
ELBOW – Evaluating foLd
change By the lOgit Way

Contents

1 FOREWORD 2

2 What is “ELBOW”? 2

3 How is “ELBOW” better than Fold test? 2

4 How does ELBOW works? 3
4.1 Mathematically... 4
4.2 Symmetry About Zero . 5
4.3 First Derivative Method . 6
4.4 ELBOW Works Best! (comparison on non-symmetrical data) . . 7
4.5 Error Limits for ELBOW . 8
4.6 Null Result for ELBOW . 9
4.7 P value for the ELBOW result 10
4.8 One final tip (before you begin using ELBOW) 11

5 Excel Pipeline 12

6 Limma Pipeline 20

7 DESeq Pipeline 24

8 Troubleshooting 26
8.1 “I don’t see anything like an ELBOW!” 26
8.2 The final cuve is flatter than the curve of initial conditions . . . 27
8.3 “The ELBOW curve is flatter that the curve of initial conditions

and there is no p value.” . 28
8.4 Density plot . 28

1

ELBOW – Evaluating foLd change By the lOgit

Way

April 16, 2015

1 FOREWORD

This in depth tutorial about ELBOW is designed for those (especially biologists)
who may need to review logit curves, logistic regression, or cluster analysis and
their applications in determining biological significance in transcriptomics. If
you are already familiar with these concepts, or you wish to start using ELBOW
and you are already familiar with R and Bioconductor you may choose to go
directly to “Quick Usage” file.

2 What is “ELBOW”?

ELBOW is an improved fold test method for determining values that are biolog-
ically significant when using next generation transcriptomics such as microarray
and RNA Seq. ELBOW is likely applicable to other large biological datasets.

3 How is “ELBOW” better than Fold test?

Fold test is notorious for having high levels of false positives and false negatives.
The “ELBOW” cut off is determined by the variance of the dataset being

examined rather than by an arbitrary cut off such as “two fold up and down.”
This reduces false positives and false negatives.

Unlike simple fold testing, “ELBOW” can be successfully applied to datasets
that are not symmetric about zero.

Below are results, one from a microarray and a RNA seq with significance
determined by a standard fold test compared to RT PCR and the other with
significance determined by ELBOW. ELBOW performed much better with lower
rates of false positives and false negatives and improved match to RT PCR
results.

2

4 How does ELBOW works?

Fold values are calculated for your dataset. The values are then ordered from
lowest (most negative) to highest (most positive).

Probe order is plotted on the x axis. Fold values are plotted on the y axis.

ELBOW generates a graphical representation of the data in the form of a
“logit” curve. All values above and below the midpoints of the two “elbows” of
the logit curve are considered biologically significant.

3

ELBOW method came out of our observations about cluster analysis. This
example graphical cluster analysis shows that a model to explain a dataset will
work well for the first four clusters (green) but because the data levels off, the
model will not apply for later clusterings (red). Examining and choosing a
point on a curve to divide data is a useful method for many types of analyses.
We decided to apply cluster analysis to determining biological significance of
transcriptomics.

4.1 Mathematically...

ELBOW method also derives from probability theory and statistics methods
used for examining data that gives a yes/no result. In the case of the ELBOW
method we could use the inverse of the fold value multiplied by the order of
the probes (from lowest to highest fold values) on the x axis and set positive
probes = 1 and negative value = 0. The resulting graph would look like this.
By applying a logistic curve to the value we can determine a midpoint. The
midpoint provides valuable information.

4

Plotting things like “inverse of fold value x order of fold value” is a bit con-
fusing but we don’t actually have to do this because the inverse of the logistic
curve is the logit curve. We already found the logit curve directly by the EL-
BOW method. We can use established methods, like “tolerance limits” from
engineering, that are known to apply to logit curves in order to better analyze
our data.

4.2 Symmetry About Zero

One important limitation to standard logit methods, such as tolerance limits, is
they depend on the dataset having a symmetric distribution about zero.

Biological data from transcriptomics is often not symmetric about the mid-
point limiting the usefulness of standard methods.

5

4.3 First Derivative Method

The manual method for finding the cut off limits uses derivatives. A midpoint
to the data is found. Data is divided in half at the midpoint to create two
separate datasets. Beginning at the midpoint, the change in the value to the
next point, (the derivative) is determined. These derivatives are plotted. Since
the derivative is the same as the slope of the tangent to the line, a large change
in derivative equals a steep slope. The cut off for the manual method is set (by
experimentation) where the derivative jumps to 0.03.

The manual method works very well but is time consuming to calculate. We
generalized the manual method using principals of pattern recognition for image
analysis to automatically determine limits.

As in the manual method, the data is first divided into two at the midpoint.
The two data subsets are smoothed by fitting a cubic smoothing spline. The
derivatives for the points on the smoothed curves are determined.

NOTE: how the density of points on the tails of the curve is less than the
density at the midpoint.

6

The mean derivative value of both the upper and the lower smoothed curves
is calculated. Since most data points are not significant and fall on the flat
central line, the mean derivative is approximately the same as the derivative for
the midpoint on any dataset we tested.

Further testing showed that the value 1.75 X mean value always corresponded
to the midpoint of the curve even on datasets not symmetric about zero or having
unequal tails.

4.4 ELBOW Works Best! (comparison on non-symmetrical
data)

First derivative method also gives a good match for standard methods in datasets
that are symmetric.

7

First derivative method works even better than our original manual method.
Compare results from Dataset B, a dataset symmetric about zero except for

higher values in the positive tail. Only first derivative method detected that
subtle difference.

4.5 Error Limits for ELBOW

All possible pairing of initial and final conditions. A1, A2, A3 (initial),

8

B1,B2,B3 (final) replicates, ELBOW limits averaging all replicates 1.9, -1.8.
Upper limit all replicates 1.9; Lower limit all replicates -1.8; Highest Upper
Limit 2.1; Lowest Upper Limit 1.2; Lowest Lower Limit -2.3; Highest Lower
Limit -1.2; Result Upper Limit 1.9 (2.1 to 1.2); Result Lower Limit -1.8 (-1.5
to -2.3)

ELBOW calculates an upper and lower error bound on the ELBOW limits by
taking all possible pairs of replicates in initial condition and final condition and
finding the ELBOW limits for all these pairs. A range of limits are determined.
The more variance in the replicates, the broader the range.

ELBOW measures the variance of the fold test results using subsets of repli-
cates to determine upper and lower bounds error. These are provided in a text
report.

4.6 Null Result for ELBOW

Null is calculated by taking all possible pairs of replicates in initial conditions
and finding the fold value difference for all these pairs. The median value for
each probe forms the null set. ELBOW also gives high and low values.

9

(Note that if you start with only two replicates null = high = low and
ELBOW will only report the null value.)

The null line graphically provides information on the quality of your initial
condition replicate set and a visual comparison for exploring the magnitude of
the change between initial and final conditions.

In addition to the null line there is an upper (green) and lower (purple) null
line which is based on the highest and lowest values for the initial conditions.
This gives information on the variance of the initial condition replicates.

4.7 P value for the ELBOW result

The entire basis of the ELBOW model is that the dataset creates a logit curve
that can be translated back to a logistic curve with a binomial fit . Therefore
ELBOW provides a test with a p value result to make sure that the dataset fits
the model.

10

(If the data does not fit, different preparation may be required. This will be
explained further in the trouble shooting section.)

ELBOW provides a p value which is the log chi squared p value of the fit
to the ELBOW model. (2P value should be at or near 1 because we expect it to
fit.)

If the p value is not provided this means the data does not fit the logit
model on which ELBOW is based and the results can not be used to determine
biological significance.

NOTE: The logχ2 P-value displayed by our program is NOT the
level of significance for any one probe!

4.8 One final tip (before you begin using ELBOW)

Standard fold tests are presumed to give more false positive and false negatives
that purely statistical methods.

Comparison of ELBOW results with Statistical Analyses of Microarray (SAM)
for a six replicate microarray result where that data set was also symmetric
about zero do show more positive values with ELBOW. ELBOW did not pro-
duce more false negatives on this test.

If you have six replicates in both your initial and final conditions and the
dataset is symmetric about zero, then a statistical method such as SAM should
give better results than ELBOW.

We recommend using ELBOW as the first step to determining biological
significance if you have less than six replicates in both initial and final conditions
and/or your dataset is not symmetric about zero. You may also choose to add

11

additional methods to refine ELBOW’s results such as t testing. Consult with
your statistician or bioinformatician for further information.

5 Excel Pipeline

First, place your data in the correct column order. From first to last column:
the probe names should be in the first column, the initial replicates should come
next, and the final replicates should come last (see figure).

Second, check that your data is normalized. Data from programs like “pli-
ers” usually arrives already “normalized”, especially when the data is from a
microarray. Normalized means the data has been smoothed by taking a log
value (usually 2) for each value. If you are not sure ask the data provider.

Third, save your data in a .csv (comma separated values) format file. Other
formats may not work. Be sure to give your file a meaningful filename; the
filename will appear at the top of the final elbow output graph.

12

Finally, load your data into R and run your data through ELBOW:

> # load the ELBOW library

> library("ELBOW")

> # Set the filename (change everything after the <- to ``csv_file'',

> # where csv_file is the filename of your CSV data file)

> filename <- system.file("extdata", "EcoliMutMA.csv", package = "ELBOW")

> # Read in your CSV file

> csv_data <- read.csv(filename)

> # set the number of initial and final condition replicates both to three

> init_count <- 3

> final_count <- 3

> # Parse the probes, intial conditions and final conditions

> # out of the CSV file. Please see: extract_working_sets

> # for more information.

> #

> # init_count should be the number of columns associated with

> # the initial conditions of the experiment.

> # final_count should be the number of columns associated with

> # the final conditions of the experiment.

> working_sets <- extract_working_sets(csv_data, init_count, final_count)

> probes <- working_sets[[1]]

> initial_conditions <- working_sets[[2]]

> final_conditions <- working_sets[[3]]

> # Uncomment to output the plot to a PNG file (optional)

> # png(file="output_plot.png")

>

> # Analyze the elbow curve.

> sig <- analyze_elbow(probes, initial_conditions, final_conditions)

13

[1] "rowsums"

[1] "fold"

[1] 0.06873333 -0.08933333 0.34013333 0.19313333 0.00940000 -0.02596667

[1] "bound data"

ID_REF fold

1 1001_115 0.06873333

2 1002_33 -0.08933333

3 1003_942 0.34013333

4 1004_552 0.19313333

5 1005_657 0.00940000

6 1006_393 -0.02596667

[1] "firsta_data"

ID_REF fold

1 1001_115 0.06873333

2 1002_33 -0.08933333

3 1003_942 0.34013333

4 1004_552 0.19313333

5 1005_657 0.00940000

6 1006_393 -0.02596667

[1] "sorted"

[1] "headers"

[1] "rowsums"

[1] "fold"

[1] 0.2138 -0.2044 0.1604 0.1214 -0.1342 -0.0477

[1] "bound data"

ID_REF fold

1 1001_115 0.2138

2 1002_33 -0.2044

3 1003_942 0.1604

4 1004_552 0.1214

5 1005_657 -0.1342

6 1006_393 -0.0477

[1] "firsta_data"

ID_REF fold

1 1001_115 0.2138

2 1002_33 -0.2044

3 1003_942 0.1604

4 1004_552 0.1214

5 1005_657 -0.1342

6 1006_393 -0.0477

[1] "sorted"

[1] "headers"

[1] "rowsums"

[1] "fold"

[1] 0.2071 0.0046 0.0323 0.3172 0.0230 -0.0754

[1] "bound data"

14

ID_REF fold

1 1001_115 0.2071

2 1002_33 0.0046

3 1003_942 0.0323

4 1004_552 0.3172

5 1005_657 0.0230

6 1006_393 -0.0754

[1] "firsta_data"

ID_REF fold

1 1001_115 0.2071

2 1002_33 0.0046

3 1003_942 0.0323

4 1004_552 0.3172

5 1005_657 0.0230

6 1006_393 -0.0754

[1] "sorted"

[1] "headers"

[1] "rowsums"

[1] "fold"

[1] 0.2611 0.0195 0.0503 0.3531 -0.0252 -0.0441

[1] "bound data"

ID_REF fold

1 1001_115 0.2611

2 1002_33 0.0195

3 1003_942 0.0503

4 1004_552 0.3531

5 1005_657 -0.0252

6 1006_393 -0.0441

[1] "firsta_data"

ID_REF fold

1 1001_115 0.2611

2 1002_33 0.0195

3 1003_942 0.0503

4 1004_552 0.3531

5 1005_657 -0.0252

6 1006_393 -0.0441

[1] "sorted"

[1] "headers"

[1] "rowsums"

[1] "fold"

[1] 0.0346 -0.2222 0.5502 0.0479 -0.0125 0.0560

[1] "bound data"

ID_REF fold

1 1001_115 0.0346

2 1002_33 -0.2222

3 1003_942 0.5502

15

4 1004_552 0.0479

5 1005_657 -0.0125

6 1006_393 0.0560

[1] "firsta_data"

ID_REF fold

1 1001_115 0.0346

2 1002_33 -0.2222

3 1003_942 0.5502

4 1004_552 0.0479

5 1005_657 -0.0125

6 1006_393 0.0560

[1] "sorted"

[1] "headers"

[1] "rowsums"

[1] "fold"

[1] 0.0279 -0.0132 0.4221 0.2437 0.1447 0.0283

[1] "bound data"

ID_REF fold

1 1001_115 0.0279

2 1002_33 -0.0132

3 1003_942 0.4221

4 1004_552 0.2437

5 1005_657 0.1447

6 1006_393 0.0283

[1] "firsta_data"

ID_REF fold

1 1001_115 0.0279

2 1002_33 -0.0132

3 1003_942 0.4221

4 1004_552 0.2437

5 1005_657 0.1447

6 1006_393 0.0283

[1] "sorted"

[1] "headers"

[1] "rowsums"

[1] "fold"

[1] 0.0819 0.0017 0.4401 0.2796 0.0965 0.0596

[1] "bound data"

ID_REF fold

1 1001_115 0.0819

2 1002_33 0.0017

3 1003_942 0.4401

4 1004_552 0.2796

5 1005_657 0.0965

6 1006_393 0.0596

[1] "firsta_data"

16

ID_REF fold

1 1001_115 0.0819

2 1002_33 0.0017

3 1003_942 0.4401

4 1004_552 0.2796

5 1005_657 0.0965

6 1006_393 0.0596

[1] "sorted"

[1] "headers"

[1] "rowsums"

[1] "fold"

[1] -0.0828 -0.2743 0.5480 -0.0174 -0.0913 -0.0621

[1] "bound data"

ID_REF fold

1 1001_115 -0.0828

2 1002_33 -0.2743

3 1003_942 0.5480

4 1004_552 -0.0174

5 1005_657 -0.0913

6 1006_393 -0.0621

[1] "firsta_data"

ID_REF fold

1 1001_115 -0.0828

2 1002_33 -0.2743

3 1003_942 0.5480

4 1004_552 -0.0174

5 1005_657 -0.0913

6 1006_393 -0.0621

[1] "sorted"

[1] "headers"

[1] "rowsums"

[1] "fold"

[1] -0.0895 -0.0653 0.4199 0.1784 0.0659 -0.0898

[1] "bound data"

ID_REF fold

1 1001_115 -0.0895

2 1002_33 -0.0653

3 1003_942 0.4199

4 1004_552 0.1784

5 1005_657 0.0659

6 1006_393 -0.0898

[1] "firsta_data"

ID_REF fold

1 1001_115 -0.0895

2 1002_33 -0.0653

3 1003_942 0.4199

17

4 1004_552 0.1784

5 1005_657 0.0659

6 1006_393 -0.0898

[1] "sorted"

[1] "headers"

[1] "rowsums"

[1] "fold"

[1] -0.0355 -0.0504 0.4379 0.2143 0.0177 -0.0585

[1] "bound data"

ID_REF fold

1 1001_115 -0.0355

2 1002_33 -0.0504

3 1003_942 0.4379

4 1004_552 0.2143

5 1005_657 0.0177

6 1006_393 -0.0585

[1] "firsta_data"

ID_REF fold

1 1001_115 -0.0355

2 1002_33 -0.0504

3 1003_942 0.4379

4 1004_552 0.2143

5 1005_657 0.0177

6 1006_393 -0.0585

[1] "sorted"

[1] "headers"

[1] "upper elbow limit = 0.82 (replicate variance error 0.67 to 1.05)"

[1] "lower elbow limit = -0.45 (replicate variance error -0.37 to -0.63)"

[1] "log chi squared p = 1.08e-44"

>

> # uncomment to write the significant probes to 'signprobes.csv'

> #write.table(sig,file="signprobes.csv",sep=",",row.names=FALSE)

18

0 1000 2000 3000 4000

−
2

−
1

0
1

2
3

4

Elbow Plot Results

probe_order

fo
ld

_v
al

ue
s

upper elbow limit = 0.82 (replicate variance error 0.67 to 1.05)
lower elbow limit = −0.45 (replicate variance error −0.37 to −0.63)
red=elbow, dash bl=median initial conds (gr=upper,pur=lower)
log chi squared p = 1.08e−44

Your plot will appear. You can also ask R to report the results. a csv file
with the significant probes and their fold values. After you enter the command
below and it will appear in your R folder.

19

6 Limma Pipeline

The steps below, for setting up the Microarray data and loading it into R, were
adapted from the tutorial: http://bioinformatics.knowledgeblog.org/2011/
06/20/analysing-microarray-data-in-bioconductor

First, load your Microarray data into R (in the below example, we will
load an expression set from NCBI’s GEO database). Note, the data must be
normalized (see the last line of the code block below).

> ####

> # Uncomment the lines below to install the necessary libraries:

> ####

> #source("http://www.bioconductor.org/biocLite.R")

> #biocLite("GEOquery")

> #biocLite("simpleaffy")

> #biocLite("limma")

> #biocLite("affyPLM")

> #biocLite("RColorBrewer")

> ####

>

> # retrieve the data from GEO

20

> library("GEOquery")

> getGEOSuppFiles("GSE20986")

> untar("GSE20986/GSE20986_RAW.tar", exdir="data")

> cels <- list.files("data/", pattern = "[gz]")

> sapply(paste("data", cels, sep="/"), gunzip)

data/GSM524662.CEL.gz data/GSM524663.CEL.gz data/GSM524664.CEL.gz

13555726 13555055 13555639

data/GSM524665.CEL.gz data/GSM524666.CEL.gz data/GSM524667.CEL.gz

13560122 13555663 13557614

data/GSM524668.CEL.gz data/GSM524669.CEL.gz data/GSM524670.CEL.gz

13556090 13560054 13555971

data/GSM524671.CEL.gz data/GSM524672.CEL.gz data/GSM524673.CEL.gz

13554926 13555042 13555290

> # reading in the CEL data into R (w/simpleaffy)

> library("simpleaffy")

> pheno_data <- data.frame(

+ c(# Name

+ "GSM524662.CEL", "GSM524663.CEL", "GSM524664.CEL",

+ "GSM524665.CEL", "GSM524666.CEL", "GSM524667.CEL",

+ "GSM524668.CEL", "GSM524669.CEL", "GSM524670.CEL",

+ "GSM524671.CEL", "GSM524672.CEL", "GSM524673.CEL"),

+ c(# FileName

+ "GSM524662.CEL", "GSM524663.CEL", "GSM524664.CEL",

+ "GSM524665.CEL", "GSM524666.CEL", "GSM524667.CEL",

+ "GSM524668.CEL", "GSM524669.CEL", "GSM524670.CEL",

+ "GSM524671.CEL", "GSM524672.CEL", "GSM524673.CEL"),

+ c(# Target

+ "iris", "retina", "retina",

+ "iris", "retina", "iris",

+ "choroid", "choroid", "choroid",

+ "huvec", "huvec", "huvec")

+)

> colnames(pheno_data) <- c("Name", "FileName", "Target")

> write.table(pheno_data, "data/phenodata.txt", row.names=FALSE, quote=FALSE)

> celfiles <- read.affy(covdesc="phenodata.txt", path="data")

> # normalizing the data

> celfiles.gcrma <- gcrma(celfiles)

Adjusting for optical effect............Done.

Computing affinities[1] "Checking to see if your internet connection works..."

The downloaded source packages are in

‘/tmp/RtmpDawdvY/downloaded_packages’

.Done.

Adjusting for non-specific binding............Done.

21

Normalizing

Calculating Expression

Perform quality control checks:

� Chip level QC:

> ########

> # quality control checks (chip-level)

> ########

> # load colour libraries

> library("RColorBrewer")

> # set colour palette

> cols <- brewer.pal(8, "Set1")

> # plot a boxplot of unnormalised intensity values

> boxplot(celfiles, col=cols)

> # plot a boxplot of normalised intensity values, affyPLM is required to interrogate celfiles.gcrma

> library("affyPLM")

> boxplot(celfiles.gcrma, col=cols)

> # the boxplots are somewhat skewed by the normalisation algorithm

> # and it is often more informative to look at density plots

> # Plot a density vs log intensity histogram for the unnormalised data

> hist(celfiles, col=cols)

> # Plot a density vs log intensity histogram for the normalised data

> hist(celfiles.gcrma, col=cols)

> ########

� Probe level QC:

> ########

> # quality control checks (probe-level)

> ########

> # Perform probe-level metric calculations on the CEL files:

> celfiles.qc <- fitPLM(celfiles)

> # Create an image of GSM24662.CEL:

> image(celfiles.qc, which=1, add.legend=TRUE)

> # Create an image of GSM524665.CEL

> # There is a spatial artifact present

> image(celfiles.qc, which=4, add.legend=TRUE)

> # affyPLM also provides more informative boxplots

> # RLE (Relative Log Expression) plots should have

> # values close to zero. GSM524665.CEL is an outlier

> RLE(celfiles.qc, main="RLE")

> # We can also use NUSE (Normalised Unscaled Standard Errors).

> # The median standard error should be 1 for most genes.

> # GSM524665.CEL appears to be an outlier on this plot too

> NUSE(celfiles.qc, main="NUSE")#'

> ########

22

� Sample vs. sample QC:

> ########

> # quality control checks (sample vs. sample)

> ########

> eset <- exprs(celfiles.gcrma)

> distance <- dist(t(eset),method="maximum")

> clusters <- hclust(distance)

> plot(clusters)

> ########

Next, filter the data.

> ########

> # data filtering

> ########

> celfiles.filtered <- nsFilter(celfiles.gcrma, require.entrez=FALSE, remove.dupEntrez=FALSE)

> # What got removed and why?

> celfiles.filtered$filter.log

$numLowVar

[1] 27307

$feature.exclude

[1] 62

Then, extract the differentially expressed probes.

> ########

> # Finding differentially expressed probesets

> ########

> samples <- celfiles.gcrma$Target

> # check the results of this

> #samples

>

> # convert into factors

> samples <- as.factor(samples)

> # check factors have been assigned

> #samples

>

> # set up the experimental design

> design <- model.matrix(~0 + samples)

> colnames(design) <- c("choroid", "huvec", "iris", "retina")

>

> # inspect the experiment design

> #design

And, feed the data into limma:

23

> ########

> # feed the data into limma for analysis

> ########

> library("limma")

> # fit the linear model to the filtered expression set

> fit <- lmFit(exprs(celfiles.filtered$eset), design)

> # set up a contrast matrix to compare tissues v cell line

> contrast.matrix <- makeContrasts(huvec_choroid = huvec - choroid, huvec_retina = huvec - retina, huvec_iris <- huvec - iris, levels=design)

> # Now the contrast matrix is combined with the per-probeset linear model fit.

> huvec_fits <- contrasts.fit(fit, contrast.matrix)

> huvec_ebFit <- eBayes(huvec_fits)

Finally, run the dataset through the ELBOW method.

> # load the ELBOW library

> library("ELBOW")

> # find the ELBOW limits

> get_elbow_limma(huvec_ebFit)

up_limit low_limit

huvec_choroid 1.586583 -1.797899

huvec_retina 1.576926 -1.746454

huvec_iris <- huvec - iris 1.664171 -1.821341

7 DESeq Pipeline

The steps below, for loading the RNA-seq data into R, were adapted from
the tutorial: http://cgrlucb.wikispaces.com/Spring+2012+DESeq+Tutorial

Load the RNA-seq bam file into R:

> # load the ELBOW library

> library("ELBOW")

> # install the DESeq libraries

> #source("http://www.bioconductor.org/biocLite.R")

> #biocLite("DESeq")

>

> ## download the table

> library("DESeq")

> # the following bam file dataset was obtained from:

> # http://cgrlucb.wikispaces.com/file/view/yeast_sample_data.txt

> # it has been downloaded into this package for speed convenience.

> filename <- system.file("extdata", "yeast_sample_data.txt", package = "ELBOW")

> count_table <- read.table(filename, header=TRUE, sep="\t", row.names=1)

> expt_design <- data.frame(row.names = colnames(count_table), condition = c("WE","WE","M","M","M"))

> conditions = expt_design$condition

24

> rnadata <- newCountDataSet(count_table, conditions)

> rnadata <- estimateSizeFactors(rnadata)

> rnadata <- as(rnadata, "CountDataSet")

> ## rnadata <- estimateVarianceFunctions(rnadata)

> rnadata <- estimateDispersions(rnadata)

> # this next step is essential, but it takes a long time...

> results <- nbinomTest(rnadata, "M", "WE")

Then, run an elbow analysis on the data:

> limits <- do_elbow_rnaseq(results)

Additionally, you can plot the data:

> # plot the results w/elbow

> plot_dataset(results, "log2FoldChange", limits$up_limit, limits$low_limit)

0 1000 2000 3000 4000 5000

−
10

−
5

0
5

10
15

Elbow Plot Results

Index

fo
ld

_v
al

ue
s

25

8 Troubleshooting

8.1 “I don’t see anything like an ELBOW!”

This kind of result is typical when data has not been properly formatted.
Check that you have probes in the first column, initial conditions in the
middle set of columns and final conditions in the last set of columns. Also
be certain your file has been saved in proper comma separated values (.csv)
and you have entered the correct number of replicates when you ran the
program.

26

8.2 The final cuve is flatter than the curve of initial
conditions

This result simply means there is more variance in the initial conditions
than the final conditions. However, it is within limits for the ELBOW
test. You may see this in certain situations such as downward metabolism
or reduced expression overall in the final conditions. Because ELBOW
has provided a p value, the limits are still valid to determine biological
significance.

27

8.3 “The ELBOW curve is flatter that the curve of
initial conditions and there is no p value.”

This result means there is high replicate variance in the initial conditions.
It also means that the final replicate set does not meet the model con-
ditions. The wide variance in upper and lower null lines also indicates a
problem. The overall effect is that because of the variance in the initial
replicates, ELBOW will not work and the results are not useful. It is often
possible to troubleshoot this type of dataset to find the cause.

Try using R’s density plot to plot the density of each replicate.

8.4 Density plot

Try using R’s density plot to plot the density of each replicate.

28

Using “head” will yield the column names of the dataset:

> head(csv_data)

Add each additional replicate using:

> plot(density(csv_data$y1))

(where y1 is the name of your first column)

Add the rest of the replicates on the same plot using

> lines(density(csv_data$y2))

> lines(density(csv_data$y3))

29

Each line should approximately overlap. In this case, the replicates do not
overlap but are the same shape. It may be possible to adjust data until
the lines overlap and then apply ELBOW.

In this case, the density plot indicates that one replicate (red) is very
different from the others. The others match well and overlap each other.

ELBOW may work after the one very different replicate is removed from
the dataset.

If you are unable to get your datasets to generate a p value you cannot
use ELBOW and should consult with your data provider.

30

