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1 Introduction

The GSReg package allows to analyze pathways based on the variability of the expression
of sets of genes that are targets of those pathways. Basing this set statistic on variability
enables inference of dysregulated pathways in diseases, including notably cancers. The first
set statistic for gene variability was in the work of Eddy and his colleagues (see [1]) which
used a ranked based methodology called DIRAC. DIRAC calculates a measure of variability
of the ordering of the expression of genes in a pathway for specific phenotype. The basic idea
behind DIRAC' is to generate a template for the pair-wise comparisons of gene expressions
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of a pathway within a phenotype. DIRAC calculates a measure of the variability of the
ordering within the phenotype, i.e. the expected distance of a sample from the phenotype
and the template of the phenotype. In mathematical terms, if we denote denote two i.i.d.
samples from the same phenotypes by X and X’ and D Kendall-7-distance on the specific
pathways, then the EVA statistic is E(D(X, X’)). It identifies significantly dysregulated
pathways by estimating p-values from a permutation test. Eddy et al. found that more
pathological phenotypes usually have more pathways with higher variability compared to
less pathological phenotypes.

However, the permutation test in DIRAC is computationally intensive and reaching low p-
values may be impractical since they require a huge number of permutations. Low p-values
are required for multiple hypothesis correction. A similar measure of variability of the order-
ings of gene sets was proposed in [2]. This method approximates the p-value theoretically,
without a permutation test. This method is based on Kendall-7 distance [3] and the theory
of U-Statistics, thus we call this method Gene Set Expression Variation Analysis (or in short
EVA). Specifically, Kendall-7 distance between two expression profiles counts the number of
disagreeing pairwise comparisons between two profiles. The EVA measures the variability
of the gene expression of pathway genes from a phenotype by calculating the expectation of
Kendall-7 distance between two random samples from the phenotype. EVA then identifies if
the variability is significantly different across two phenotypes. To approximate this p-value
EVA applies a U-Statistic Theory approach.

The GReg package contains two following utilities:

1. Identifying the dysregulated pathways with DIRAC measure of variability. The signif-
icance is calculated using permutation test. This is the first time that DIRAC analysis

has been implemented in R. It also is more adaptable to new datasets than the original
Matlab code in [1].

2. Identifying the dysregulated pathways with EVA measure of variability. The signifi-
cance is approximated through applying U-statistics theory. This is very time efficient
and consistent with both DIRAC and applying permutation test on EVA.

2 Input Data

2.1 Data structure

In short, the GSReg package requires the following data in the following format:

1. Gene Expression Data



(a) The expression be in the form of a matrix where rows represent genes (or probes)
and columns represent samples.

(b) The expression matrix cannot have NAs.

(¢) The expression matrix rows must have names of genes or the probes.

2. Pathways

(a) The list of pathways must contain character vectors. Only the elements of the
vectors which appear in rownames of the expression matrix are considered for
analysis.

(b) The list of the pathways must have names for each vectors.
3. Phenotypes

(a) A factor with binary levels.

We used the data provided in the GSBenchMark package to reproduce the results in Eddy
et al. [1]. The GSBenchMark contains data for the pathways as well as the gene expression
and phenotype data from twelve studies. We load the information about the pathways from

GSBenchMark:

> library(GSBenchMark)
> data(diracpathways)
> class(diracpathways)

[1] "list"
> names(diracpathways) [1:5]

[1] "DEATHPATHWAY" "TCAPOPTOSISPATHWAY" "CCR3PATHWAY"
[4] "NEUTROPHILPATHWAY" "ALTERNATIVEPATHWAY"

> class(diracpathways[[1]])

[1] "character"

AS mentioned GSReg package requires the information of the pathways to be as a list of
character vectors. Also, GSReg requires the pathways to have names. The variable dirac-
pathways contains gene pathways. It is a list. Each element represents a pathway with its
name. Each elements contains a list of characters which represent the genes in the pathway:.
e.g. diracpathways [ ["DEATHPATHWAY"]].

Now, we load the datasets’ names:



> data(GSBenchMarkDatasets)
> print (GSBenchMark.Dataset.names)

[1] "leukemia_ GSEA" "marfan_GDS2960" "melanoma_GDS2735"

[4] "parkinsons_GDS2519" "prostate_GDS2545_m_nf" "prostate_GDS2545_m_p"
[7] "prostate_GDS2545_p_nf" "sarcoma_data" "squamous_GDS2520"
[10] "breast_GDS807" "bipolar_GDS2190"

The remaining examples in this vignette rely on one of the datasets, i.e. “squamous GDS2520.”
Similar analyses may be reproduces for other datasets by selecting a different element of “GS-
BenchMark.Dataset.names.”

> DataSetStudy = GSBenchMark.Dataset.names[[9]]
> print (DataSetStudy)

[1] "squamous_GDS2520"

> data(list=DataSetStudy)

The data consists of two variables: exprsdata and phenotypes. exprsdata consists of a gene
expression matrix where the rows and columns represent genes and the samples respectively.
GSReg requires the rownames of gene expression variable represent the gene names, i.e. they
are represented in the pathway information variable.

The GSReg does not allow any missing data. To comply with the requirements we remove
genes with NAs. The user may use any imputation to resolve this issue:

> if (sum(apply(is.nan(exprsdata),1,sum)>0))
exprsdata = exprsdata[-which(apply(is.nan(exprsdata),1,sum)>0),];

One can extract the gene names by:

> genenames = rownames (exprsdata) ;
> genenames[1:10]

[1] "MAPK3" "TIE1" "CYP2C19" "CXCR5" "CXCR5" "DUSP1" "MMP10" "DDR1"
[9] "EIF2AK2" "HINT1"

3 Analysis of the pathways
Here, we demonstrate how to use the GSReg package to compute DIRAC and EVA statistics.
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3.1 DIRAC Analysis

First, we load the library:

> library(GSReg)

The package also implements the alternative EVA statistic in the function GSReg.GeneSets.DIRAC.
This function receives gene expression as geneexpres, the pathway information as pathways

and phenotypes of samples as a factor with two levels and length equal to column number of
geneexpres. DIRA(C uses a permutation test for p-value calculation; so, GSReg.GeneSets .DIRAC
receives the number of permutations through (Nperm) with default value equal to 1000.

> Nperm = 10
> system.time ({DIRACAn =GSReg.GeneSets.DIRAC (exprsdata,diracpathways, phenotypes, Nperm=Nperm)})

user system elapsed
3.084 0.000 3.087

Here is the histogram of the DIRAC p-values:

> hist (DIRACAn$pvalues,xlab="pvalue",main="Hist of pvalues applying DIRAC Analysis.")



Hist of pvalues applying DIRAC Analysis.
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3.2 EVA

The package also implements the alternative EVA statistic in the function GSReg.GeneSets.EVA.
The function requires the similar inputs as GSReg.GeneSets.DIRAC (i.e. geneexpres, path-
ways, phenotypes) except it does not need Nperm since the p-value is not calculated through
permutation test but through the mentioned U-statistic theory approach.

> #Calculating the variance for the pathways
> #Calculate how much it takes to calculate the statistics and their p-value for all pathways



>
> system.time ({VarAnKendallV = GSReg.GeneSets.EVA(geneexpres=exprsdata,
pathways=diracpathways, phenotypes=as.factor (phenotypes)) })

user system elapsed
0.371  0.000 0.371

> names (VarAnKendallV) [[1]]
[1] "DEATHPATHWAY"
> VarAnKendallV[[1]]

$E1
[1] 0.09441352

$E2
[1] 0.1310383

$zscore
[1] -3.711215

$VarEtal
[1] 3.480369e-05

$VarEta2
[1] 6.248694e-05

$sdtotal
[1] 0.009863601

$pvalue
[1] 0.0002062669

The output consists of a list. Each element of the list corresponds to a pathway. The element
itself is a list. E1 and E2 are two fields which contain the measure of variability for phenotype
levels(phenotypes) [1] and levels(phenotypes) [2] respectively. Other list elements are
pvalue and zscore which are calculated through the theory of U-statistics and indicate the
statistical significance of the difference between F1 and E2.

3.3 Comparison of DIRAC and EVA

We ran the following code to compare statistics from DIRAC and from EVA.

> Nperm = 10;
> VarAnPerm = vector (mode="1list",length=Nperm)
> for( i in seq_len(Nperm))

{



VarAnPerm[[i]] = GSReg.GeneSets.EVA(geneexpres=exprsdata, pathways=diracpathways,
phenotypes=sample (phenotypes))
}
> pvaluesperm = vector (mode="numeric",length=length(VarAnPerm[[1]]))
> for( i in seq_along(VarAnPerm[[1]]))
{
z = sapply (VarAnPerm, function(x) x[[i]]$E1 - x[[i]]$E2)
pvaluesperm[i] = mean(abs(VarAnKendallV[[i]]$E1-VarAnKendallV[[i]]$E2)<abs(z))
}
> zscore = sapply(VarAnKendallV,function(x) x$zscore);
> pvalustat = sapply(VarAnKendallV,function(x) x$pvalue);

The figure represents that the theoretical p-value and p-value calculated from permutation
test in EVA are very similar and we can use the theoretical p-value as a surrogate for p-value.
Here is the histogram.

> hist(x=pvalustat,breaks=20,main="P-value Hist of U-Stat",xlim=c(0,1))



> plot(x=abs(zscore),y=pvaluesperm,xlab="|Z-scorel",
ylab="p-value",col="red1",main="p-value comparisons")

> zscorelin = seq(0,6,0.1);
> pvaltheoretic = (1-pnorm(zscorelin))*2
> lines(x=zscorelin,y=pvaltheoretic,type="1",pch=50,1ty=5,col="darkblue")
>  legend("topright",legend=c("permutation test","U-Stat Estimation"),
col=c("red", "blue"),text.col=c("red", "blue"),
lty=c(NA,1),lwd=c(NA,2.5) ,pch=c(21,NA))
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Figure 1: Comparing p-value from permutation test and U-statistic theory with only 10
permutations.
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Figure 2 shows the result of comparing p-value EVA computing from 1000 permutation test
and approximation using U-statistics theory (offline generated).

To compare with the p-value of the DIRAC analysis, we show the p-values of DIRAC versus
U-Statistic methodology:

> plot(x=DIRACAn$pvalues,y=pvalustat,xlab ="DIRAC",
ylab="EVA",main=sprintf ("P-value Comparison corr=}2.2g",cor (x=DIRACAn$pvalues,y=pvalustat)))
> Imfit = Im(pvalustat DIRACAn$pvalues-1)
> abline(lmfit)
> cor.test (x=DIRACAn$pvalues, y=pvalustat)

10



p—value comparisons

o erm test
— U-Stat

p—value
0.0 0.2 04 06 08 1.0

|Z—score|

Figure 2: Theoretical p-value versus empirical p-value using 1000 permutations.
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Pearson's product-moment correlation

data: DIRACAn$pvalues and pvalustat
t = 22.301, df = 238, p-value < 2.2e-16
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.7766437 0.8595145
sample estimates:
cor
0.8223942

P-value Comparison corr=0.82
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Also, the correlation of the p-values of DIRAC and U-Statistics is very high:
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> cor(x=DIRACAn$pvalues,y=pvalustat)
[1] 0.8223942

If we use 1000 permutations instead of 10 permutations, we can see that the correlation is
higher (0.88) as seen in Figure (3). The dysregulated pathways identified by DIRAC are the
following pathways:

[1] "DEATHPATHWAY" "NEUTROPHILPATHWAY" "PGC1APATHWAY"

[4] "RARRXRPATHWAY" "SKP2E2FPATHWAY" "KERATINOCYTEPATHWAY"
[7] "CHEMICALPATHWAY" "TGFBPATHWAY" "PROTEASOMEPATHWAY"
[10] "MAPKPATHWAY" "PDGFPATHWAY" "BIOPEPTIDESPATHWAY"

[13] "SPPAPATHWAY" "PYK2PATHWAY" "MYOSINPATHWAY"

[16] "BETAOXIDATIONPATHWAY" "IL7PATHWAY" "FMLPPATHWAY"
[19] "VITCBPATHWAY" "CD40PATHWAY" "CDC25PATHWAY"
[22] "MTORPATHWAY" "RNAPATHWAY" "FBW7PATHWAY"
[25] "LYMPHOCYTEPATHWAY" "LAIRPATHWAY" "HIVNEFPATHWAY"
[28] "ALKPATHWAY" "P35ALZHEIMERSPATHWAY" "MSPPATHWAY"
[31] "GSK3PATHWAY" "RELAPATHWAY" "METPATHWAY"
[34] "TNFR2PATHWAY" "AT1RPATHWAY" "FREEPATHWAY"
[37] "ARAPPATHWAY" "MRPPATHWAY" "P53HYPOXIAPATHWAY"
[40] "IL18PATHWAY" "STRESSPATHWAY" "MEF2DPATHWAY"
[43] "STAT3PATHWAY" "HSP27PATHWAY" "EPONFKBPATHWAY"
[46] "NKCELLSPATHWAY" "MONOCYTEPATHWAY" "CARM_ERPATHWAY"

DIRAC and EVA have been shown mathematically similar. The main advantages of the
EVA is efficiency in calculation as well as easier interpretation. Figure 3 a graphical example
of such comparison. One can see that the p-values generated by DIRAC and EVA have
high correlation, i.e. 0.88. Note that EVA is much faster than DIRAC. For example, in this
case, we ran the computations on a Lenovo Thinkpad with Core(TM) i7-3720QM Intel CPU
@2.6 GHz. For a thousand permutation, the DIRAC analysis took 207.47 seconds while
the latter only took 0.3 seconds. Note that for multiple hypothesis adjustment, a thousand
permutations may not be satisfactory and we require hundreds of thousand or a million
permutation which may not be feasible.

Note that it is possible that some of the genes in a pathway are not represented in the
expression data or are too short (e.g. less than 5 genes). Both GSReg.GeneSets.EVA and
GSReg.GeneSets.DIRAC may ignore such pathways through parameter minGeneNum. Please
see the manual for more details. If we the user wants to compare the results of DIRAC and

EVA/ they can run the following code for plot DIRAC diagram of significantly perturbed
pathways:

> DIRACAn =GSReg.GeneSets.DIRAC(exprsdata,diracpathways,phenotypes, Nperm=1000)
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Figure 3: Comparing p-values EVA versus DIRAC. The correlation is 0.88.
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> significantPathwaysDIRAC = names (DIRACAn$mul) [which (DIRACAn$pvalues<0.05)];
> mul = DIRACAn$mul[significantPathwaysDIRAC] ;
> mu2 = DIRACAn$mu2[significantPathwaysDIRAC] ;
> #The dysregulated pathways
> names (mul)
[1] "DEATHPATHWAY" "NEUTROPHILPATHWAY" "PGC1APATHWAY"

[4] "RARRXRPATHWAY" "SKP2E2FPATHWAY" "KERATINOCYTEPATHWAY"
[7] "CHEMICALPATHWAY" "TGFBPATHWAY" "PROTEASOMEPATHWAY"
[10] "MAPKPATHWAY" "PDGFPATHWAY" "BIOPEPTIDESPATHWAY"

[13] "SPPAPATHWAY" "PYK2PATHWAY" "MYOSINPATHWAY"

[16] "BETAOXIDATIONPATHWAY" "IL7PATHWAY" "FMLPPATHWAY"
[19] "VITCBPATHWAY" "CD40PATHWAY" "CDC25PATHWAY"
[22] "MTORPATHWAY" "RNAPATHWAY" "FBW7PATHWAY"
[25] "LYMPHOCYTEPATHWAY" "LAIRPATHWAY" "HIVNEFPATHWAY"
[28] "ALKPATHWAY" "P35ALZHEIMERSPATHWAY" "MSPPATHWAY"
[31] "GSK3PATHWAY" "RELAPATHWAY" "METPATHWAY"
[34] "TNFR2PATHWAY" "AT1RPATHWAY" "FREEPATHWAY"
[37] "ARAPPATHWAY" "MRPPATHWAY" "P53HYPOXIAPATHWAY"
[40] "IL18PATHWAY" "STRESSPATHWAY" "MEF2DPATHWAY"
[43] "STAT3PATHWAY" "HSP27PATHWAY" "EPONFKBPATHWAY"
[46] "NKCELLSPATHWAY" "MONOCYTEPATHWAY" "CARM_ERPATHWAY"

> plot(x=mul,y=mu2,
xlim=c (0,max (mul,mu2)),ylim=c(0,max (mul,mu2)),xlab="normal",ylab="disease",
main="(a) DIRAC significantly dysregulated pathways")

> lines (x=c(0,max (mul,mu2)),y=c(0,max (mul,mu2)))
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Now, if we do the analysis using EVA, we have:

> significantPathwaysGSV = names (which(pvalustat<0.05));

[1]
[4]
[7]1
[10]
[13]
[16]
[19]

"DEATHPATHWAY"
"PGC1APATHWAY"
"SKP2E2FPATHWAY"
"METHIONINEPATHWAY"
"PROTEASOMEPATHWAY"
"NTHIPATHWAY"
"SPPAPATHWAY"

"TCAPOPTOSISPATHWAY"

"TERCPATHWAY"

"KERATINOCYTEPATHWAY"

"TGFBPATHWAY"
"CDK5PATHWAY"
"PDGFPATHWAY"
"PYK2PATHWAY"
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"NEUTROPHILPATHWAY"
"RARRXRPATHWAY"
"CHEMICALPATHWAY"
"PS1PATHWAY"
"MAPKPATHWAY"
"BIOPEPTIDESPATHWAY"
"CDC42RACPATHWAY"

0.25




[22]
[25]
[28]
[31]
[34]
[371
[40]
[43]
[46]
[49]
[52]
[55]
[58]
[61]
[64]

"MYOSINPATHWAY" "BETAOXIDATIONPATHWAY" "IL7PATHWAY"
"FMLPPATHWAY" "FASPATHWAY" "VITCBPATHWAY"
"CD40PATHWAY" "IGF1PATHWAY" "CDC25PATHWAY"
"MTORPATHWAY" "RNAPATHWAY" "FBW7PATHWAY"
"LYMPHOCYTEPATHWAY" "LAIRPATHWAY" "HIVNEFPATHWAY"
"ALKPATHWAY" "PEPIPATHWAY" "MSPPATHWAY"
"EDG1PATHWAY" "GSK3PATHWAY" "RELAPATHWAY"
"METPATHWAY" "TNFR2PATHWAY" "AT1RPATHWAY"
"ATRBRCAPATHWAY" "GLYCOLYSISPATHWAY" "TIDPATHWAY"
"EPOPATHWAY" "WNTPATHWAY" "ARAPPATHWAY"
"MRPPATHWAY" "P53HYPOXIAPATHWAY" "PITX2PATHWAY"
"IL18PATHWAY" "STRESSPATHWAY" "MEF2DPATHWAY"
"MITOCHONDRIAPATHWAY" "STAT3PATHWAY" "EPONFKBPATHWAY"
"NKCELLSPATHWAY" "MONOCYTEPATHWAY" "CARM_ERPATHWAY"
"HCMVPATHWAY"

> etal = sapply(VarAnKendallV,function(x) x$E1) [significantPathwaysGSV];

DEATHPATHWAY
0.09441352
TERCPATHWAY
0.07316017
CHEMICALPATHWAY
0.08521303
PROTEASOMEPATHWAY
0.09617180
PDGFPATHWAY
0.08698709
CDC42RACPATHWAY
0.08948195
FMLPPATHWAY
0.05736961
IGF1PATHWAY
0.09115972
FBW7PATHWAY
0.03174603
ALKPATHWAY
0.09130361
GSK3PATHWAY
0.11946928
AT1RPATHWAY
0.05943314
EPOPATHWAY
0.07319696
P53HYPOXIAPATHWAY
0.07708666
MEF2DPATHWAY
0.04399740
NKCELLSPATHWAY
0.07718643
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TCAPOPTOSISPATHWAY NEUTROPHILPATHWAY
0.08600289 0.35559678
RARRXRPATHWAY SKP2E2FPATHWAY
0.06914038 0.03367003
METHIONINEPATHWAY TGFBPATHWAY
0.09913420 0.05028305
CDK5PATHWAY MAPKPATHWAY
0.07975863 0.08504987
BIOPEPTIDESPATHWAY SPPAPATHWAY
0.06767807 0.09690598
MYOSINPATHWAY BETAOXIDATIONPATHWAY
0.09005280 0.02683983
FASPATHWAY VITCBPATHWAY
0.08676830 0.07888408
CDC25PATHWAY MTORPATHWAY
0.06265031 0.04188827
LYMPHOCYTEPATHWAY LAIRPATHWAY
0.22390572 0.15222872
PEPIPATHWAY MSPPATHWAY
0.05194805 0.12150072
RELAPATHWAY METPATHWAY
0.06302309 0.10561315
ATRBRCAPATHWAY GLYCOLYSISPATHWAY
0.07166907 0.02308802
WNTPATHWAY ARAPPATHWAY
0.10526414 0.05988456
PITX2PATHWAY IL18PATHWAY
0.09375387 0.13015873
MITOCHONDRIAPATHWAY STAT3PATHWAY
0.12572150 0.05179344
MONOCYTEPATHWAY CARM_ERPATHWAY
0.25171192 0.06462137

PGC1APATHWAY
0.04477053

KERATINOCYTEPATHWAY

0.07404055
PS1PATHWAY
0.08080808
NTHIPATHWAY
0.08091115
PYK2PATHWAY
0.04711514
IL7PATHWAY
0.10609668
CD40PATHWAY
0.05294705
RNAPATHWAY
0.03009689
HIVNEFPATHWAY
0.09020600
EDG1PATHWAY
0.08801738
TNFR2PATHWAY
0.05051566
TIDPATHWAY
0.07331013
MRPPATHWAY
0.04877345
STRESSPATHWAY
0.05505364
EPONFKBPATHWAY
0.07910272
HCMVPATHWAY
0.07781385

> eta2 = sapply(VarAnKendallV,function(x) x$E2) [significantPathwaysGSV];



DEATHPATHWAY  TCAPOPTOSISPATHWAY

NEUTROPHILPATHWAY PGC1APATHWAY

0.13103827 0.04531025 0.23546691 0.05588351
TERCPATHWAY RARRXRPATHWAY SKP2E2FPATHWAY KERATINOCYTEPATHWAY
0.12770563 0.09090909 0.05856181 0.09013983
CHEMICALPATHWAY METHIONINEPATHWAY TGFBPATHWAY PS1PATHWAY
0.11832612 0.15454545 0.07165057 0.12332852
PROTEASOMEPATHWAY CDK5PATHWAY MAPKPATHWAY NTHIPATHWAY
0.13083213 0.10251869 0.10114801 0.09532055
PDGFPATHWAY  BIOPEPTIDESPATHWAY SPPAPATHWAY PYK2PATHWAY
0.11066711 0.08559859 0.12604711 0.06023958
CDC42RACPATHWAY MYOSINPATHWAY BETAOXIDATIONPATHWAY IL7PATHWAY
0.11283954 0.11997526 0.06147186 0.13455988
FMLPPATHWAY FASPATHWAY VITCBPATHWAY CD40PATHWAY
0.06835017 0.10725265 0.04252044 0.08041958
IGF1PATHWAY CDC25PATHWAY MTORPATHWAY RNAPATHWAY
0.12087036 0.04413179 0.05994640 0.08719852
FBW7PATHWAY LYMPHOCYTEPATHWAY LAIRPATHWAY HIVNEFPATHWAY
0.06307978 0.16065416 0.11574140 0.11884884
ALKPATHWAY PEPIPATHWAY MSPPATHWAY EDG1PATHWAY
0.11181840 0.13593074 0.17344877 0.11010728
GSK3PATHWAY RELAPATHWAY METPATHWAY TNFR2PATHWAY
0.16320909 0.08203463 0.12858234 0.07308378
AT1RPATHWAY ATRBRCAPATHWAY GLYCOLYSISPATHWAY TIDPATHWAY
0.08115533 0.08771185 0.05112348 0.09458733
EPOPATHWAY WNTPATHWAY ARAPPATHWAY MRPPATHWAY
0.09569080 0.12762130 0.07615440 0.08571429
P53HYPOXIAPATHWAY PITX2PATHWAY IL18PATHWAY STRESSPATHWAY
0.09759247 0.11618223 0.18989899 0.07523998
MEF2DPATHWAY MITOCHONDRIAPATHWAY STAT3PATHWAY EPONFKBPATHWAY
0.05508870 0.16778499 0.09647495 0.13372688
NKCELLSPATHWAY MONOCYTEPATHWAY CARM_ERPATHWAY HCMVPATHWAY
0.09574739 0.17662338 0.08397641 0.08899711
> #The dysregulated pathways
> names (etal)
[1] "DEATHPATHWAY" "TCAPOPTOSISPATHWAY" "NEUTROPHILPATHWAY"
[4] "PGC1APATHWAY" "TERCPATHWAY" "RARRXRPATHWAY"
[7] "SKP2E2FPATHWAY" "KERATINOCYTEPATHWAY" "CHEMICALPATHWAY"
[10] "METHIONINEPATHWAY" "TGFBPATHWAY" "PS1PATHWAY"
[13] "PROTEASOMEPATHWAY" "CDKSPATHWAY" "MAPKPATHWAY"
[16] "NTHIPATHWAY" "PDGFPATHWAY" "BIOPEPTIDESPATHWAY"
[19] "SPPAPATHWAY" "PYK2PATHWAY" "CDC42RACPATHWAY"
[22] "MYOSINPATHWAY" "BETAOXIDATIONPATHWAY" "IL7PATHWAY"
[25] "FMLPPATHWAY" "FASPATHWAY" "VITCBPATHWAY"
[28] "CD40OPATHWAY" "IGF1PATHWAY" "CDC25PATHWAY"
[31] "MTORPATHWAY" "RNAPATHWAY" "FBW7PATHWAY"
[34] "LYMPHOCYTEPATHWAY" "LAIRPATHWAY" "HIVNEFPATHWAY"
[37] "ALKPATHWAY" "PEPIPATHWAY" "MSPPATHWAY"
[40] "EDG1PATHWAY" "GSK3PATHWAY" "RELAPATHWAY"
[43] "METPATHWAY" "TNFR2PATHWAY" "AT1RPATHWAY"
[46] "ATRBRCAPATHWAY" "GLYCOLYSISPATHWAY" "TIDPATHWAY"
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[49] "EPOPATHWAY" "WNTPATHWAY" "ARAPPATHWAY"

[52] "MRPPATHWAY" "P53HYPOXTIAPATHWAY" "PITX2PATHWAY"
[55] "IL18PATHWAY" "STRESSPATHWAY" "MEF2DPATHWAY"
[58] "MITOCHONDRIAPATHWAY" "STAT3PATHWAY" "EPONFKBPATHWAY"
[61] "NKCELLSPATHWAY" "MONOCYTEPATHWAY" "CARM_ERPATHWAY"

[64] "HCMVPATHWAY"

> plot(x=etal,y=eta2,xlim=c(0,max(etal,eta2)),ylim=c(0,max(etal,eta2)),xlab="normal",ylab="disease",
main="(b) EVA: Dysregulated pathways")

NULL
> lines (x=c(0,max(etal,eta2)),y=c(0,max(etal,eta2)))

NULL
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(b) EVA: Dysregulated pathways

disease
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000 005 010 015 020 025 030 035

normal

Although there is discrepancy in identified dysregulated pathways (p-value<0.05), the general
trend found in [1] holds still true. The trend is that usually the dysregulated pathways have
higher variability measure in more dangerous phenotypes. The figures reveal that both
DIRAC and EVA have this property. DIRAC found 48 dysregulatd pathways and EVA
discovered 64 pathways, 45 pathways showed up in both analysis, and 67 pathways were
discovered totally.

> print(significantPathwaysGSV)
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[1]

[4]

[7]
[10]
[13]
[16]
[19]
[22]
[25]
[28]
[31]
[34]
[371
[40]
[43]
[46]
[49]
[52]
[55]
[58]
[61]
[64]

"DEATHPATHWAY"
"PGC1APATHWAY"
"SKP2E2FPATHWAY"
"METHIONINEPATHWAY"
"PROTEASOMEPATHWAY"
"NTHIPATHWAY"
"SPPAPATHWAY"
"MYOSINPATHWAY"
"FMLPPATHWAY"
"CD40PATHWAY"
"MTORPATHWAY"
"LYMPHOCYTEPATHWAY"
"ALKPATHWAY"
"EDG1PATHWAY"
"METPATHWAY"
"ATRBRCAPATHWAY"
"EPOPATHWAY"
"MRPPATHWAY"
"IL18PATHWAY"

"MITOCHONDRIAPATHWAY"

"NKCELLSPATHWAY"
"HCMVPATHWAY"

"TCAPOPTOSISPATHWAY"
"TERCPATHWAY"
"KERATINOCYTEPATHWAY"
"TGFBPATHWAY"
"CDKS5PATHWAY"
"PDGFPATHWAY"
"PYK2PATHWAY"
"BETAOXIDATIONPATHWAY"
"FASPATHWAY"
"IGF1PATHWAY"
"RNAPATHWAY"
"LAIRPATHWAY"
"PEPIPATHWAY"
"GSK3PATHWAY"
"TNFR2PATHWAY"
"GLYCOLYSISPATHWAY"
"WNTPATHWAY"
"PS53HYPOXTIAPATHWAY"
"STRESSPATHWAY"
"STAT3PATHWAY"
"MONOCYTEPATHWAY"

> print (significantPathwaysDIRAC)

[1]

[4]

[71
[10]
[13]
[16]
[19]
[22]
[25]
[28]
[31]
[34]
[371
[401
[43]1
[461

"DEATHPATHWAY"
"RARRXRPATHWAY"
"CHEMICALPATHWAY"
"MAPKPATHWAY"
"SPPAPATHWAY"

"BETAOXIDATIONPATHWAY"

"VITCBPATHWAY"
"MTORPATHWAY"
"LYMPHOCYTEPATHWAY"
"ALKPATHWAY"
"GSK3PATHWAY"
"TNFR2PATHWAY"
"ARAPPATHWAY"
"IL18PATHWAY"
"STAT3PATHWAY"
"NKCELLSPATHWAY"

"NEUTROPHILPATHWAY"
"SKP2E2FPATHWAY"
"TGFBPATHWAY"
"PDGFPATHWAY"
"PYK2PATHWAY"
"IL7PATHWAY"
"CD40PATHWAY"
"RNAPATHWAY"
"LAIRPATHWAY"
"P35ALZHETIMERSPATHWAY"
"RELAPATHWAY"
"AT1RPATHWAY"
"MRPPATHWAY"
"STRESSPATHWAY"
"HSP27PATHWAY"
"MONOCYTEPATHWAY"
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"NEUTROPHILPATHWAY"
"RARRXRPATHWAY"
"CHEMICALPATHWAY"
"PS1PATHWAY"
"MAPKPATHWAY"
"BIOPEPTIDESPATHWAY"
"CDC42RACPATHWAY"
"IL7PATHWAY"
"VITCBPATHWAY"
"CDC25PATHWAY"
"FBW7PATHWAY"
"HIVNEFPATHWAY"
"MSPPATHWAY"
"RELAPATHWAY"
"AT1RPATHWAY"
"TIDPATHWAY"
"ARAPPATHWAY"
"PITX2PATHWAY"
"MEF2DPATHWAY"
"EPONFKBPATHWAY"
"CARM_ERPATHWAY"

"PGC1APATHWAY"
"KERATINOCYTEPATHWAY"
"PROTEASOMEPATHWAY"
"BIOPEPTIDESPATHWAY"
"MYOSINPATHWAY"
"FMLPPATHWAY"
"CDC25PATHWAY"
"FBW7PATHWAY"
"HIVNEFPATHWAY"
"MSPPATHWAY"
"METPATHWAY"
"FREEPATHWAY"
"P53HYPOXIAPATHWAY"
"MEF2DPATHWAY"
"EPONFKBPATHWAY"
"CARM_ERPATHWAY"
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System Information

Session information:

> toLatex(sessionInfo())
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R version 3.2.0 (2015-04-16), x86_64-unknown-1inux-gnu

Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_US.UTF-8,
LC_COLLATE=C, LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8,
LC_PAPER=en_US.UTF-8, LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C,
LC_MEASUREMENT=en_US.UTF-8, LC_IDENTIFICATION=C

Base packages: base, datasets, grDevices, graphics, methods, stats, utils
Other packages: GSBenchMark 0.101.1, GSReg 1.2.0

Loaded via a namespace (and not attached): tools 3.2.0
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