
GraphPAC: Graph Theoretical Identification of

Mutated Amino Acid Clusters in Proteins

Gregory Ryslik
Yale University

gregory.ryslik@yale.edu

Hongyu Zhao
Yale University

hongyu.zhao@yale.edu

April 16, 2015

Abstract

The GraphPAC package is a novel tool that identifies clusters of mutated
amino acids in proteins by using graph theory to take into account protein
tertiary structure. Specifically, the protein is mapped onto a one dimensional
space by solving the Traveling Salesman Problem (TSP) heuristically via the
TSP package [Hahsler and Hornik, 2011]. Once a hueristic solution to the
TSP has been found, the protein is reorganized to a one-dimensional space by
walking the path from the first amino acid to the last. The Nonrandom Mutation
Clustering (NMC) [Ye et al., 2010] algorithm is then run on the reordered protein
to identify if any pairwise mutations are closer together than expected by chance
alone. GraphPAC is designed to be a companion package to iPAC [Ryslik
and Zhao, 2012] and provides the researcher with a different toolset to identify
mutational clusters. By using a graph theoretical approach to map the protein
to a one dimesional spacing, mutational clusters that are otherwise missed by
the NMC and iPAC algorithms are found.

1 Introduction

Due to recent pharmacological advances in treating tumorogenic driver muta-
tions [Croce, 2008], several methods have been developed to identify amino acid
mutational clusters. One of the most recent methods, NMC considered all pair-
wise mutations and identified those that are closer than expected by chance
alone under the assumption that each amino acid has an equal probability of
mutation. NMC, which considers the protein linearly might potentially exclude
amino acids that are close together in 3D space but far apart in 1D space. To
address this issue, the iPAC methodology [Ryslik and Zhao, 2012] reorganized
the protein via MultiDimensional Scaling (MDS) [Borg and Groenen, 1997].
This package is designed to overcome the reliance on MDS and provides the

1

researcher a different toolset for identifying mutational clusters.

Under a MDS approach, ever pairwise distance between amino acids is con-
sidered when the protein is mapped to a one dimensional space. Thus, amino
acids that are very far apart from each other in 3D space still influence each
other’s final position in 1D space. The graph theoretical approach does not
suffer from this limitation and would be more effective in reorganizing proteins
that have several domains which are connected by domain linkers (see Figure
1). By solving the TSP, we attempt to find the shortest path between all the
amino acids. Amino acids that are in the same region of space (such as in a
specific domain) will likely be close to each other in the path, while amino acids
that are far apart in space (seperated by one or more domain linkers) will be
far apart in the final path.

Figure 1: Possible Protein Arrangement of domain linkers and domains. The
amino acids on the very left should have no effect on the reordering position of
the amino acids on the right.

In order to run the clustering methodology we will describe below, 3 types
of data are required. First, you need the amino acid sequence of the protein.
Second, you need the protein tertiary structure and third you need the somatic
mutational data. The amino acid sequence is obtained from the Sanger Institute
and the protein tertiary structure is obtained from the PDB database.

An alignment (or other reconciliation) must be done in order to match the
structural data with the amino acid sequence. Once that’s done, the struc-
tural data is then matched with the mutational data which is obtained from the
COSMIC database. The raw mutational data is available from the COSMIC
website as a SQL database. Additional prior work is necessary to set up a local
copy of the database and create the appropriate queries required to extract the
mutational data. However, the end result is simply a n×m matrix where there
are n samples for a protein which has a total of m amino acids. A “1” in the (i,
j) position signifies that sample i had a mutation in amino acid j. If you have
your own mutational data, you do not need to acess the COSMIC database and
can simply create the mutational matrix described. Please ensure that your

2

mutational matrix has the default R column headings of ”V1,V2...Vm” where
m is the number of the last amino acid in the protein.

We provide sample mutational data for the PIK3Cα and KRAS proteins. We
also provide a brief description of how to obtain the amino acid sequence
and the tertiary structure data in Code Example 1. For a full description of
how to extract the correct mutational and positional data (via such functions
as get.Positions() and get.AlignedPositions()), along with a description of the
NMC algorithm please refer to the documentation provided in the iPAC pack-
age.

For the rest of this vignette, we will assume the user is familiar with these
functions.

If users want to contribute to the code base, please contact the author.

2 Finding Clusters in 3D Space via Graph The-
ory

Once the appropriate positional and mutational data has been loaded, the
GraphClust function is run to identify the mutational clusters. Specifically,
GraphClust will first reorder the protein by solving the TSP using one of the
four insertion methods available in the TSP package (nearest, farthest, cheapest
and arbitrary instertion). Once the protein is reordered, the mutational clusters
are found and reported back to the user. An example of the code and ouput is
shown in Example 1 below.

Code Example 1: Running the GraphClust using the cheapest insertion method

> library(GraphPAC)

> #Extract the data from a CIF file and match it up with the canonical protein sequence.

> #Here we use the 3GFT structure from the PDB, which corresponds to the KRAS protein.

> CIF<-"http://www.pdb.org/pdb/files/3GFT.cif"

> Fasta<-"http://www.uniprot.org/uniprot/P01116-2.fasta"

> KRAS.Positions<-get.Positions(CIF,Fasta, "A")

> #Load the mutational data for KRAS. Here the mutational data was obtained from the

> #COSMIC database (version 58).

> data(KRAS.Mutations)

> #Identify and report the clusters.

> my.graph.clusters <- GraphClust(KRAS.Mutations,KRAS.Positions$Positions,

+ insertion.type = "cheapest_insertion",

+ alpha = 0.05, MultComp = "Bonferroni")

Calculating Remapped Clusters.Calculating Culled Clusters.Calculating Full Clusters.

3

> my.graph.clusters

$Remapped

cluster_size start end number p_value

[1,] 49 13 61 38 5.130714e-241

[2,] 2 12 13 131 8.946018e-229

[3,] 1 12 12 100 8.932390e-183

[4,] 50 12 61 138 5.485758e-164

[5,] 39 23 61 6 1.006405e-105

[6,] 40 22 61 7 7.408106e-105

[7,] 12 12 23 133 1.307698e-99

[8,] 11 12 22 132 1.353429e-98

[9,] 1 13 13 31 8.857871e-38

[10,] 57 61 117 6 4.352226e-31

[11,] 106 12 117 139 1.248463e-26

[12,] 86 61 146 16 1.214868e-21

[13,] 135 12 146 149 2.871632e-16

[14,] 1 146 146 10 5.331155e-08

[15,] 11 13 23 33 6.450857e-04

[16,] 10 13 22 32 7.246194e-04

$OriginalCulled

cluster_size start end number p_value

V12 2 12 13 131 9.453887e-229

V12 1 12 12 100 7.630495e-183

V12 11 12 22 132 1.554973e-138

V12 12 12 23 133 3.526333e-135

V12 50 12 61 138 2.824800e-58

V13 1 13 13 31 8.857871e-38

V12 106 12 117 139 4.538089e-17

V12 135 12 146 149 3.853241e-13

V13 10 13 22 32 8.603544e-11

V13 11 13 23 33 2.553752e-10

V146 1 146 146 10 5.331155e-08

$Original

cluster_size start end number p_value

V12 2 12 13 131 1.979447e-235

V12 1 12 12 100 6.486735e-188

V12 11 12 22 132 3.220145e-145

V12 12 12 23 133 6.524053e-142

V12 50 12 61 138 4.338908e-65

V13 1 13 13 31 2.732914e-39

V12 106 12 117 139 2.341227e-23

V12 135 12 146 149 1.356584e-20

V13 10 13 22 32 4.487362e-12

V13 11 13 23 33 1.279256e-11

V146 1 146 146 10 1.918440e-08

$candidate.path

4

[1] 1 2 3 4 5 6 53 52 51 50 49 48 47 46 45 44 43 42

[19] 41 40 39 54 55 56 57 7 8 9 10 60 58 59 62 64 63 61

[37] 12 13 18 19 20 29 33 35 38 37 36 34 32 31 30 28 27 26

[55] 25 24 23 22 21 17 16 15 14 11 89 86 87 88 92 93 97 98

[73] 99 103 104 106 105 102 101 100 96 95 94 91 90 125 124 123 115 114

[91] 113 112 111 110 109 108 107 137 136 135 131 130 129 126 127 128 132 133

[109] 134 138 139 140 141 142 143 116 117 118 119 120 121 122 85 84 83 82

[127] 81 80 79 78 77 75 74 73 69 68 67 65 66 70 71 72 76 160

[145] 159 158 154 153 152 149 148 147 146 145 144 150 151 155 156 157 161 162

[163] 163 164 165 166 167

$path.distance

[1] 761.6425

$linear.path.distance

[1] 629.1051

$protein.graph

IGRAPH DN-- 167 166 --

+ attr: name (v/n), label (v/n)

$missing.positions

LHS RHS

[1,] 168 188

As we can see, the first 3 elements returned, Remapped, OriginalCulled, and
Original are similar to those returned by iPAC. The Remapped element returns
the clusters after the protein is reordered using the graph theory methodology
described above. The OriginalCulled element returns the clusters found when
the protein is considered linearly (with no reordering) but with all the amino
acids that don’t have positional data removed. The Original element shows the
clustering results as found by the original NMC algorithm without taking any
of the positional data into account.

The next 3 elements provide information regarding the path that was found
by solving the TSP. The candidate.path element displays the actual path found.
The path.distance element shows the total distance if one were to traverse the
protein in the remapped order. The linear.path.distance element shows the total
distance if one were to traverse the protein in the original linear form from the
first to the last (Nth) amino acid: 1→ 2→ 3→ ...→ N (the amino acids that
had no positional data are skipped). The distance provided in path.distance and

linear.path.distance are measured in angstroms (Å).

The protein.graph element is a graph structure as defined in the the igraph
package [Csardi and Nepusz, 2006]. Specifically, each amino acid is treated as
a vertex. Then a directed edge from vertex i to vertex j is added if and only if
the traveling salesman solution has the path going from i to j. This element is
passed to the plot.protein function described in Section 3.2 below.

5

Finally, the missing.positions element provides a matrix that details which
amino acids did not have positional data. These amino acids are removed when
calculating clusters for the Remapped and OriginalCulled elements.

3 Plotting

Two types of plots have been implemented so far. Please ensure that you are
using a terminal capable of graphical output before running these commands.

3.1 Jump Plots

A jump plot displays the protein as matrix. The number of columns are specified
by the user allowing control over how wide the resulting picture is. Once the
color palette is selected, each element is then colored in with a different color
which designates the position of the amino acid in the reordered protein.

Code Example 2: Making a Jump Plot

> #Using the heat color palette

> Plot.Protein.Linear(my.graph.clusters$candidate.path, 25, color.palette = "heat",

+ title = "Protein Reordering - Heat Map")

> #Using the gray color palette

> Plot.Protein.Linear(my.graph.clusters$candidate.path, 25, color.palette = "gray",

+ title = "Protein Reordering - Gray Color Scale")

6

Protein Reordering − Heat Map

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100

101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125

126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150

151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167

Protein Reordering − Gray Color Scale

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100

101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125

126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150

151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167

7

From the plot using the “heat” palette, we can see that the firt jump occurs
from amino acid 6 to 7 since the color becomes much closer to red. Another
large jump occurs between amino acids 64 to 67. Since the “heat” color palette
ordering goes from white to red, amino acids that are reordered to the end of
the protein will have a much redder color than those in the beginning. Similarly,
amino acids reordered to the beginning of the protein will be almost completley
white. Please run “?Plot.Protein.Linear” for a full description of the graphical
parameters available for this function.

3.2 Interactive Circle Jump Plots

In addition to the static plot described in Section 3.1, a circular jump plot allows
for you to interactively see the graph. The plot use a TCL/TK window to plot
the protein in circular form. The color coding of each amino acid represents it’s
position in the reordered protein in the same way as for regular Jump Plots.
However, one can click and drag any amino acid in the window to see exactly
how the edges connect.

Below we provide pictures of the circle plot as created by the algorithm and
then the circle plot after manually adjusting the position of some vertices. As
there are many vertices, please zoom in on the pdf to see all the details. For
more information, run ”?Plot.Protein”. Finally, this function is a wrapper to
the tkplot function in the igraph package, please look there for full technical
specifications and additional options.

Special thanks to Dr. Gábor Csárdi (creator of the igraph package) for his
help.

Code Example 3: Making a Circle Jump Plot

> #Using the heat color palette

> Plot.Protein(my.graph.clusters$protein.graph, my.graph.clusters$candidate.path,

+ vertex.size=5, color.palette="heat")

8

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31
32

33
34353637383940414243444546474849505152

53
54

55
56

57
58

59
60

61
62

63
64

65
66

67
68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101
102

103
104

105
106

107
108

109
110

111
112

113
114

115
116

117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
136

137
138

139
140

141
142

143
144

145
146

147
148

149
150

151
152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

1
2

3

4

5

6

7

8

9

10

11
12

13

14

1516

17

181920

21
22

23
24

25
26

27

28

29

30
31

32
33

34

35

36

37

383940414243444546474849505152

53

54
55

56
57

58

59
60

61

62

63
64

65

66
67

68

69
70

71

72
73

7475

76

77

78
79

80

81

82

83

84

85

86
87

88

89

90

91 92

93

94

95

96

97 98

99

100

101 102 103

104
105

106

107
108

109
110

111
112

113
114

115
116

117

118 119 120 121 122
123 124 125 126

127

128 129 130 131

132

133
134

135

136

137

138
139

140
141

142
143

144
145

146
147

148
149

150

151
152 153

154

155 156 157

158

159

160
161

162

163

164

165

166
167

9

4 Comparing Path Differences

In addition to the graphical options provided above, one might want to con-
sider a numerical measure of the reordering of the amino acid when comparing
the iPAC and GraphPAC methodologies. One possible measure could be
Kendall’s Tau [Kendall, 1938] which is equivalent to the number of reorderings
performed during a bubble sort. This can be easily done via the RMallow
package [Gregory, 2012].

> library(RMallow)

> graph.path <-my.graph.clusters$candidate.path

> #get.Remapped.Order is a function in the \iPAC package

> mds.path <- get.Remapped.Order(KRAS.Mutations,KRAS.Positions$Positions)

> path.matrix <- rbind (original.seq = sort(graph.path), graph.path, mds.path)

> AllSeqDists(path.matrix)

original.seq graph.path mds.path

0 2991 6357

Observe that the “original.seq” value will always be 0 since the original pro-
tein is already in order.

References

Ingwer Borg and Patrick J. F Groenen. Modern multidimensional scaling
: theory and applications. Springer, New York, 1997. ISBN 0387948457
9780387948454.

Carlo M Croce. Oncogenes and cancer. The New England Journal of Medicine,
358(5):502–511, January 2008. ISSN 1533-4406. doi: 10.1056/NEJMra072367.
URL http://www.ncbi.nlm.nih.gov/pubmed/18234754. PMID: 18234754.

Gabor Csardi and Tamas Nepusz. The igraph software package for com-
plex network research. InterJournal, Complex Systems:1695, 2006. URL
http://igraph.sf.net.

Erik Gregory. RMallow: Fit Multi-Modal Mallows’ Models to ranking data.,
2012. URL http://CRAN.R-project.org/package=RMallow. R package ver-
sion 1.0.

Michael Hahsler and Kurt Hornik. Traveling Salesperson Problem (TSP), 2011.
R package version 1.0-7.

M. G. Kendall. A new measure of rank correlation. Biometrika,
30(1-2):81–93, 1938. doi: 10.1093/biomet/30.1-2.81. URL
http://biomet.oxfordjournals.org/content/30/1-2/81.short.

Gregory Ryslik and Hongyu Zhao. iPAC: Identification of Protein Amino acid
Clustering, 2012. R package version 1.1.3.

10

Jingjing Ye, Adam Pavlicek, Elizabeth A Lunney, Paul A Rejto, and Chi-Hse
Teng. Statistical method on nonrandom clustering with application to somatic
mutations in cancer. 11(1):11, 2010. ISSN 1471-2105. doi: 10.1186/1471-2105-
11-11. URL http://www.biomedcentral.com/1471-2105/11/11.

11

