STRINGdb Package Vignette

Andrea Franceschini

15 March 2015

1 INTRODUCTION

STRING (http://www.string-db.org) is a database of known and predicted protein-protein interac-
tions. The interactions include direct (physical) and indirect (functional) associations. The database
contains information from numerous sources, including experimental repositories, computational pre-
diction methods and public text collections. Each interaction is associated with a combined confidence
score that integrates the various evidences. We currently cover 5'214’234 proteins from 1133 organisms.

As you will learn in this guide, the STRING database can be usefull to add meaning to list of genes
(e.g. the best hits coming out from a screen or the most differentially expressed genes coming out from
a Microarray/RNAseq experiment.)

We provide the STRINGdb R package in order to facilitate our users in accessing the STRING
database from R. In this guide we explain, with examples, most of the package’s features and function-
alities.

In the STRINGdb R package we use the new ReferenceClasses of R (search for "ReferenceClasses”
in the R documentation.). Besides we make use of the iGraph package (http://igraph.sourceforge.net)
as a data structure to represent our protein-protein interaction network.

To begin, you should first know the NCBI taxonomy identifiers of the organism on which you have
performed the experiment (e.g. 9606 for Human, 10090 for mouse). If you don’t know that, you can
search the NCBI Taxonomy (http://www.ncbi.nlm.nih.gov/taxonomy) or start looking at our species
table (that you can also use to verify that your organism is represented in the STRING database).
Hence, if your species is not Human (i.e. our default species), you can use this function to retrieve/search
our species table:

> get_STRING_species(version="10", species_name=NULL)

> library (STRINGdb)
> string_db <- STRINGdb$new(version="10", species=9606,
+ score_threshold=0, input_directory="")

As it has been shown in the above commands, you start instantiating the STRINGdb reference class.
In the constructor of the class you can also define the STRING version to be used and a threshold for
the combined scores of the interactions, such that any interaction below that threshold is not loaded in
the object (by default the score threshold is set to 400 !).

Besides, if you specify a local directory to the parameter input-directory, all the database files will be
downloaded into this directory and the package can then be used off-line. Otherwise, the database files
will be saved and cached in a temporary directory that will be cleaned automatically when the R session

is closed.

For a better understanding of the package two other commands can be useful:

> STRINGdb$methods ()

To list all the methods available.

[1] "add_diff_exp_color" "add_proteins_description"
[3] "benchmark_ppi" "benchmark_ppi_pathway_view"
[5] "callSuper" "copy"

[7] "enrichment_heatmap" "export"

[9] "field" "getClass"

[11] "getRefClass" "get_aliases"

[13] "get_annotations" "get_annotations_desc"
[15] "get_bioc_graph" "get_clusters"

[17] "get_enrichment" "get_graph"

[19] "get_homologs" "get_homologs_besthits"
[21] "get_homology_graph" "get_interactions"

[23] "get_link" "get_neighbors"

[25] "get_pathways_benchmarking _blackList" "get_png"

[27] "get_ppi_enrichment" "get_ppi_enrichment_full"
[29] "get_proteins" "get_pubmed"

[31] "get_pubmed_interaction" "get_subnetwork"

[33] "get_summary" "get_term_proteins"

[35] "import" "initFields"

[37] "initialize" "load"

[39] "load_all" "map"

[41] "mp" "plot_network"

[43] "plot_ppi_enrichment" "post_payload"

[45] "remove_homologous_interactions" "set_background"

[47] "show" "show#envRefClass"

[49] "trace" "untrace"

[51] "usingMethods"

> STRINGdb$help("get_graph") # To visualize their documentation.

Call:
$get_graph()

Description:
Return an igraph object with the entire STRING network.
We invite the user to use the functions of the iGraph package to conveniently
search/analyze the network.

References:
Csardi G, Nepusz T: The igraph software package for complex network research,

InterJournal, Complex Systems 1695. 2006.
http://igraph.sf.net

See Also:
In order to simplify the most common tasks, we do also provide convenient functions
that wrap some iGraph functions.
get_interactions(string_ids) # returns the interactions in between the input proteins

get_neighbors(string_ids) # Get the neighborhoods of a protein (or of a vector of proteins).
get_subnetwork(string_ids) # returns a subgraph from the given input proteins
Author(s):

Andrea Franceschini

For all the methods that we are going to explain below, you can always use the help function in
order to get additional information/parameters with respect to those explained in this guide.

As an example, we use the analyzed data of a microarray study taken from GEO (Gene Expression
Omnibus, GSE9008). This study investigates the activity of Resveratrol, a natural phytoestrogen found
in red wine and a variety of plants, in A549 lung cancer cells. Microarray gene expression profiling after
48 hours exposure to Revestarol has been performed and compared to a control composed by A549
lung cancer cells threated only with ethanol. This data is already analyzed for differential expression
using the limma package: the genes are sorted by fdr corrected pvalues and the log fold change of the
differential expression is also reported in the table.

> data(diff_exp_examplel)
> head(diff_exp_examplel)

pvalue logFC gene
1 0.0001018 3.333461 VSTM2L
2 0.0001392 3.822383 TBC1D2
3 0.0001720 3.306056 LENG9
4 0.0001739 3.024605 TMEM27
5 0.0001990 3.854414 L0C100506014
6 0.0002393 3.082052 TSPAN1

As a first step, we map the gene names to the STRING database identifiers using the "map” method.
In this particular example, we map from gene HUGO names, but our mapping function supports several
other common identifiers (e.g. Entrez GenelD, ENSEMBL proteins, RefSeq transcripts ... etc.).

The map function adds an additional column with STRING identifiers to the dataframe that is passed
as first parameter.

> examplel_mapped <- string_db$map(diff_exp_examplel, "gene", removeUnmappedRows = TRUE)

Warning: we couldn't map to STRING 14% of your identifiers

As you may have noticed, the previous command prints a warning showing the number of genes
that we failed to map. In this particular example, we cannot map all the probes of the microarray that
refer to position of the chromosome that are not assigned to a real gene (i.e. all the LOC genes). If we
remove all these LOC genes before the mapping we obtain a much lower percentage of unmapped genes
(i.e. <6 %).

If you set to FALSE the "removeUnmappedRows” parameter, than the rows which corresponds to
unmapped genes are left and you can manually inspect them.

Finally, we extract the best 200 genes and we produce an image of the STRING network for those. The
image shows clearly the genes and how they are possibly functionally related. On the top of the plot, we
insert a pvalue that represents the probability that you can expect such an equal or greater number of
interactions by chance. Besides, on the bottom, there is a short-url that points to the relative page on
our web-interface. You can copy and paste that url on your favorite browser and/or send it via e-mail
to your colleagues or insert it in publications.

> hits <- examplel_mapped$STRING_id[1:200]

> string_db$plot_network(hits)

proteins: 200
interactions: 353
expected interactions: 266 (p—value: 2.60548724706489e-07)

E RaTiE
i B

)

poLvRPL —

e o« @ e T T
, " @

http://string—db.org/10/p/53659871

2 PAYLOAD MECHANISM

This R library provides the ability to interact with the STRING payload mechanism. The payload
appears as an additional colored "halo” that starts from the boder of the bubbles.

For example, this allows to color in green the genes that are down-regulated and in red the genes
that are up-regulated. For this mechanism to work, we provide a function that posts the information
on our web server.

> # filter by p-value and add a color column

> # (i.e. green down-regulated gened and red for up-regulated genes)

> examplel_mapped_pvalO5 <- string_db$add_diff_exp_color(subset (examplel_mapped, pvalue<0.05),
+ logFcColStr="1o0gFC")

> # post payload information to the STRING server

> payload_id <- string_db$post_payload(examplel_mapped_pvalO5$STRING_id,

+ colors=examplel_mapped_pvalO5$color)

> # display a STRING network png with the "halo"

> string_db$plot_network(hits, payload_id=payload_id)

proteins: 200

interactions: 353
expected interactions: 266 (p—value: 2.60548724706489e-07)

http://string—db.org/10/p/28529872

3 ENRICHMENT

We provide a method to compute (and visualize) the enrichment in protein-protein interactions along a
sorted list of proteins. In the context of genome-wide screens (e.g. RNAIi or proteomics), it can be useful
to visualize the distribution of the enrichment in the resulting sorted list of genes. If the experiment
was successful, and the top hits have protein-protein interactions, you should see more enrichment at
the beginning of the list than at the end. Besides, you can also use the enrichment graph to help you
to define a threshold on the number of proteins to consider (for example, if you see a strong enrichment
up to position 600 on your list, this means that the signal is probably sparsed to cover the best 600
genes).

> # plot the enrichment for the best 1000 genes
> string_db$plot_ppi_enrichment(examplel_mapped$STRING_id[1:1000], quiet=TRUE)

PPI Enrichment

0 200 400 600 800 1000

We also provide a method to compute the enrichment in Gene Ontology, KEGG pathway and
Interpro domains, similar to the “enrichment” widget in our web-interface. The enrichment is computed
using an hypergeometric test. The multiple testing correction method can be changed (setting the
methodMT parameter) and it is also possible to specify whether to use the "Inferred from Elettronic
Annotations” or only the manually curated annotations.

TRUE
TRUE)

> enrichmentGO <- string_db$get_enrichment(hits, category = "Process", methodMT = "fdr", iea
> enrichmentKEGG <- string_db$get_enrichment(hits, category = "KEGG", methodMT = "fdr", iea

> head(enrichmentGO, n=7)
term_id proteins hits pvalue pvalue_fdr
1 GD0:0010466 197 10 3.552195e-06 0.003477795
2 G0:0043207 596 17 4.532314e-06 0.003477795
3 G0:0051707 596 17 4.532314e-06 0.003477795
4 G0:0009607 624 17 8.283470e-06 0.004767137
5 G0:0002252 399 13 1.602950e-05 0.006175628
6 G0:0010951 188 9 1.765641e-05 0.006175628
7 G0:0033993 670 17 2.069460e-05 0.006175628
term_description
1 negative regulation of peptidase activity
2 response to external biotic stimulus
3 response to other organism
4 response to biotic stimulus
5 immune effector process
6 negative regulation of endopeptidase activity
7 response to lipid
> head(enrichmentKEGG, n=7)
term_id proteins hits pvalue pvalue_fdr
1 04115 66 6 9.969204e-08 1.475442e-05
2 04610 68 5 3.577966e-06 2.647695e-04
3 05168 174 5 3.254067e-04 1.605340e-02
4 01100 1161 12 5.277721e-04 1.952757e-02
5 04380 123 4 8.399948e-04 2.486385e-02
6 00590 61 3 1.197959e-03 2.638087e-02
7 05161 139 4 1.322517e-03 2.638087e-02
term_description
1 p53 signaling pathway
2 Complement and coagulation cascades
3 Herpes simplex infection
4 Metabolic pathways
5 Osteoclast differentiation
6 Arachidonic acid metabolism
7 Hepatitis B

If you have performed your experiment on a predefined set of proteins, it is important to run the
enrichment statistics using that set as a background (otherwise you would get a wrong p-value !). Hence,
before to launch the methods explained above, you should set the background:

> backgroundV <- examplel_mapped$STRING_id[1:2000] # as an example, we use the first 2000 genes
> string_db$set_background (backgroundV)

You can also set the background when you instantiate the STRINGdb object:
> string_db <- STRINGdb$new(score_threshold=0, backgroundV = backgroundV)

If you want to compare the enrichment of two or more lists of genes (e.g. the results of two experiments),
you can use our HEATMAP visualization option:

> eh <- string_db$enrichment_heatmap(list(hits[1:100], hits[101:200]),
+ list("list1","list2"), title="My Lists")

regulation of protein processing

regulation of peptidase activity

negative regulation of peptidase activity

defense response

immune effector process

regulation of proteolysis

response to external biotic stimulus

response to other organism

intrinsic apoptotic signaling pathway in response to DNA damage

regulation of endopeptidase activity

response to biotic stimulus

positive regulation of activation of membrane attack complex

positive regulation of complement activation

positive regulation of protein activation cascade

negative regulation of endopeptidase activity

negative regulation of hydrolase activity

establishment of planar polarity involved in neural tube closure

intrinsic apoptotic signaling pathway in response to DNA damage by p53 class
negative regulation of catalytic activity

zymogen activation

leukocyte mediated immunity

= N
o) 2
Color Key
T
48 5 5.2
Value

10

4 CLUSTERING

The iGraph package provides several clustering/community algorithms: "fastgreedy”, "walktrap”, “sp-

inglass”, "edge.betweenness”. We encapsulate this in an easy-to-use function that returns the clusters
in a list.

> # get clusters
> clustersList <- string_db$get_clusters (examplel_mapped$STRING_id[1:600])

plot first 4 clusters

par (mfrow=c(2,2))

for(i in seq(1:4))1
string_db$plot_network(clustersList[[i]])
}

+ + Vv Vv VvV

11

proteins: 61
interactions: 91
expected interactions: 7 (p—value: 0)

proteins: 120
interactions: 881
expected interactions: 457 (p—value: 0)

o8
o @
e . =
= ® o o ®
e VA
¥ o @
o
o ©® (2] <)
P e
e ®
1o on A~ .
(] & ° © o
& t
pe @ e
e ® e
L - X e . .. e
® ®

http://string—db.org/10/p/10359875

®

&

proteins: 109
interactions: 356
expected interactions: 82 (p—value: 0)

®

http://string—db.org/10/p/79229876

proteins: 166
interactions: 1250
expected interactions: 407 (p—value: 0)

http://string—db.org/10/p/94439878

12

http://string—db.org/10/p/15249881

5 ADDITIONAL PROTEIN INFORMATION

You can get a table that contains all the proteins that are present in our database. The protein table
also include the name, the size and a short description of the proteins.

> string_proteins <- string_db$get_proteins()

In the following section we will show how to query STRING with R on some specific proteins. In
the examples, we will use the famous tumor proteins TP53 and ATM .

First we need to get the STRING identifier of those proteins, using our mp method:

> tp53 = string_db$mp("tp53")
> atm = string_db$mp("atm")

The mp method (i.e. map proteins) is an alternative to our map method, to be used when you need
to map only one or few proteins.
It takes in input a vector of protein aliases and returns a vector with the STRING identifiers of those
proteins.

Using the following method, you can see the proteins that interact with one or more of your proteins:

> string_db$get_neighbors(c(tp53, atm))

It is also possible to retrieve the interactions that connect certain input proteins between each other.
Using the "get_interactions” method we can clearly see that TP53 and ATM interact with each other
with a good evidence/score.

> string_db$get_interactions(c(tp53, atm))

from to neighborhood
1 9606 .ENSP00000269305 9606 .ENSP00000278616 258
neighborhood_transferred fusion cooccurence homology coexpression
1 165 2 527 891 160
coexpression_transferred experiments experiments_transferred database
1 78 999 960 900
database_transferred textmining textmining transferred combined_score
1 312 973 80 999

Using the get_pubmed_interactions method we can retrieve the pubmed identifiers of the articles
that contain the name of both the proteins (if any). Such articles could support to the interaction.

> string_db$get_pubmed_interaction(tp53, atm)

13

STRING also provides a way to get homologous proteins: in our database we store an ALL-
AGAINST-ALL blast alignment of all our 5 million proteins. The method “get_homologs_besthits”
can be used to get the best hits of your proteins in all the >1000 STRING species (with the "symbets”
parameter you can limit the search to the reciprocal best_hits. This increase the confidence to get
orthologs and not paralogous proteins)

> # get the reciprocal best hits of the following protein in all the STRING species
> string_db$get_homologs_besthits(tp53, symbets = TRUE)

In addition, you can get all the homologous in a given species (i.e. all the blast hits):

> # get the homologs of the following two proteins in the mouse (i.e. species_id=10090)
> string_db$get_homologs(c(tp53, atm), target_species_id=10090, bitscore_threshold=60)

6 BENCHMARKING PROTEIN-PROTEIN INTERACTIONS

When a new methodology/algorithm to infer protein-protein interactions is developed, the outcome
should be carefully benchmarked against a gold standard. Hence, we suggest to benchmark agains the
KEGG pathway database (or other high quality pathway databases), and we provide suitable functions
to perform this task.

First of all, you need to provide as input a sorted interaction data frame (with the columns "pro-
teinA”, “proteinB”; "score”).

> data(interactions_example)
> interactions_benchmark = string_db$benchmark_ppi(interactions_example, pathwayType = "KEGG",
+ max_homology_bitscore = 60, precision_window = 400, exclude_pathways = "blacklist",

Discarded 55844 interactions (79.77714 %) Dbetween homologous proteins
NOTE: 717 interactions (5.1 %) have been mapped to KEGG

The function benchmark_ppi will return a data frame containing the sorted list of protein interactions
mapped to the benchmark, and the precision computed in a sliding window of 400 interactions (that
automatically expands/shrink at the beginning/end of the sorted interactions list). The precision is
defined as the number of TP interactions (where the pair of proteins are both present together in at
least one pathway) vs the total number of interactions in the window. When benchmarking PPI it is
often important to remove the interactions composed by a pair of homologous protein. You can set a
parameter in the function to automatically perform this task (max_homology_bitscore). The user may
also want to remove several uninformative pathway from the gold standard (i.e. pathways that are too
big or too generic). The STRING team manually curates a black list of KEGG pathways that in our
opinion should be removed in order to provide a reliable gold standard. With the "exclude_pathways”
parameter it is possible to automatically remove those pathways from the analysis (setting the parameter
to "blacklist”) or to specify a vector contaning the term identifiers of the pathways that the user wants
to remove.

It is finally very easy to plot the precision vs the number of sorted interactions:

> plot(interactions_benchmark$precision, ylim=c(0,1), type="1", xlim=c(0,700),
+ xlab="interactions", ylab="precision")

14

1.0

0.6

precision

0.4

0.2

I I I I I I I I
0 100 200 300 400 500 600 700

interactions

We also provide a function to list the pathways to which the various TP interactions belong, together
with some accompanying statistic:

> interactions_pathway_view = string_db$benchmark_ppi_pathway_view(interactions_benchmark, precision_
> head(interactions_pathway_view)

pathways coverage proteins interactions total_representation

1 00190 0.009 130 73 0.277567

2 00280 0.026 44 25 0.095057

3 00100 0.084 20 16 0.060837

4 04630 0.001 154 15 0.057034

5 05130 0.011 52 14 0.053232

6 04725 0.002 107 11 0.041825
term_description

1 Oxidative phosphorylation

2 Valine, leucine and isoleucine degradation

3 Steroid biosynthesis

4 Jak-STAT signaling pathway

5 Pathogenic Escherichia coli infection

6 Cholinergic synapse

15

For each pathway for which a TP interaction is found in the sorted interaction list, we report its
“total_representation” (i.e. which percentages of interactions belong to that pathway), the “coverage”
(i.e. number of interactions of the input list in the pathway / total number of possible interactions in
the pathway) and the size of the pathway in number of proteins.

7 CITATION

Please cite:

Franceschini, A et al. (2013). STRING v9.1: protein-protein interaction networks, with increased
coverage and integration. In:’Nucleic Acids Res. 2013 Jan;41(Database issue):D808-15. doi: 10.1093/nar/gks1094.
Epub 2012 Nov 29

16

