Splice event detection and quantification from RNA-seq data

Leonard D Goldstein

Department of Bioinformatics and Computational Biology, Genentech Inc.

June 11, 2015

1 Background

RNA-seq data can be used for transcript isoform discovery and transcript-level expression studies. Most computational
tools for genome-guided transcript isoform analysis (methods that work with RNA-seq data aligned against a reference
genome) fall into one of two categories: Methods for the analysis of splice events, which often rely on transcript
annotation, and methods for reconstructing and quantifying full-length transcripts. SGSeq implements a method for the
annotation-free detection and quantification of splice events from RNA-seq data.

2 QOverview

S5GSeq predicts splice junctions and exons from RNA-seq reads aligned against a reference genome. Splice junctions and
disjoint exon bins are quantified using counts or FPKMs based on structurally compatible reads. Input data must be
in BAM format. It is essential that BAM files are obtained using a splice-aware alignment program that generates the
custom tag 'XS' indicating the direction of transcription for spliced reads. Splice junctions and disjoint exon bins are
assembled into a genome-wide splice graph [1]. In the SGSeq framework, the splice graph is a directed acyclic graph
with nodes corresponding to transcript starts, ends and splice sites, and edges corresponding to disjoint exon bins and
splice junctions, directed from 5’ to the 3’ end. A splice event is defined by a start node and an end node connected by
two or more paths and no intervening nodes with all paths intersecting. SGSeq identifies splice events recursively from
the graph, and estimates relative usage of splice variants based on compatible reads spanning the event boundaries.

3 Preliminaries

This vignette illustrates an analysis of paired-end RNA-seq data obtained from four colorectal tumors and four normal
colorectal samples, which are part of a data set published in [2]. For the purpose of this vignette, we created BAM files
including a single gene of interest (FBX031).

library(SGSeq)
library(TxDb.Hsapiens.UCSC.hgl9.knownGene)

In the following, we use a data.frame si with sample information, and a GRanges object gr with genomic coordinates
of the FBXO31 gene.

The data.frame si contains library information, including paired-end status, median read length, median insert size and
the total number of alignments. These were obtained from the original BAM files using function getBamInfo(). When
analyzing a new data set, library information must be obtained once initially and can then be used for all subsequent
analyses. The following code block sets the correct BAM file paths in the sample information for this vignette.

Splice event detection and quantification from RNA-seq data 2

path <- system.file("extdata", package = "SGSeq")
si$file_bam <- file.path(path, "bams", si$file_bam)

We obtain transcript annotation from the UCSC knownGene table, available as a Bioconductor annotation package
TxDb.Hsapiens.UCSC.hg19.knownGene. We retain transcripts on chromosome 16, where the FBXO31 gene is located,
and change chromosome names in the annotation to match chromosome names in the BAM files.

txdb <- TxDb.Hsapiens.UCSC.hgl9.knownGene
txdb <- keepSeqlevels(txdb, "chri6")
seqlevelsStyle(txdb) <- "NCBI"

5GSeq makes extensive use of the Bioconductor infrastructure for genomic ranges [3]. To store genomic coordinates
for both exons and splice junctions, SGSeq implements the TxFeatures class, which extends the GRanges class with
additional columns. Column type takes values J (splice junction), I (internal exon), F (first/5’ terminal exon), L (last/3’
terminal exon) or U (unspliced).

In addition to TxFeatures, SGSeq implements the SGFeatures class to store splice graph features. Similar to TxFeatures,
SGFeatures extends the GRanges class with additional columns. Column type for an SGFeatures object takes values J
(splice junction), E (disjoint exon bin), D (splice donor) or A (splice acceptor).

For both TxFeatures and SGFeatures, class-specific columns can be accessed using functions named after the columns
they access (e.g. use function type() to obtain feature type). Transcript features or splice graph features can be
exported to BED files using function exportFeatures().

To work with annotated transcripts in the SGSeq framework, we extract transcript features from the TxDb object and
store them as TxFeatures. We only retain features overlapping the FBXO31 gene locus.

txf_annotated <- convertToTxFeatures(txdb)
Warning in convertToTxFeatures(txdb): Merged adjacent exons

txf_annotated <- txf_annotated[txf_annotated %overy, gr]

If transcript annotation is not available as a TxDb object, convertToTxFeatures() can construct TxFeatures from a
GRangesList of exons grouped by transcript (which can be obtained from other formats such as GFF/GTF).

4 Analysis based on annotated transcript features

We first perform an analysis based on annotated transcript features. The following example converts the transcript
features into splice graph features and obtains compatible counts for each feature and each sample.

sgfc <- analyzeFeatures(si, features = txf_annotated)

Process features...
Obtain counts...

analyzeFeatures() returns an object of class SGFeatureCounts, which extends the SummarizedExperiment class from
the GenomicRanges package. SGFeatureCounts contains sample information as colData, splice graph features as
rowRanges and assays counts and FPKM, which store compatible counts and FPKMs for each splice graph feature and
sample, respectively. Accessor functions colData(), rowRanges (), counts() and FPKM() can be used to access the
data.

Compatible FPKMs for splice graph features can be visualized with plotFeatures(). The plotting function invisibly
returns a data.frame with information on splice graph features, including genomic coordinates.

df <- plotFeatures(sgfc, geneID = 1)
df

#i#t id name featurelD

http://bioconductor.org/packages/release/data/annotation/html/TxDb.Hsapiens.UCSC.hg19.knownGene.html
http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html

Splice event detection and quantification from RNA-seq data

#i#
#i#t
##
##
#it
#it
#i#
##
##
##t
#it
#i#
##
##
##
#Hit
#it
#i#t
##
##
#i#t
#it

E1l
E2
E3
E4
E5
E6
E7
E8
E9
10 E10
11 E11
12 E12
13 J1
14 J2
15 J3
16 J4
17 J5
18 J6
19 J7
20 J8
21 J9
22 J10

© 00 NO O W N -

L L T T G G S O = I . I c I . I . O O O e O e I e O e Y > A

116
116
116
116
116
116
116
116
116
116
116
116
116
116
116
116
116
116
116
116
116
116

:87425689-87425708:
:87423343-87423454:
:87417011-87417394:
:87393973-87394561 :
:87393901-87393972:
:87380780-87380856:
:87377204-87377371:
:87376483-87376557 :
:87369761-87369870:
:87368910-87369063:
:87367492-87367892:
:87362942-87365116:
:87423454-87425689:
:87393972-87423343:
:87393972-87417011:
:87380856-87393901 :
:87377371-87380780:
:87376557-87377204:
:87369870-87376483:
:87369063-87369761:
:87367892-87368910:
:87365116-87367492:

J2

J3

Ji

El E2 E3

—l AN ™
v tar] law}

Ja 35

42
38
35
33
29
25
21
17
13

40
32
31
27
23
19
15

~

J6 J7 J8 J9 J10

E4E5 E6 E7 E8 E9 E10 EI11

J4

J5

J6

J7

J8
J9
J10

E12

0

L
0

R7

Splice event detection and quantification from RNA-seq data 4

5 Analysis based on predicted transcript features

Instead of relying on existing annotation, we can predict transcript features from BAM files directly.

sgfc <- analyzeFeatures(si, which = gr)

Predict features...

Process features...

Obtain counts...

For interpretability, we annotate predicted features with respect to known transcript features.

sgfc <- annotate(sgfc, txf_annotated)

Predicted splice graph features and compatible FPKMs can be visualized as previously. Splice graph features with missing
annotation can be highlighted using argument color novel.

df <- plotFeatures(sgfc, geneID = 1, color_novel = "red")

df

#i# id name featurelD
##t 1 El1 E:16:87417011-87417348: - 38
2 E2 E:16:87393901-87393972: - 34
3 E3 E:16:87392017-87392103: - 30
4 E4 E:16:87380780-87380856: - 25
5 E5 E:16:87377204-87377371: - 21
6 E6 E:16:87376483-87376557: - 17
#t 7 E7 E:16:87369761-87369870: - 13
8 E8 E:16:87368910-87369063: - 9
9 E9 E:16:87367492-87367892: - B
10 E10 E:16:87362930-87365116: - 1
11 J1 J:16:87393972-87417011:- 36
12 J2 J:16:87392103-87393901: - 32
13 J3 J:16:87380856-87393901: - 28
14 J4 J:16:87380856-87392017:- 27
15 Jb J:16:87377371-87380780: - 23
16 J6 J:16:87376557-87377204: - 19
17 J7 J:16:87369870-87376483: - 15
18 J8 J:16:87369063-87369761: - 11
19 J9 J:16:87367892-87368910: - 7
20 J10 J:16:87365116-87367492: - 3

Splice event detection and quantification from RNA-seq data 5

J3
J. J2-J4 J5 J6 J7 J8 X9 J10
—_—
El E2 E3 E4 E5 E6 E7 ES8 E9 E10
o
—l AN ™ < 19} o N~ o (*2} -
=) =)) — =))) =) =) =)

nn 7

Note that, in contrast to the previous figure, the predicted gene model does not include parts of the splice graph that
are not expressed. Also, an unannotated exon was discovered from the RNA-seq data, which is expressed in three of the
four normal colorectal samples.

6 Analysis of splice variants

Instead of considering the complete splice graph of a gene, we can focus our analysis on individual splice events. The
following example identifies splice events from the splice graph and obtains representative counts for each splice variant.

sgvc <- analyzeVariants(sgfc)

Find segments. ..
Find wvartants. ..
Annotate wvariants...

analyzeVariants() returns an SGVariantCounts object. Similar to SGFeatureCounts, SGVariantCounts extends
the SummarizedExperiment class. SGVariantCounts contains sample information as colData and splice variants as
rowRanges. Assay variantFreq stores estimates of relative usage for each splice variant and sample. Accessor func-
tions colData(), rowRanges() and variantFreq() can be used to access the data.

Each splice variant consists of one or more splice graph features. Information on splice variants is stored as
elementMetadata (or mcols) in the SGVariants object and can be accessed as follows.

mcols(sgvc)

DataFrame with 2 rows and 16 columns
#it from to type featureID segmentID closed3p closedbp

Splice event detection and quantification from RNA-seq data 6

#i# <character> <character> <character> <character> <character> <logical> <logical>
1 D:16:87393901:- A:16:87380856: - J 28 4 TRUE TRUE
2 D:16:87393901:- A:16:87380856: - JEJ 32,30,27 2 TRUE TRUE
genelID eventID variantID featurelID5p featureID3p

#it <integer> <integer> <integer> <IntegerList> <IntegerList>

1 1 1 1 28 28

2 1 1 2 32 27

#it txName geneName variantType variantName

#Hit <CharacterList> <CharacterList> <CharacterList> <character>

1 uc002fjv.3,uc002fjw.3,uc010vot.2 79791 SE:S 79791_1_1/2_SE

2 79791 SE:I 79791_1_2/2_SE

Splice variants and estimates of relative usage can be visualized with function plotVariants().

plotVariants(sgvc, eventID = 1, color_novel = "red")
1
2 2
—I
2

7 Advanced use

Functions analyzeFeatures() and analyzeVariants() wrap multiple analysis steps for convenience. Alternatively,
the functions performing individual steps can be called directly. For example, the previous analysis based on predicted
transcript features can be performed as follows.

txf <- predictTxFeatures(si, gr)
sgf <- convertToSGFeatures (txf)
sgf <- annotate(sgf, txf_annotated)

Splice event detection and quantification from RNA-seq data 7

sgfc <- getSGFeatureCounts(si, sgf)
sgv <- findSGVariants(sgf)

Find segments. ..
Find variants...
Annotate wariants...

sgvc <- getSGVariantCounts(sgv, sgfc)

predictTxFeatures() and getSGFeatureCounts() can be run on individual samples (e.g. for distribution across a
high-performance computing cluster). predictTxFeatures () predicts features for each sample, merges features across
samples and finally performs filtering and processing of predicted terminal exons. When using predictTxFeatures ()
for individual samples, with predictions intended to be merged at a later point in time, run predictTxFeatures()
with argument min_overhang = NULL to suppress processing of terminal exons. Then predictions can subsequently be
merged and processed with functions mergeTxFeatures() and processTerminalExons (), respectively.

8 Performance

When performing genome-wide analyses or working with large data sets, parallelization is highly recommended. Functions
getBamInfo(), predictTxFeatures() and getSGFeatureCounts() support parallel processing of multiple samples.
predictTxFeatures() and getSGFeatureCounts() also support parallel processing of multiple chromosomes/strands
for a given sample. Parallization is controlled with argument cores. Running a single BAM file with ~ 50 million paired-
end reads using 4 cores typically takes ~ 2—3 hours for prediction and ~ 1—2 hours for counting. Processing times can be
affected by individual genes or genomic regions with many read alignments (e.g. the mitochondrial chromosome). Thus it
can be benefical to exclude high coverage regions by filtering BAM files prior to analysis with SGSeq. For prediction with
predictTxFeatures(), genomic regions with high splice complexity likely due to spurious alignments can be skipped
automatically to speed up processing. Skipping is controlled with argument max_complexity. Identification of splice
events is performed on a per-gene basis and can be parallelized using argument cores for analyzeVariants() and
findSGVariants().

9 Session information

R version 3.2.1 beta (2015-06-08 r68489), x86_64-unknown-linux-gnu

e Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_US.UTF-8, LC_COLLATE=C,
LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8, LC_PAPER=en_US.UTF-8, LC_NAME=C,
LC_ADDRESS=C, LC_TELEPHONE=C, LC_MEASUREMENT=en_US.UTF-8, LC_IDENTIFICATION=C

e Base packages: base, datasets, grDevices, graphics, methods, parallel, stats, stats4, utils

e Other packages: AnnotationDbi 1.30.1, Biobase 2.28.0, BiocGenerics 0.14.0, GenomelnfoDb 1.4.0,
GenomicFeatures 1.20.1, GenomicRanges 1.20.5, IRanges 2.2.4, S4Vectors 0.6.0, SGSeq 1.2.2,
TxDb.Hsapiens.UCSC.hg19.knownGene 3.1.2, XVector 0.8.0, knitr 1.10.5

e Loaded via a namespace (and not attached): BiocParallel 1.2.3, BiocStyle 1.6.0, Biostrings 2.36.1, DBI 0.3.1,

GenomicAlignments 1.4.1, RCurl 1.95-4.6, RSQLite 1.0.0, Rsamtools 1.20.4, XML 3.98-1.2, biomaRt 2.24.0,

bitops 1.0-6, evaluate 0.7, formatR 1.2, futile.logger 1.4.1, futile.options 1.0.0, highr 0.5, igraph 0.7.1,

lambda.r 1.1.7, magrittr 1.5, rtracklayer 1.28.4, stringi 0.4-1, stringr 1.0.0, tools 3.2.1, zlibbioc 1.14.0

References

[1] Steffen Heber, Max Alekseyev, Sing-Hoi Sze, Haixu Tang, and Pavel A Pevzner. Splicing graphs and EST assembly
problem. Bioinformatics (Oxford, England), 18 Suppl 1:5181-8, 2002.

Splice event detection and quantification from RNA-seq data 8

2]

(3]

Somasekar Seshagiri, Eric W Stawiski, Steffen Durinck, Zora Modrusan, Elaine E Storm, Caitlin B Conboy, Subhra
Chaudhuri, Yinghui Guan, Vasantharajan Janakiraman, Bijay S Jaiswal, Joseph Guillory, Connie Ha, Gerrit J P
Dijkgraaf, Jeremy Stinson, Florian Gnad, Melanie A Huntley, Jeremiah D Degenhardt, Peter M Haverty, Richard
Bourgon, Weiru Wang, Hartmut Koeppen, Robert Gentleman, Timothy K Starr, Zemin Zhang, David A Largaespada,
Thomas D Wu, and Frederic J de Sauvage. Recurrent R-spondin fusions in colon cancer. Nature, pages 1-8, August
2012.

Michael Lawrence, Wolfgang Huber, Hervé Pages, Patrick Aboyoun, Marc Carlson, Robert Gentleman, Martin T
Morgan, and Vincent J Carey. Software for Computing and Annotating Genomic Ranges. PLoS Computational
Biology, 9(8):€1003118, August 2013.

	1 Background
	2 Overview
	3 Preliminaries
	4 Analysis based on annotated transcript features
	5 Analysis based on predicted transcript features
	6 Analysis of splice variants
	7 Advanced use
	8 Performance
	9 Session information

