
From R to Java: the TypeInfo and RWebServices

paradigm

Nianhua Li∗, Martin T. Morgan, Seth Falcon,
Robert Gentleman, Duncan Temple Lang†

14 July, 2006

Abstract

Web services are most effective on statically typed objects exposed in
a well-developed infrastructure. This document summarizes our approach
to exposing R objects and functionality in a Java class hierarchy of stati-
cally typed methods. The approach is to use R’s formal (S4) class system
to strongly type R functions using TypeInfo. We then convert strongly
typed functions to Java objects and methods for exposure as Java-based
web services.

Exposing and implementing the web service in Java involves the pack-
age SJava. Documentation for these steps will be provided later.

1 Introduction

Exposing R objects and functions as web services poses several challenges. First,
R has both informal ‘classes’ and a formal (S4) class system, whereas web services
are most effective with well-defined objects. Second R functions are not strongly
typed, whereas web services deploy statically typed functions. Finally, well-
developed infrastructure supports Java-based web services, whereas web services
client and server functionality for R requires substantial de novo development.
TypeInfo and RWebServices are packages that combine to provide a paradigm
for exposing R functions as effective web services in a Java-based web services
context.

Here we document the paradigm of using TypeInfo and RWebServices for type
mapping between R and Java.

∗Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., PO Box 19024 Seattle,
WA 98109
†Department of Statistics, 4210 Mathematical Sciences Building, One Shield Avenue,

Davis, CA 95616

1



2 Steps to describing R objects in Java

2.1 Adding TypeInfo to R functions

The main purpose of TypeInfo is to provide type specification for function argu-
ments and return values. By ‘type specification’ we mean definition of argument
and return types in terms of defined R objects. The named objects are defined in
R, and objects and function definitions are translated to equivalent Java objects
and methods using RWebServices.

To illustrate, the following defines and invokes a hypothetical R function
square taking an un-typed argument x and returning an untyped return value.

> square <- function(x) {

+ return(x^2)

+ }

> square(10)

[1] 100

The function evaluates correctly when provide a numeric argument; non-numeric
arguments result in a run-time error. Importantly, there is no way to query the
function to determine its argument or return type.

Type specification is applied by loading the TypeInfo package and annotating
the definition of square:

> library(TypeInfo)

> STS <- SimultaneousTypeSpecification

> TS <- TypedSignature

> typeInfo(square) <-

+ STS(TS(x = "numeric"), returnType = "numeric")

(The symbols STS and TS are defined for convenience to be synonyms for the
longer function names from the TypeInfo library).

Applying TypeInfo provides two important changes to the behavior of square,
without altering the body of the function. First, the argument x and return type
must be objects of type numeric (approximately, double[] in Java). Attempts
to invoke square with non-numeric arguments result in an error. Programming
errors returning non-numeric values also cause an error.

The second important consequence of applying TypeInfo is to allow functions
annotated in this way to be queried for their argument and return types:

> typeInfo(square)

An object of class "SimultaneousTypeSpecification"

[[1]]

[TypedSignature]

x: is(x, c('numeric')) [InheritsTypeTest]

2



Slot "returnType":

An object of class "InheritsTypeTest"

[1] "numeric"

This information can be readily extracted and transformed programmatically.
R functionality is usually organized into packages. The intention is that

package authors, or individuals responsible for exposing R functionality as web
services, apply TypeInfo to functions in the package. Thus type-specified func-
tions are defined within packages.

Full documentation of TypeInfo is available with the package. Entering li-

brary(help=TypeInfo) at the R prompt provides a synopsis of available com-
mands. Documentation of each command is available by typing ?typeInfo at
the R prompt. Additional illustration of TypeInfo, written for a general audience,
is distributed with the packages as a PDF file TypeInfoNews.

2.2 Using RWebServices to create Java mappings

The main purpose of RWebServices is to translate R object and function defini-
tions into equivalent Java class definitions. Note that there are two components
to translation. The focus here is on describing R objects in Java. The process
of moving data from R to Java and vice-versa is implicit in this description, but
the software for performing this translation (SJava) is not part of the paradigm
being described here.

RWebServices operate on type-specified functions. RWebServices extracts
information about argument and return types. It determines the underlying
structure of potentially complicated R objects specified in the type definition.
Based on this information, RWebServices produces Java class hierarchies re-
flecting data objects, and composes Java method signatures appropriate for the
functions.

From the R perspective, the process of producing web services templates for
a function, e.g., caAffy with TypeInfo applied in the package CaAffy is straight-
forward:

> library(CaAffy)

> RJavaSignature(c(caAffy))

RJavaSignature queries caAffy for its argument types. It then uses standard
S4 object type definition specified in CaAffy (or other R packages), and function
definitions in CaAffy to construct Java signatures. RJavaSignature then pro-
duces documented Java beans representing the R data objects and functions,
organized in a hierarchy reflecting the package structure. Suppose caAffy takes
arguments magePlaceholder and caAffyTuningParam of class MagePlaceholder
and CaAffyTuningParam, and returns an object of MagePlaceholder . The Java

beans and methods are packaged as described below.
Full documentation of RWebServices is available with the library. Entering

library(help=RWebServices) at the R prompt provides a synopsis of available

3



commands. Documentation of each command is available by typing ?RJavaSig-

nature at the R prompt. Although the RWebServices package depends on SJava
for performing web services, the functionality described here does not use the
facilities of SJava.

3 Understanding Java representations of R ob-
jects and functions

RWebServices has two main functionalities. First, RWebServices generates Java
representations of R functions and data objects. Second, RWebServices allows R
functions to be evaluated from within Java, including Java-based web or ana-
lytic services. This section describes in detail the functioning of RWebServices
as it generates Java representations.

A central purpose of RWebServices is to generate Java representations of R

data and functions. The main interface to RWebServices is provided through
the R function RJavaSignature. Starting with a list (provided by the user or
programmatically extracted from the package) of TypeInfo-annotated functions,
RWebServices parses the functions for data types, and creates Java represen-
tations of each data type and method. The Java representation of methods
and parsed data types are then collated into Java packages with a layout con-
sistent with the R package structure. RWebServices also generates Java ser-
vice APIs and adapters for the R functions. Internally, the function RWebSer-

vices:::generateFunctionMap is responsible for these steps.
The Java data and method representations are written to disk as a file

hierarchy reflecting the structure of the corresponding R objects, including the
libraries in which the R data types and methods were defined. Details are
provided below, but a simple example is:

package / CaAffy / data (Java data objects)

/ functions (Java methods for R functions)

/ CaPROcess / data

/ functions

/ CaDNAcopy / data

/ functions

service / bioconductor (Java service API)

The R packages in this example include CaAffy, CaPROcess, and CaDNAcopy.

3.1 Java representations of R data objects

The responsibility for generating Java representations of R data objects is in the
internally defined function RWebServices:::generateDataMap. This function
operates by creating a hash of R data types used in the R functions. The func-
tion then creates Java class definitions representing the R data types (limitations
concerning multiple inheritance are described below). The representations re-
flect underlying R data type structure, for instance, capturing slots present in

4



S4 classes. Part of this process is to identify functions required for low-level
data conversion (e.g., R numeric to Java RDouble); details of the low-level con-
version process are presented below. R class names are mangled to reflect Java
conventions (e.g., R class.name becomes Java className) and to avoid Java

keyword conflicts.
The Java representations are written to disk in a folder data contained inside

the corresponding package folder, e.g., biocJavaMap/CaAffy/data.

3.2 Generating Java representations of R function signa-
tures

RWebServices:::generateDataMap uses the R function signature to generate
Java class methods. Methods are constructed by looking up input and output
R data types with their corresponding Java representation. Argument input
names are mangled to be consistent with Java convention. Javamethod names
correspond to R function names, except when several R functions have the same
name but different return types. In this case simple aliases (e.g., foo_1, foo_2)
are created in the Java representation.

The Java representations are written to disk in a folder function containing
a single class with methods corresponding to all R functions defined in the R

package.

3.3 Generating the Java API and adapters

RWebServices creates an API that represents the main entry to invoke R func-
tionality from Java. In its simplest form, the API consists of a single Java

class (e.g., service.bioconductor.java) with a method for each R function. Each
method in the API invokes the corresponding method in the individual Java
packages. For example, the affy method in the main service API might invoke
biocJavaMap.CaAffy.function.caAffy(). Multiple web services can also be
defined, with each service API dispatching to one or several Java packages en-
capsulating R methods.

RWebServices also creates a naive client interface to be used during testing,
and an adapter to implement the web service interface generated by Axis or
other web service facilities.

The Java API, client, and adapters are written to disk in the folder service
/ bioconductor (or as defined by the user).

4 Understanding how Java invokes R functions

Invoking R functions from Java relies on the SJava package. There are two main
tasks. The first is conversion of data types between Java and R. The second
is to evaluate the R functions, using an R session embedded in the Java virtual
machine.

5



4.1 Data types and conversions

SJava allows C code to interface between native Java types (accessible through
JNI) and native R types (R native types are C data structures that define S-
expressions, or SEXPs). Each data type conversion is performed by converter
functions, written in C or R. Converters for basic data types are provided by
SJava. Additional converters can extend or override the basic converters, and
can be registered with SJava for dynamic dispatch.

4.1.1 Data models

RWebServices uses the flexible infrastructure of SJava to convert basic R types
to Java primary types (integer, double or classes (e.g., Integer[], Double[],
etc.), and to convert the structured S4 R objects to corresponding Java classes.
This basic mapping provides sufficient flexibility for data transfer between lan-
guages, while promoting interoperability through reuse of common data types.
RWebServices also supports a richer object model, capturing the use of R at-
tributes to convey object information, e.g., about dimensions or missing values.
This richer model is not exposed in caBig.

The Java representation of complex R objects (e.g., S4 objects) are program-
matically generated using R language reflection to identify object structure (R
slots) in terms of basic R types. Limitations to this approach are indicated be-
low. Additional R class structures can also be represented in Java. For instance,
class unions are an R concept where members of the class union form a single
class, even though they are otherwise unrelated.

> setClass("A", "logical")

> setClass("B", "character")

> setClassUnion("C", c("A","B"))

An instance of class C can be assigned either logical or character values. This
pattern of inheritance cannot be represented as a single Java object, but RWeb-
Services implements Java representations of class unions using inspiration from
the Abstract Factory pattern.

4.1.2 Converters

A converter handles conversion between a specific pair of R and Java objects.
There are two components to RWebServices converters. A ‘match’ function (e.g.,
RWebServices:::cvtIntegerToJava) is used for dynamic dispatch. A convert
function (e.g., RWebServices:::cvtIntegerToJava) in RWebServices is written
in R; converters rely on calls to underlying C code (e.g., RIntegerVector_JavaIntArray)
or on SJava functionality to copy data types between R SEXPs and Java native
representations.

Converters for each complex R object is programmatically generated by re-
cursively visiting the object slots (corresponding to Java fields) until basic R

types are encountered. Converters are included in the data output directory,

6

http://java.sun.com/blueprints/corej2eepatterns/Patterns/DataAccessObject.html


e.g., biocJavaMaps/CaAffy/data/TypeConverter.R) and loaded in the embed-
ded R.

4.1.3 Limitations

There are several limitations to the object model and conversion process outlined
here. R objects can have arbitrary attributes, but the RWebServices implementa-
tion only recognizes attributes essential for representing data structures to web
or analytic services (e.g., dim to describe RArray dimensions). The main reason
for restricting RWebServices in this way is that the resulting Java representation
is likely not to be used often. The implementation is flexible enough that future
extensions are possible.

Classes from the the informal ’S3’ object system of R do not contain sufficient
information about class structure for programmatic transformation between R

and Java; these objects can be defined more formally as S4 objects, and the S4
objects used with TypeInfo to specify argument and return types.

S4 classes consist of slots specific to the class, and relationships to other
classes; the class system is similar to but richer than that in Java, allowing
multiple inheritance, class unions, etc. RWebServices captures the entire data
representation of S4 objects, but does not contain information about class rela-
tions. For instance, in the following example

> setClass("D", representation=representation(x="numeric"))

> setClass("E", contains="D", representation=representation(y="numeric"))

An R instance of class D has two slots x, y; information about the inheritance
of x is contained in the class definition of D , but the structure of instances of D
does not include this information. The Java representation of class D created
by RWebServices has two fields x and y, but no knowledge of the class hierarchy
that these slots represent in R because Java requires single inheritance. This
is a satisfactory solution for present purposes, since the data contained in the
Java instance is sufficient for data transformation. A development might more
fully leverage single inheritance in Java to represent classes with only single
inheritance in R.

RWebServices allows R objects to be represented in Java, but does not pro-
vide facilities for automatically representing Java objects as R classes. This
is satisfactory for the goal of exposing R functions and data object as web or
analytic services.

4.2 Function invocation

Invocation of R functions is initiated in the Java API created by RWebServices
(e.g., service / bioconductor). This API initializes and uses SJava facilities.
SJava embeds R in the Java virtual machine as a shared library. SJava me-
diates interactions with the embedded R through instances of the Java classes
ROmegahatInterpreter and REvaluator . The Java API uses REvaluator to es-
tablish the environment for R function evaluation, including loading R packages

7



required for function evaluation and installing converter functions. The Java

virtual machine is now able to invoke R functions.
The interface to R functions starts at the main API. The main API invokes

the package-level (e.g., CaAffy) Java representations of the R function. The
package-level representation invokes REvaluator.call(). This method takes
as arguments a character string representing the R function name and a Java

Object[] containing Java representations of input parameter, and returns a Java

Object . REvaluator.call invokes necessary data translators for data transfer
to and from R, and arranges for R function evaluation of appropriate arguments.
Input parameters and return types of REvaluator.call() are generic; type
coercion takes place in the package-level Java representations.

Error handling facilities are available. Errors triggering the exception han-
dling system in R during function evaluation or type conversion are propagated
as Java exceptions, and returned to the Java virtual machine. Serious R faults
(e.g.,segmentation faults) trigger Java exceptions that are also propagated.

The implementation has several limitations. Callbacks to Java from R are
not yet tested. SJava implements the concept of foreign language references,
where functions in one language operate on references to complex data types
in the other language, rather than on the data itself. The RWebServices imple-
mentation has not yet taken advantage of this feature.

Finally, R is not thread safe, so that each Java virtual machine can have
at most one instance of R. This requires that evaluation of several functions
must occur sequentially. One solution is to use multiple Java processes in a
coordinated fashion, e.g., using the Java Message Service.

5 Next steps: Exposing R as web and analytic
services

The forgoing sections have described how R data types and functions are exposed
to Java applications. There are well-established mechanisms to facilitate the
transformation of stand-alone Java applications to web or analytic services. For
example, Apache Axis tools generate WSDL from stand-alone applications, and
web services layers from WSDL. Likewise, the caGrid tool Introduce coupled
with caDSR tools for semantic annotation allow generation of analytic services
from stand-alone Java applications.

8


	Introduction
	Steps to describing R objects in Java
	Adding TypeInfo to R functions
	Using RWebServices to create Java mappings

	Understanding Java representations of R objects and functions
	Java representations of R data objects
	Generating Java representations of R function signatures
	Generating the Java API and adapters

	Understanding how Java invokes R functions
	Data types and conversions
	Data models
	Converters
	Limitations

	Function invocation

	Next steps: Exposing R as web and analytic services

