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1 Summary

This vignette provides examples of how to use the package FEM to identify
interactome hotspots of differential promoter methylation and differential ex-
pression, where an inverse association between promoter methylation and gene
expression is assumed [1]. By “interactome hotspot” we mean a connected sub-
network of the protein interaction network (PIN) with an exceptionally large
average edge-weight density in relation to the rest of the network. The weight
edges are constructed from the statistics of association of DNA methylation
and gene expression with the phenotype of interest. Thus, the FEM algorithm
can be viewed as a functional supervised algorithm, which uses a network of
relations between genes (in our case a PPI network), to identify subnetworks
where a significant number of genes are associated with a phenotype of interest
(POI). We call these “hotspots” also Functional Epigenetic Modules (FEMs).
Current functionality of FEM works for Ilumina Infinium 450k data, how-
ever, the structure is modular allowing easy application or generalization to
DNA methylation data generated with other technologies. The FEM algorithm
on Illumina 27k data was first presented in [2], with its extension to Illumina
450k data described in [1]. The module detection algorithm used is the spin-
glass algorithm of [3]. The PIN used in this vignette includes only protein-
protein interactions, derives from Pathway Commons [4] and is available from
http://sourceforge.net/projects/funepimod/files under filename hprdAsigH*.Rd,
but the user is allowed to specify his own network.

There are three main components to this vignette. These are:

e Application to simulated data.
e Real world example: application to Endometrial Cancer.

e Further details of the algorithm.

2 Application to simulated data

Since FEM is a BioC package, the user first needs to install both R and Biocon-
ductor. R is a free open source software project freely downloadable from the
CRAN website http://cran.r-project.org/. FEM has several package dependen-
cies, such as igraph, marray, corrplot. So these need to be installed first. For ex-
ample. to install igraph and corrplot,etc. Type install.packages(c("igraph”, "corrplot”)).



Since marray is a bioconductor package, we can install it with
source("http://bioconductor.org/biocLite.R”);
biocLite("marray”).

Load them with

> library("igraph");
> library("marray");
> library("corrplot")

You can check your version of iGraph by entering sessionInfo()$otherPkgs$igraph$ Version.
It should be at least version 0.6.
To load the FEM package in your R session,

> library("FEM");

We demonstrate the functionality of FEM using first a simulated toy dataset.
Briefly, the toy dataset consists of a small random graph gene network, with a
clique embedded in it. To load it into the session, use

> data(Toydata)
The object Toydata is a list and has four elements:
> names (Toydata)

[1] "statM" "statR" "adjacency" "tennodes"

The first element is statM

> head(Toydata$statM)

t-value p-value
117144 -0.065111202 4.740427e-01
56898 0.001161095 4.995368e-01
8916 0.195829329 4.223719e-01
54476  3.934019816 4.176845e-05
7368  -0.025401308 4.898674e-01
79058 -0.089637422 4.642877e-01

statM is a matrix of differential DNA methylation t-statistics and P-values
(one row for each gene promoter) with rownames annotated to arbitrary entrez
gene IDs. There are 84 rows because the maximally connected component of
the original 100-node random graph was of size 84. Most of the rows have
statistics which have been simulated to be close to zero (between -0.5 and 0.5),
meaning that for these there is no association between DNA methylation and the
phenotype of interest (POI). There are also ten randomly selected probes/genes
whose t-statistics are randomly chosen to lie between 2 and 5, meaning that for
these promoters high methylation is associated positively with the POI.

Now lets’s check which 10 genes have t-statistics larger than 2:

> rownames (Toydata$statM) [which(Toydata$statM[,1]>2)]->tennodes;
> tennodes;

[1] "54476" "166929" "4701" "4299" "57696" "9865" "9632" "1465"
[9] "9985" "64208"



This should agree with the tennodes entry of Toydata. The second member is
statR

> head(Toydata$statR)

t-value p-value
117144 -0.09591858 0.461792617
56898 -0.03296763 0.486850201
8916 0.17791827 0.429393580
54476 -2.57586127 0.004999538
7368 -0.12861502 0.448831142
79058 -0.03371232 0.486553276

statR is a matrix of differential expression t-statistics and P-values (same di-
mension as statM.m and ordered in same way) with rownames annotated with
the same Entrez gene ID. The t-statistics of the previously selected 10 genes
are set to lie between -2 and -5. Thus, the toydata object models the case of
ten promoters which are underexpressed due to hypermethylation. Indeed, the
following command identifies the genes that are significantly underexpressed.
They agree with those that are hypermethylated:

> rownames (Toydata$statM) [which(Toydata$statR[,1]< -2)]1;

[1] "54476" "166929" "4701" "4299" "57696" "9865" "9632"
[9] "9985" "'64208"

The third member is adjacency. This is the adjacency matrix, with number of
rows and columns equal to the number of rows of statR (or statM), ordered
in same way and with same gene identifier. The graph is connected, and was
constructed as the maximally connected subgraph of a 100-node random graph
(Erdos-Renyi graph). Specifically, the original random graph was generated
with igraph::erdos.renyi.game(100, 2/100) and then the solitary nodes were re-
moved, resulting in a maximally connected subnetwork of 84 nodes/genes.

We note that the 10 nodes which are differentially methylated and differentially
expressed, form a clique, meaning that each of these ten nodes is connected to
each other. So they belong to a deliberately created module with high absolute
differential methylation and differential expression t-statistics. They are indi-
cated in the following plot.

Plot this network from adjacency with the ten nodes marked as a group.

> mod.idx <- match(Toydata$tennodes,rownames(Toydata$adj));
> plot.igraph(graph.adjacency(Toydata$adjacency,mod="undirected"),
+ vertex.size=8,mark.groups=mod.idx,mark.col="yellow")

"1465"
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As mentioned before, FEM is used to detect interactome hotspots of differential
promoter methylation and differential expression, where an inverse association
between promoter methylation and gene expression is assumed. So let us test
whether FEM can detect the simulated module of ten nodes.

We use DoFEMbi() to find the community structures induced by these phe-
notype changes in the Toydata. First, however, we need to define the input
object, as follows:

> intFEM.o <- list(statM=Toydata$statM,statR=Toydata$statR,adj=Toydata$adj);

> DoFEMtoy.o <- DoFEMbi (intFEM.o,nseeds=1,gamma=0.5,nMC=1000,
+ sizeR.v=c(1,100),minsize0UT=10,writeOUT=TRUE, nameSTUDY="TOY", ew.v=NULL) ;

Some of the arguments of this function are worth describing here:
nseeds: This is the number of seeds/modules to search for.

gamma: This is the tuning parameter of the spin-glass module detection algo-
rithm. This parameter is very important because it controls the average module
size. Default value generally leads to modules in the desired size range of 10 to
100 genes.

nMC: The number of Monte Carlo runs for establishing statistical significance
of modularity values under randomisation of the molecular profiles on the net-
work.



You can also use 7sizeR.v” to set the desired size range for modules, "minsize-
OUT” to set the minimum size of modules to report as interesting and "write-
OUT?” to indicate whether to write out tables in text format.

There are two output files summarising the results of the DoFEMbi function.
One output file contains colums which describe the following;:

e size: a vector of inferred module sizes for each of the ntop seeds.
e mod: a vector of associated modularities.

e pv: a vector of associated significance P-values (with resolution of nMC
runs).

e selmod: index positions of significant modules of size at least minsizeOUT
and smaller than the maximum specified in sizeR.v

e fem: a summary matrix of the selected modules.
e topmod: a list of summary matrices for each of the selected module
Let’s check the details of the output:

> DoFEMtoy.o$fem

EntrezID(Seed) Symbol(Seed) Size Mod P
[1,] "166929" "SGMS2" "36" "4.17008628882728" "0"
Genes

[1,] "SGMS2 RNF216 UGT8 NDUFA7 AFF1 DDX55 TRIL AKAP12 SEC24C CSRP1 REC8 POPDC3 BDH2 ACSL3

We can see that we get one module with seed gene "SGMS2” (entrez gene ID
= 166929), hence module name “SGMS2”. This module has 36 members. With
the following command, we can have a look at the details of the first five genes
of the "SGMS2” module:

> head (DoFEMtoy . o$topmod$SGMS2,n=5L)

EntrezID Symbol  stat(DNAm) P (DNAm)
166929 "166929" "SGMS2" "3.98617629287764" "3.35733147288641e-05"
54476 "54476" "RNF216" "3.93401981610805" "4.17684458448805e-05"
7368 "7368" "UGT8" "-0.0254013077355921" "0.489867434011738"
4701 "4701" "NDUFA7" "3.49410701170564" "0.00023782515959272"
4299 "4299" "AFF1" "2.18818748369813" "0.0143279742210821"
stat (mRNA) P (mRNA) stat (Int)

166929 "-3.05292705958709" "0.00113310507560836" "7.29480934183558"
54476 "-2.57586126867682" "0.00499953781149238" "6.72562916567027"

7368 "-0.128615015652031" "0.44883114211167" "o
4701 "-3.288564257101193" "0.00050353776488235" "7.05809017310707"
4299 "-3.31781403906643" "0.000453624323520969" "5.78389382246553"

To show the SGMS2 module in the whole network, use:

> mod.idx<- match(DoFEMtoy.o$topmod$SGMS2[, 1], rownames (Toydata$adj)) ;
> plot.igraph(graph.adjacency(Toydata$adjacency,mod="undirected"),
+ vertex.size=8,mark.groups=mod.idx,mark.col="yellow")
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In order to check the effectiveness of FEM in detecting the true module, we
compute the sensitivity, defined as the fraction of the truly associated genes
that are captured by the inferred module:

> sensitivity=length(intersect (tennodes,rownames (Toydata$adj) [mod.idx]))/length(tennodes) ;
> sensitivity

(11 1

Thus, we find that the sensitivity is 100%, meaning that FEM inferred a mod-
ule that contained all 10 genes that were truly differentially methylated and
expressed. Although, specificity is not 100%, this is to be expected since a
larger module can still exhibit a higher than random average weight density.

3 A real world example: application to Endome-
trial Cancer

To validate the FEM algorithm on real Illumina 450k data we collected and
analyzed 118 endometrial cancers and 17 normal endometrial samples, all with
matched RNA-Seq data from the TCGA study [5]. To assign DNA methylation
values to a given gene, in the case of Illumina 27k data, we assigned the probe
value closest to the transcription start site (T'SS). In the case of Illumina 450k
data, we assigned to a gene, the average value of probes mapping to within 200bp
of the T'SS. If no probes map to within 200bp of the T'SS, we use the average of
probes mapping to the 1st exon of the gene. If such probes are also not present,
we use the average of probes mapping to within 1500bp of the TSS. Justification



for this procedure is provided in our Bioinformatics paper [1]. For each gene g
in the maximally connected subnetwork, we then derive a statistic of association
between its DNA methylation profile and the POI (here normal/cancer status),
denoted by th) as well as between its mRNA expression profile and the same

POI, which we denote by tE,R). These statistics have already been computed
beforehand using the limma package. We now load them in:

> data(Realdata);
> attributes (Realdata);

$names
[1] "statM" "statR" "adjacency" "fembi.o"

As before, we prepare the input object:
> intFEM.o <- list(statM=Realdata$statM,statR=Realdata$statR,adj=Realdata$adj)

Since running DoFEMbi on large data sets can be lengthy (it takes 23 minutes
on a 4 3GHz CPU-core Dell Workstation with 16GB memory), we comment the
following line out:

> #Realdata$fembi.o <- DoFEMbi (intFEM.o,
> # nseeds=100,gamma=0.5,nMC=1000,sizeR.v=c(1,100),
> # minsizeOUT=10,writeOUT=TRUE, nameSTUDY="TCGA-EC", ew.v=NULL) ;

The results are found in the fembi.o entry of Realdata. The algorithm predicts
a number of FEM modules. Use the following command to display their size
and elements.

> Realdata$fembi.o$fem
The details of the modules can also be seen using:
> Realdata$fembi.o$topmod

In order to illustrate the modules graphically, the user can invoke the function
FemModShow, which will generate a pdf figure of the module in your working
directory and also return an graphNEL object which includes methylation and
expression color schemes. The graphNFEL class is defined in the bioconductor
graph package, user can use igraph.from.graphNEL to convert it to the igraph
objects. For instance, the algorithm inferred a module centred around the gene
HAND2, which has been demonstrated to be causally implicated in the devel-
opment of endometrial cancer [2]. Thus, given its importance, we generate a
detailed network plot of this module:

> library("marray");

> library("corrplot");

> HAND2.mod<-Realdata$fembi.o$topmod$HAND2;

> HAND2.graphNEL.o=FemModShow (Realdata$fembi. o$topmod$HAND2, name="HAND2" ,Realdata$fembi.o)
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Depicted is the functional epigenetic module centred around seed gene HAND2.
Edge widths are proportional to the average statistic of the genes making up the
edge. Node colours denote the differential DNA methylation statistics as indi-
cated. Border colors denote the differential expression statistics. Observe that
despite many nodes exhibiting differential methylation and differential expres-
sion, only HAND2, exhibits the expected anticorrelation with hypermethylation
(blue) leading to underexpression (green). See Jones et al [2] for the functional,
biological and clinical significance of HANDZ2 in endometrial cancer.

The user can generate all the modules’ graphs by

> #for(m in 1:length(names (Realdata$fembi.o$topmod))){
> #FemModShow (Realdata$fembi.o$topmod[[m]],
> #name=names (Realdata$fembi.o$topmod) [m],Realdata$fembi.o)}

In the above examples we provided the statistics and adjacency matrix input ob-
jects. However, in most circumstances, we would need to generate the statistics
of differential DNA methylation and gene expression and subsequently integrate
them with the network. The integration with the network requires that statis-
tics be generated at the gene-level. This is what the functions GenStatM and
GenStatR do. In the case of GenStatM, the input arguments are:

e dnaM.m: a normalised Illumina 450k DN A methylation data matrix, with
rownames annotated to 450k probe IDs.

e pheno.v: phenotype vector corresponding to the samples/columns of dnaM.m.



The function then generates for all pairwise contrasts/levels of the phenotype
vector,tables of top-ranked genes. The function also returns the average beta-
matrix with rows labeling genes. Similarly, the input arguments of GenStatR
are:

e exp.m: normalized gene expression data matrix with rownames annotated
to NCBI Entrez gene IDs. If the mapped Entrez gene IDs are not unique,
the function will average values of the same Entrez gene ID.

e pheno.v: phenotype vector corresponding to the columns of exp.m.

As before, the function then generates for all pairwise contrasts/levels of the
phenotype vector, ranked tables of top-ranked genes. The function also returns
the average expression matrix with rows labeling unique genes.

Suppose the output of GenStatM and GenStatR are stored in objects statM.o
and statR.o, respectively. Next step is then to integrate the statistics with
the network of gene relations, specified by an adjacency matrix adj.m. This is
accomplished with the DoIntFEM450k function:

> #DoIntFEM450k (statM.o,statR.o,adj.m,cM, cR)

Where we have also specified two integers, ¢M and cR, which select the ap-
propriate contrasts in the statM.o and statR.o objects. For instance, if our
phenotype vector consists of 3 categories (say, normal, cancer and metastasis),
then there are 0.5%3%*2=3 pairwise comparisons. We then need to check which
contrast/column in statM.o$cont and statR.o$cont corresponds to the one of
interest, and assign this integer to ¢M and cR, respectively.

We should also point out that the adjacency matrix represents a network of
gene relationships (e.g. a PPI network) with rownames/colnames annotated to
NCBI Entrez gene IDs. For instance, the PPI network can be derived from
the Pathway Commons resource[4] and its construction could follow the proce-
dure described in [6]. The PPI network used in previous papers is available at
http://sourceforge.net /projects/funepimod/files/. The file name is hprdAsigH *Rd.
This particular PPI network consists of 8434 genes annotated to NCBI Entrez
identifiers, and is sparse containing 303600 documented interactions (edges).
Users can also use a total different network of gene relation.

The output of DoIntFEM/450k is a list with following entries:

e statM: matrix of DNA methylation moderated t-statistics and P-values
for the genes in the integrated network

e statR: matrix of gene expression moderated t-statistics and P-values for
the genes in the integrated network

e adj: adjacency matrix of the maximally connected integrated network (at
present only maximally connected subnetwork is used).

e avexp: average expression data matrix mapped to unique Entrez IDs

e avbeta: average DNA methylation data matrix mapped to unique Entrez
IDs



4 EpiMod and ExpMod

It may be that we only wish to infer either differential methylation or differen-
tial expression interactome hotspots. To this end, we provide specific functions,
i.e. DolntEpif50K to do the integration at the DNA methylation level only.
Indeed, DolntEpif50K is the same as DolntFEM/50k, except that we do not
need the statR.o argument. In this case, the edge weights in the interactome
network reflect the combined differential methylation statistics (absolute values)
of the genes making up the edge. The output of DolntFEM450k would then
be used as input to the function DoEpiMod. Once we have run DoEpiMod, we
can use FemModShow to show the top modules. The usage and arguments of
FemModShow for EpiMod is same as previous decribed. You just need to add an
argument "mode” and set "mode” = "Epi” (as FemModShow has three modes,
the default one being ”integration”, which is the one to use with DoFEMbi).
The "Epi” mode means FemModShow will render the Epi-modules generated by
DoEpiMod.

The workflow applying GenStatM, DolntEpi4d50k and DoEpiMod would be
something like:

>
>
>
>
>
>

#statM.o <- GenStatM(dnaM.m,phenoM.v);
#intEpi.o=DoIntEpi450k(statM.o,adj.m,c=1)
#EpiMod. o=DoEpiMod (intEpi.o,

# nseeds=100,gamma=0.5,nMC=1000, sizeR.
# v=c(1,100), minsizeOUT=10,writeOUT=TRUE,
# nameSTUDY="TCGA-EC", ew.v=NULL) ;

The DolntEpi450k example data will be available later in an experimental pack-
age. In this case, application to the 450K methylation data of 118 endometrial
cancers and 17 normal endometrials, results in a module, also centred around

HAND2:

10
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Depicted is the HAND2 Epi-module which contains many interacting members,
most of which are hypermethylated in cancer compared to normal tissue:

If we were interested in inferring differential mRNA expression hotspots, you
would run DoExpMod. As above, first you should run GenStatR and DolntExp
functions to generate statistics and integrate these with the network adjacency
matrix. For instance, the workflow could look like:

> #statR.o <- GenStatR(exp.m,pheno.v);

> #intExp.o=DoIntExp(statR.o,adj.m)

> #ExpMod. o=DoExpMod (intExp.o,

> # nseeds=100, gamma=0.5,nMC=1000,

> # sizeR.v=c(1,100),minsize0UT=10,

> # writeOUT=TRUE, nameSTUDY="TCGA-EC",ew.v=NULL)
> #

11
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There is one ExpMod example, a ZWINT-Centered Interactome Hotspot. In
this case, application to the expression data of 118 endometrial cancers and 17
normal endometrials from TCGA, results in a module, centered around ZWINT,
which is a known component of the kinetochore complex required for the mitotic
spindle checkpoint and thus regulates cell proliferation.

5 Integration with "minfi” package

The function GenStatM uses the normalised DNA methylation 450k data ma-
trix with rownames annotated to 450k probe IDs. This kind of normalized 450k
data matrix can be generated from raw data by many different tools. For in-
stance, one could use minfi, an existing Bioconductor package [7]. The simplified
workflow would be something like:

> #library(minfi);

> #require (I1luminaHumanMethylation450kmanifest) ;

>

> #baseDIR <- getwd();# the base dir of the Rawdata

> #setwd(baseDIR) ;

> #targets <- read.450k.sheet (baseDIR) ;#read the csv file.

> #RGset <- read.450k.exp(baseDIR); #Reads an entire 450k experiment

> # using a sample sheet

> #MSet.raw <- preprocessRaw(RGset) ;#Converts the Red/Green channel for an Illumina
> # methylation array into methylation signal,
> # without using any normalization

12



> #beta.m <- getBeta(MSet.raw,type = "Illumina");# get normalized beta
> #pval.m <- detectionP(RGset,type ="m+u")

Before passing on the beta.m object to GenStatM, we recommend adjusting the
data for the type-2 probe bias, using for instance BMIQ [8]. BMIQ is freely
available from either http://sourceforge.net/p/bmiq/, or the ChAMP Biocon-
ductor package [9].
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