for acetylsalicylic acid by searching
this name on http://drugbank.ca. This will provide a point of reference for comparing to the bioactivity data we find
in the prebuild PubChem Bioassay database. Note that DrugBank also contains the PubChem CID of this compound,
which you can use to query the bioassayR PubChem Bioassay database.

To get started first connect to the database. The variable sampleDatabasePath can be replaced with the filename of
the full test database you downloaded, if you would like to use that instead of the small example version included with
this software package.

> library(bioassayR)

> extdata_dir <- system.file("extdata", package="bioassayR")

> sampleDatabasePath <- file.path(extdata_dir, "sampleDatabase.sqlite")
> pubChemDatabase <- connectBioassayDB(sampleDatabasePath)

Next, use the activeTargets function to find all protein targets which acetylsalicylic acid shows activity against in the
loaded database. These target IDs are NCBI Protein identifiers as provided in PubChem Bioassay. In which cases do
these results agree with or disagree with the annotated targets from DrugBank?

> drugTargets <- activeTargets(pubChemDatabase, "2244")
> drugTargets

fraction_active total_screens

116241312 1.00 2
117144 1.00 1
166897622 1.00 1
317373262 1.00 1
3914304 1.00 14
3915797 0.75 8
548481 1.00 21
6686268 1.00 1
84028191 1.00 1

Next, we will use the ape software library to get the protein sequences for these active targets, and to determine which
species they may be from[4]. For more details on working with these sequences, consult the ape documentation.

> library(ape)
> targetSequences <- read.GenBank(row.names (drugTargets), species.names = TRUE)

Last, we print a table of the species names for each of these targets.
> cbind(attr(targetSequences, "species"), names(targetSequences))

[,1] [,2]
[1,] "Homo_sapiens" "116241312"
[2,] "Homo_sapiens" "117144"

[3,] "Bos_taurus" "166897622"
[4,] "Homo_sapiens" "317373262"
[5,] "Ovis_aries" "3914304"
[6,] "Homo_sapiens" "3915797"
[7,] "Ovis_aries" "548481"

[8,] "Homo_sapiens" "6686268"
[9,] "Homo_sapiens" "84028191"

http://drugbank.ca

bioassayR Manual 6 Identify Target Selective Compounds

6 Identify Target Selective Compounds

In the previous example, acetylsalicylic acid was found to show binding activity against numerous proteins, including the
COX-1 cyclooxygenase enzyme (NCBI Protein ID 166897622). COX-1 activity is theorized to be the key mechanism
in this molecules function as a nonsteroidal anti-inflammatory drug (NSAID). In this example, we will look for other
small molecules which selectively bind to COX-1, under the assumption that these may be worth further investigation as
potential nonsteroidal anti-inflammatory drugs. This example shows how bioassayR can be used identify small molecules
which selectively bind to a target of interest, and assist in the discovery of small molecule drugs and molecular probes.

First, we will start by connecting to a database. Once again, the variable sampleDatabasePath can be replaced with
the filename of the full PubChem Bioassay database (downloadable from http://chemmine.ucr.edu/bioassayr), if
you would like to use that instead of the small example version included with this software package.

> library(bioassayR)

> extdata_dir <- system.file("extdata", package="bioassayR")

> sampleDatabasePath <- file.path(extdata_dir, "sampleDatabase.sqlite")
> pubChemDatabase <- connectBioassayDB(sampleDatabasePath)

The activeAgainst function can be used to show all small molecules in the database which demonstrate activity against
COX-1 as follows. Each row name represents a small molecule cid. The column labeled “total assays” shows the total
number of times each small molecule has been screened against the target of interest. The column labeled “fraction
active” shows the portion of these which were annotated as active as a number between 0 and 1. This function allows
users to consider different binding assays from distinct sources as replicates, to assist in distinguishing potentially spurious
binding results from those with demonstrated reproducibility.

> activeCompounds <- activeAgainst(pubChemDatabase, "166897622")
> activeCompounds[1:10,] # look at the first 10 compounds

fraction_active total_assays

2244 1 1
2662 1 3
3033 1 1
3194 1 1
3672 1 1
3715 1 2
133021 1 2
247704 1 1
444899 1 1
445580 1 1

Looking only at compounds which show binding to the target of interest is not sufficient for identifying drug candidates,
as a portion of these compounds may be target unselective compounds (TUCs) which bind indiscriminately to a large
number of distinct protein targets. The R function selectiveAgainst provides the user with a list of compounds that
show activity against a target of interest (in at least one assay), while also showing limited activity against other targets.

The maxCompounds option limits the maximum number of results returned, and the minimumTargets option limits
returned compounds to those screened against a specified minimum of distinct targets. Results are formatted as a
data.frame whereby each row name represents a distinct compound. The first column shows the number of distinct
targets this compound shows activity against, and the second shows the total number of targets it was screened against.

> selectiveCompounds <- selectiveAgainst(pubChemDatabase, "166897622",
+ maxCompounds = 10, minimumTargets = 1)
> selectiveCompounds

active_targets tested_targets

2662 1 1
3033 1 1
133021 1 1

http://chemmine.ucr.edu/bioassayr

bioassayR Manual 6 Identify Target Selective Compounds

11314954 1 1
13015959 1 1
44563999 1 1
44564000 1 1
44564001 1 1
44564002 1 1
44564003 1 1

In the example database these compounds are only showing one tested target because very few assays are loaded.
Users are encouraged to try this example for themselves with the full PubChem Bioassay database downloadable from
http://chemmine.ucr.edu/bioassayr for a more interesting and informative result.

Users can combine bioassayR with the ChemmineR library to obtain structural information on these target selective
compounds, and then perform further analysis- such as structural clustering, visualization, and computing physicochemical
properties.

The ChemmineR software library can be used to download structural data for any of these compounds, and to visualize
these structures as follows[5]. This example requires an active internet connection, as the compound structures are
obtained from a remote server.

> library(ChemmineR)
> structures <- getIds(as.numeric(row.names (selectiveCompounds)))

Here we visualize just the first four compounds found with selectiveAgainst. Consult the vignette supplied with the
ChemmineR for numerous powerful examples of visualizing and analyzing these structures further.

> plot(structures([1:4], print=FALSE) # Plots structures to R graphics device

http://chemmine.ucr.edu/bioassayr

bioassayR Manual 7 Cluster Compounds by Activity Profile

CMP1 CMP2

C==0
ey

CMP3 CMP4
4 i :
C

7 Cluster Compounds by Activity Profile

This example demonstrates an example of clustering small molecules by similar bioactivity profiles across several distinct
bioassay experiments. In many cases it is too cpu and memory intensive to cluster all compounds in the database, so
we first pull just a subset of these data from the database into an bioassaySet object, and then convert that into a
compounds vs targets activity matrix for subsequent clustering according to similarities in activity profiles. The function
getBioassaySetByCids extracts the activity data for a given list of compounds. Alternatively, the entire data for a
given list of assay ids can be extracted with the function getAssays.

First, connect to the included sample database:

> library(bioassayR)

> extdata_dir <- system.file("extdata", package="bioassayR")

> sampleDatabasePath <- file.path(extdata_dir, "sampleDatabase.sqlite")
> sampleDB <- connectBioassayDB(sampleDatabasePath)

Next, select data from just 3 compounds to extract into a bioassaySet object for subsequent analysis.

> compoundsOfInterest <- c("2244", "2662", "3715")
> selectedAssayData <- getBioassaySetByCids (sampleDB, compoundsOfInterest)

10

bioassayR Manual 7 Cluster Compounds by Activity Profile

> selectedAssayData

class: bioassaySet
assays: 1176
compounds: 3

targets: 453

sources: bioassayR_testdata

The function perTargetMatrix converts the activity data extracted earlier into a matrix of targets (rows) vs compounds
(columns). Data from multiple assays hitting the same target is summarized by giving a "1" (active) if any of these data
are active. Both inactive scores and untested combinations are assigned zeros (inactive) to create a “complete matrix.”
We caution the user to carefully consider if this step makes sense within the context of the specific experiments being
analyzed. Here a sparse matrix (which omits actually storing 0 values) is used to save memory.

> myActivityMatrix <- perTargetMatrix(selectedAssayData)
> myActivityMatrix

9 x 3 sparse Matrix of class "dgCMatrix"
2244 2662 3715
548481 1
3914304
3915797
166897622
317373262
117144
6686268
84028191
116241312

N = = e = e

Cluster using the built in euclidean clustering functions within R to cluster. This provides a dendrogram which indicates
the similarity amongst compounds according to their activity profiles.

v

transposedMatrix <- t(myActivityMatrix)
distanceMatrix <- dist(transposedMatrix)
clusterResults <- hclust(distanceMatrix, method="average")

VvV Vv

v

plot(clusterResults)

11

bioassayR Manual 8 Analyze and Load Raw Screening Data

Cluster Dendrogram

2.0 2.5
2244

15

Height
1.0

0.5

2662
3715

distanceMatrix
hclust (*, "average")

Finally, disconnect from the database.

> disconnectBioassayDB(sampleDB)

8 Analyze and Load Raw Screening Data

This example demonstrates the basics of analyzing and loading data from a high throughput screening experiment with
scores for 21,888 distinct compounds.

This example is based on the cellHTS2 library. Example data is used which is included with cellHTS2. This is actually
data from screening dsRNA against live cells, however we will treat it as small molecule binding data against a protein
target as the data format is the same.

First read in the screening data provided with cellHTS2.

> library(cellHTS2)

> library(bioassayR)

> dataPath <- system.file("KcViab", package="cellHTS2")
> x <- readPlateList("Platelist.txt",

+ name="KcViab",

12

bioassayR Manual 8 Analyze and Load Raw Screening Data

path=dataPath)

x <- configure(x,
descripFile="Description.txt",
confFile="Plateconf.txt",
logFile="Screenlog.txt",
path=dataPath)

xn <- normalizePlates(x,

scale="multiplicative",
log=FALSE,
method="median",
varianceAdjust="none")

+ + + +V ++ + + Vv +

Next, score and summarize the replicates.

> xsc <- scoreReplicates(xn, sign="-", method="zscore")
> xsc <- summarizeReplicates(xsc, summary="mean")

Parse the annotation data.
> xsc <- annotate(xsc, genelDFile="GeneIDs_Dm_HFA_1.1.txt", path=dataPath)
Apply a sigmoidal transformation to generate binary calls.

> y <- scores2calls(xsc, z0=1.5, lambda=2)
> binaryCalls <- round(Data(y))

Convert the binary calls into an activity table that bioassayR can parse.

> scoreDataFrame <- cbind(geneAnno(y), binaryCalls)
> scoreDataFrame <- scoreDataFrame[wellAnno(y) == "sample",]
> activityTable <- cbind(cid=scoreDataFrame[,1], sid=scoreDataFrame[,1],
+ activity=scoreDataFrame[,2], score=Data(xsc))
> activityTable <- as.data.frame(activityTable)
> activityTable[1:10,]
cid sid activity score
1 CG11371 CG11371 1 5.55306760617242
2 CG31671 CG31671 1 3.59768552803871
3 CG11376 CG11376 0 2.147814893189
4 CG11723 CG11723 0 4.00105151825918
5 CG12178 CG12178 0 0.955550327380792
6 CG7261 CG7261 0 0.768879954745058
7 CG2674 CG2674 0 1.12105534792054
8 CG7263 CG7263 0 -0.126481089856157
9 CG4822 (CG4822 0 0.706942495432899
10 CG4265 CG4265 0 0.920455054477106

Create a new (temporary in this case) bioassayR database to load these data into.

> myDatabaseFilename <- tempfile()
> mydb <- newBioassayDB(myDatabaseFilename, indexed=F)
> addDataSource (mydb, description="other", version="unknown")

Create an assay object for the new assay.

> myAssay <- new("bioassay",aid="1", source_id="other",
+ assay_type="confirmatory", organism="unknown", scoring="activity rank",
+ targets="2224444", target_types="protein", scores=activityTable)

Load this assay object into the bioassayR database.

13

bioassayR Manual References

> loadBioassay (mydb, myAssay)

> mydb

class: BioassayDB
assays: 1
sources: other

writeable: yes

Now that these data are loaded, you can use them to perform any of the other analysis examples in this document.
Lastly, for the purposes of this example, disconnect from the example database.

> disconnectBioassayDB (mydb)

9 Version Information

> tolLatex(sessionInfo())

e R version 3.2.1 beta (2015-06-08 r68489), x86_64-unknown-linux-gnu

e Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_US.UTF-8, LC_COLLATE=C,
LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8, LC_PAPER=en_US.UTF-8, LC_NAME=C,
LC_ADDRESS=C, LC_TELEPHONE=C, LC_MEASUREMENT=en_US.UTF-8, LC_IDENTIFICATION=C

e Base packages: base, datasets, grDevices, graphics, grid, methods, parallel, stats, utils

e Other packages: Biobase 2.28.0, BiocGenerics 0.14.0, ChemmineR 2.20.3, DBI 0.3.1, Matrix 1.2-1,
RColorBrewer 1.1-2, RSQLite 1.0.0, ape 3.3, bioassayR 1.6.1, cellHTS2 2.32.0, genefilter 1.50.0, hwriter 1.3.2,
locfit 1.5-9.1, rjson 0.2.15, splots 1.34.0, vsn 3.36.0

¢ Loaded via a namespace (and not attached): AnnotationDbi 1.30.1, BioclInstaller 1.18.3, BiocStyle 1.6.0,
Category 2.34.2, DEoptimR 1.0-2, GSEABase 1.30.2, GenomelnfoDb 1.4.0, IRanges 2.2.4, MASS 7.3-40,
RBGL 1.44.0, RCurl 1.95-4.6, Rcpp 0.11.6, S4Vectors 0.6.0, XML 3.98-1.2, affy 1.46.1, affyio 1.36.0,
annotate 1.46.0, bitops 1.0-6, cluster 2.0.1, colorspace 1.2-6, digest 0.6.8, ggplot2 1.0.1, graph 1.46.0,
gtable 0.1.2, lattice 0.20-31, limma 3.24.10, magrittr 1.5, munsell 0.4.2, mvtnorm 1.0-2, nlme 3.1-120,
pcaPP 1.9-60, plyr 1.8.2, prada 1.44.0, preprocessCore 1.30.0, proto 0.3-10, reshape2 1.4.1, robustbase 0.92-3,
rrcov 1.3-8, scales 0.2.4, splines 3.2.1, stats4 3.2.1, stringi 0.4-1, stringr 1.0.0, survival 2.38-1, tools 3.2.1,
xtable 1.7-4, zlibbioc 1.14.0

10 Funding

This software was developed with funding from the National Science Foundation: ABI-0957099, 2010-0520325 and
IGERT-0504249.

References

[1] T W Backman, Y Cao, and T Girke. ChemMine tools: an online service for analyzing and clustering small molecules.
Nucleic Acids Res, 39(Web Server issue):486—-491, Jul 2011. URL: http://www.hubmed.org/display.cgi?uids=
21576229, doi:10.1093/nar/gkr320.

[2] Yanli Wang, Jewen Xiao, Tugba O Suzek, Jian Zhang, Jiyao Wang, Zhigang Zhou, Lianyi Han, Karen Karapetyan,
Svetlana Dracheva, Benjamin A Shoemaker, Evan Bolton, Asta Gindulyte, and Stephen H Bryant. PubChem’s
BioAssay Database. Nucleic acids research, 40(Database issue):D400-12, January 2012.

14

http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=0957099
http://www.hubmed.org/display.cgi?uids=21576229
http://www.hubmed.org/display.cgi?uids=21576229
http://dx.doi.org/10.1093/nar/gkr320

bioassayR Manual References

[3] David S Wishart, Craig Knox, An Chi Guo, Dean Cheng, Savita Shrivastava, Dan Tzur, Bijaya Gautam, and Murtaza
Hassanali. DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic acids research, 36(Database

issue):D901-6, January 2008.

[4] E. Paradis, J. Claude, and K. Strimmer. APE: analyses of phylogenetics and evolution in R language. Bioinformatics,
20:289-290, 2004.

[5] Y Cao, A Charisi, L C Cheng, T Jiang, and T Girke. ChemmineR: a compound mining framework for R.
Bioinformatics, 24(15):1733-1734, Aug 2008. URL: http://www.hubmed.org/display.cgi?uids=18596077,
doi:10.1093/bioinformatics/btn307.

15

http://www.hubmed.org/display.cgi?uids=18596077
http://dx.doi.org/10.1093/bioinformatics/btn307

	1 Introduction
	2 Recently Added Features
	3 Getting Started
	3.1 Installation
	3.2 Loading the Package and Documentation
	3.3 Quick Tutorial

	4 Loading User Supplied Data
	5 Prebuilt Database Example: Investigate Activity of a Known Drug
	6 Identify Target Selective Compounds
	7 Cluster Compounds by Activity Profile
	8 Analyze and Load Raw Screening Data
	9 Version Information
	10 Funding

