R/EBcoexpress: An Empirical Bayesian
Framework for Discovering Differential
Co-expression

John A. Dawson, Shuyun Ye and Christina Kendziorski
April 16, 2015

Contents

1

2

3

Introduction
Single-study setup

Single-study analysis
3.1 Required inputso
3.2 Making the D matrix of correlations
3.3 Initializing hyperparamters
3.4 EM computations L Lo
3.5 Checking the prior
3.6 Identifying DC pairs
3.7 Some caveats
3.7.1 Restrictionsonm
3.7.2 Extremely high correlations
3.7.3 Insufficient prior components

Meta-analysis

Visualization

1 Introduction

A common goal of microarray and related high-throughput genomic experi-
ments is to identify genes that vary across biological condition. Most often
this is accomplished by identifying genes with changes in mean expression
level, so called differentially expressed (DE) genes, and a number of effective
methods for identifying DE genes have been developed. Although useful,
these approaches do not accommodate other types of differential regulation.
An important example concerns differential co-expression (DC). Investiga-
tions of this class of genes are hampered by the large cardinality of the space
to be interrogated as well as by influential outliers. As a result, existing DC
approaches are often underpowered, exceedingly prone to false discoveries,
and/or computationally intractable for even a moderately large number of
pairs.

This package implements an empirical Bayesian approach for identifying
DC gene pairs. The approach provides a false discovery rate (FDR) controlled
list of significant DC gene pairs without sacrificing power. It is applicable
within a single study as well as across multiple studies. Computations are
greatly facilitated by a modification to the EM algorithm and a procedural
heuristic, as discussed below. Details of the approach are given in Dawson
and Kendziorski (2011).

2 Single-study setup

We assume a user has normalized expression levels profiled from m genes in
n subjects, where the subjects are partitioned into K conditions. Of primary
interest in this analysis is identifying gene pairs for which the true underlying,
or latent, correlation within condition varies across conditions. We denote
such a latent correlation in condition & by A*. When K = 2 conditions are
being considered, we say a gene pair may be equivalently co-expressed (EC;
A= \?) or differentially co-expressed (DC; A\! # A?). When K = 3, there are
4 ways in which DC may arise: A' #£ A2 = \3; A2 £ AL = \3; A3 £ AL =)2
and a case where A, A2 and A\? are all distinct. We refer to these cases as DC
classes. The methods developed in Dawson and Kendziorski (2011) evaluate
the posterior probability of each EC/DC class for each of m % (m — 1)/2
gene pairs. The posterior probabilities may be thresholded to provide a false
discovery rate (FDR) controlled list of DC gene pairs (section 3.6). In section

3.7, we discuss limitations on m. Roughly speaking, analysis proceeds most
smoothly if m does not exceed 10,000 genes (about 50M gene pairs).

3 Single-study analysis

3.1 Required inputs

A single study analysis requires three inputs:

X An m-by-n matrix of expression values, where m is the number of genes (or
probes) under consideration and n is the total number of microarrays
over all conditions. These values should be normalized in some manner;
we suggest background normalization but not quantile normalization
of the microarrays, as the latter destroys correlation structure, and
instead suggest median correction so all arrays have the same median
expression. While not required, expression is generally on the log, scale.

The conditions array An array of length n. The members of this array
should take valuesin 1, ..., K where K is the total number of conditions
(usually K = 2). All microarrays in condition 1 should have value 1
in the array, and so on; these should be in the same order as the n
columns of X.

The pattern object An ebarraysPatterns object resulting from a call to
ebPatterns(), found in the R/EBarrays package. This is used to define
the EC/DC classes and is based on the unique values in the conditions
array. The example below should suffice for K = 2; for K > 2, see the
documentation for ebPatterns().

Our demo uses a small example data set, which can be accessed using the
code given below. There are fifty genes, in two sets of twenty-five. Genes in
the first set are DC among themselves, genes in the second set are also DC
among themselves, but the two groups are uncorrelated in both conditions,
so that all pairs involving a gene from each set are EC. The first condition
has 100 samples while the expression values in the second condition were
generated using only 25 samples. We note that this is a somewhat weakly
powered setup, but the difference will be useful when we illustrate the use of
the diagnostic function.

> library(EBcoexpress)

> data(fiftyGenes) # A 50-by-125 expression matrix
> tinyCond <- c(rep(1,100),rep(2,25))

> tinyPat <- ebPatterns(c("1,1","1,2"))

3.2 Making the D matrix of correlations

From X and the conditions array, we need to calculate intra-group correla-
tions for all p = m % (m — 1)/2 gene pairs. This can be done many ways,
but our implementation uses either the usual Pearson’s correlation coefficient
or biweight midcorrelation, which can be thought of as a robust version of
Pearson’s correlation coefficient. In our own analyses we have preferred bi-
weight midcorrelation while noting that Pearson’s correlation coefficient is
much faster to compute for large m. Regardless, this step is accomplished
through the function makeMyD():

> D <- makeMyD(fiftyGenes, tinyCond, useBWMC=TRUE)

Here biweight midcorrelation is used since the useBWMC= option is set to
TRUE. The resulting D matrix of correlations is p-by-K, with gene pair
names given in the form GENE1I~GENE2; ~ is the default separator but
this can be changed. Note that the D matrix in the demo has pair names
such as X1~X28.

3.3 Initializing hyperparamters

If you’ve taken a moment to read the methods section of Dawson and Kendziorski
(2011), then you're aware that our model uses a mixture of Normals as a prior

in its computations. We take an empirical Bayesian approach, so hyperpa-
rameters are estimated from the data. We’ll do that presently, but first we
need some initial values of these parameters as a starting point. The better
our initial estimates, the faster the EM will converge. There are four sets of
hyperparameters that need to be initialized:

The Component Number G The number of Normals in the mixture; in
our model, G = 1,2 or 3.

The MUS {y,} The means of the mixture components, ordered from small-
est to largest. Since the model works on transformed as opposed to raw
correlations, these are just real numbers.

4

The TAUS {r,} The standard deviations of the mixture components, which
must be positive.

The WEIGHTS {w,} The weights of the mixture components, which sum
to one.

While the user is free to do this any manner s/he deems fit, our suggested
method of initialization uses the Mclust algorithm (Fraley and Raftery, 2002,
2006), accessed through our initializeHP() function:

> set.seed(3)
> initHP <- initializeHP(D, tinyCond)

The initializeHP() function initializes the hyperparameters by asking Mclust
to find the 1-, 2- or 3- component Normal mixture model that best fits the
correlations of D after transformation (see section 3.7), ignoring condition.
Mclust directly returns estimates for G and the MUS; the TAUS are approx-
imated using Mclust’s point estimates and sample sizes. The WEIGHTS
are estimated using the mixture component classifications Mclust provides;
however, it is unclear whether those classifications should be weighted by
how confident Mclust is of their accuracy. Thus, initializeHP() tries both ap-
proaches (i.e., the Weighted and Unweighted approaches), compares the two
model fits through deviance approximations and returns the set of WEIGHTS
that best fits the data.

In the event that the TAUS are estimated to be less than 0, a differ-
ent estimation scheme for the TAUS is used, relying on division instead of
subtraction to enforce positivity. This happens on occasion, but should not
cause alarm; it simply means that the initial variance estimates fed into the
EM will likely be somewhat inflated. As such, we do not recommend the use
of ebCoexpressZeroStep() when this occurs (see section 3.4).

Let’s take a look at initHP:
> print (initHP)

$G
[1] 3

$MUS
2 1 3
-0.006557837 0.151097168 0.585087753

$TAUS
[1] 0.05314046 0.16175079 0.04716496

$WEIGHTS
[1] 0.5955102 0.2306122 0.1738776

In this example, Mclust has identified a three-component Normal mixture
as best fitting the empirical distribution of correlations, with component
means, standard deviations and weights as shown. These values will be used
to initialize the EM algorithm.

Speed Up! When p is very large, it can take a while for Mclust to do its job.
Since we are trying to estimate at most ten parameters from p x K >> 10
observations, it is often useful to tell Mclust to only use some of the p pairs in
its calculations. This is done by setting the subsize= option in initializeHP()
to some number less than p (we suggest p/1000). You may also want to use
the seed= option to make this process deterministic.

3.4 EM computations

For this task, one of the ebCoexpress series of functions should be used. Our
example is small enough that we can run all three, but the full version will
still take a few minutes. From the demo:

> zout <- ebCoexpressZeroStep(D, tinyCond, tinyPat, initHP)
Zero—Stepper Time: 0.145

> oout <- ebCoexpressOneStep(D, tinyCond, tinyPat, initHP)

6

Begin Phase I (Initial E-Step)
Begin Phase II (M2-Step)
Begin Phase III ([E M1] Cycle)
Iteration: 1

One-Stepper Time: 14.955

> fout <- ebCoexpressFullTCAECM(D, tinyCond, tinyPat, initHP)

These three functions represent different flavors of the modified EM approach
we use, the TCA-ECM (for complete details, see Dawson and Kendziorski
(2011)). Starting from the bottom up, the third function (the ‘full’ version)
will run a complete TCA-ECM. The second function (the ‘one-step’ ver-
sion) will perform a single iteration of the TCA-ECM and return the results.
Lastly, the first function (the ‘zero-step’ version) does not perform any EM
calculations and instead uses the initial estimates of the hyperparameters
(e.g., those obtained from initializeHP() or some other method) to generate
posterior probabilities of DC. Obviously the zero-step version is faster than
the one-step version, which in turn is faster than the full TCA-ECM. We
have found that the one-step version has about the same accuracy as the full
approach but executes in a fraction of the time, while the performance of the
zero-step version greatly depends on the quality of the initial hyperparameter
estimates. Therefore, in general we suggest the one-step version be used.

The output from these functions is a structured list with two named
elements, MODEL and POSTPROBS:

MODEL is a list containing an array MIX and a list HPS. MIX contains
estimated mixing proportions for the EC/DC classes. HPS contains
final estimates of the hyperparameters we introduced earlier: G, MUS,
TAUS and WEIGHTS. The list of lists required by ebCoexpressMetal()
(see section 4) is obtained by combining the separate analyses’ HPS
lists together in one big list.

POSTPROBS is a p-by-L matrix containing posterior probabilities of EC
and DC over all L EC/DC classes. The EC posterior probabilities will
always be in the first column (which should be fed into crit.fun() if
using the soft threshold, see section 3.6). Total posterior probabilities
of DC for each gene pair are found by summing over the other L — 1
columns (or taking 1 minus the first column).

Let’s pull off the POSTPROBS matrices, as we’ll use them later:

> result0 <- zout$POSTPROBS
> resultl <- oout$POSTPROBS

> resultF <- fout$POSTPROBS

Speed Up! When p is very large, it can take a while for the one-step and
full TCA-ECM versions to complete their computations. Since we are trying
to estimate at most L + 10 parameters from p x L >> L+ 10 observations, it
is often useful to tell the EM to only use some of the p pairs when estimating
the hyperparameters. This is done by setting the subsize= option in the
controlOptions list to some number less than p (we suggest p/1000); see
the documentation for further details. Since the sample size far exceeds the
number of parameters being estimated, and this particular portion of the
EM is computationally expensive, taking this approach will have a miniscule
effect on the accuracy of the estimates but a big effect on runtime.

3.5 Checking the prior

After the selected EM function has finished its computations, it is desirable
to take a moment to check and see how well the model chosen by the EM fits
the data. Compared to other analyses in other paradigms (e.g., DE analyses)
we are somewhat limited in what diagnostics can be performed. For instance,
we have only one observation for each pair’s correlation in each condition,
and ‘n=1" does not lend itself to proper diagnostics.

We can, however, check the fit of the prior, using the prior predictive
distribution. Given the hyperparameters estimated by the EM, there is a
theoretical (but condition-dependent) form for this distribution and we can
compare it to an empirical estimate in each condition. This is done visually
using the priorDiagnostic() function:

> priorDiagnostic(D, tinyCond, zout, 1)
> priorDiagnostic(D, tinyCond, zout, 2)
> priorDiagnostic(D, tinyCond, oout, 1)

> priorDiagnostic(D, tinyCond, oout, 2)

8

Diagnostic using Condition 1

Density
1.5 2.0

1.0

0.5

Transformed Correlation Space

(a)

Diagnostic using Condition 1

Density
1.5 20

1.0

0.5

0.0
L

Transformed Correlation Space

()

Density

Density

0.2 04 06 0.8 1.0 1.2 1.4

0.0

02 04 06 08

0.0

Diagnostic using Condition 2

Transformed Correlation Space

(b)

Diagnostic using Condition 2

Transformed Correlation Space

(d)

Figure 1. Four diagnostic plots using the prior predictive distribution. The top panels are for the inferior zero-step fit,
which eschews running an EM, and the bottom panels are for the superior one-step fit. In both pairs of panels, condition
1 is on the left and condition 2 is on the right. The empirical and theoretical prior predictive distributions are in black

and red, respectively.

In our example, both the zero-step and the one-step priors are decent fits, but
the one-step is clearly superior. The full TCA-ECM’s diagnostics are practi-
cally identical to the one-step and are not shown here, although there is code
for them in the demo. Note that the form of the prior predictive distribution
is condition-dependent, specifically changing along with the number of chips
in each condition.

If the prior diagnostic indicates a poor fit and G is one or two, the ini-
tialization may be to blame. We will deal with this issue in section 3.7.

3.6 Identifying DC pairs

Let’s consider the full TCA-ECM results. There are two ways that one could
threshold the total posterior probabilities of DC in order to identify DC gene
pairs while targeting some desired false discovery rate (FDR). The simplest
method is to use a hard threshold, EC < 0.05 for 5% FDR control. In a
two group analysis, this is equivalent to identifying those pairs for which the
posterior probability of DC exceeds 0.95; but when more than two groups are
considered, this is not the case, and initial thresholding should be done on
the posterior probabilities of EC, not DC. Hard thresholds are often overly
conservative and are technically not required to control FDR at a given level.
The crit.fun() function can be used to provide a soft threshold and simulations
suggest that the soft threshold is desirable when the model fits well. However,
the soft threshold can produce empirically high FDR when this is not the
case, and consequently it should be used with caution if the visual diagnostic
presented in section 3.5 is less than stellar.

ppbDC1 <- 1-resulti[,1]
crit_s <- crit.fun(resulti[,1], 0.05)
kept_s <- ppbDC1[ppbDC1 >= crit_s]
kept_h <- ppbDC1[ppbDC1 >= 0.95]
klabs_s <- names (kept_s)

DC pair names, under soft thresholding
klabs_h <- names (kept_h)

DC pair names, under hard thresholding

V VVVVVVYV

Since this is a simulated data set, we know which gene pairs are truly DC; in
the demo these are listed in the TP object. Thus, observed FDR and power

10

can be calculated and we do so below for the one-step TCA-ECM version;
results for the full and zero-step versions are similar. Recall that, due to the
low sample size in condition 2, this is an underpowered data set, as can be
seen below. The FDR control, however, is excellent.

> nk_s <- length(kept_s) # No. taken as DC (soft)

> nk_h <- length(kept_h) # No. taken as DC (hard)

> nY_s <- sum(klabs_s Jinj, TP)

> # Number of TP taken as DC under soft thresholding
> nY_h <- sum(klabs_h 7inj, TP)

> # Number of TP taken as DC under soft thresholding
>
>

(nk_s - nY_s)/nk_s # Soft threshold 0Obs. FDR
[1] 0.004504505

> (nk_h - nY_h)/nk_h # Hard threshold Obs. FDR
(1] ©

> nY_s/numDC # Soft threshold Ubs. Power
[1] 0.3683333

> nY_h/numDC # Hard threshold 0Obs. Power

[1] 0.2133333

For those interested in knowing what genes are involved in the most number
of genes deemed to be DC, we have a function called rankMyGenes(). It
uses the EM output (specifically the POSTPROBS element) and a threshold
to return a sorted, named list of gene counts within the DC genes. The
threshold is by default a hard threshold of 5%, but the user may use another.

> hubs <- rankMyGenes (oout)
> print (hubs)

allNames
X6 X17 X3 X5 X11 X12 X19 X21 X25 X4 X18 X22 X24 X1 X10
14 10 10 10 9 9 9 9 9 9 8 8 8 7 7
X37 X8 X13 X2 X31 X33 X42 X45 X9 X14 X15 X20 X26 X28 X7
7 7 6 6 6 6 6 6 6 5 5 5 5 5 5
X23 X36 X38 X46 X16 X34 X35 X43 X44 X49 X29 X32 X40 X48
4 4 4 4 3 3 2 2 2 2 1 1 1 1

11

3.7 Some caveats
3.7.1 Restrictions on m

As mentioned earlier, the algorithm does not run as smoothly when m is large.
First off, the algorithms are roughly O(p) = O(m?), so runtime increases
quadratically with the number of genes. Furthermore, the multiplicative
constants for those big-O order baselines also increase in a non-linear manner
with m, due to issues involving memory. So, in general we suggest:

e No more than 10,000 genes be run at once; the algorithm is no worse
than quadratic in m when the user stays below 5,000-8,000; and

e Use the subsize= options where available to cut down on needless com-
putation and improve runtime

3.7.2 Extremely high correlations

The model assumed by our approach involves Normal mixtures with support
on the real line, and as such performs Fisher’s Z-transformation (Fisher,
1928) on the correlations:

f2(p) = 0.5 x log Gig)

This changes the working domain from [-1, 1] to the real line and has some
other nice properties, as outlined in Dawson and Kendziorski (2011). One
side-effect of this transformation is that it treats differences in correlation dif-
ferently depending on where they fall within [-1, 1]. While the Z-transformation
is roughly linear on [-0.5, 0.5], as a correlation p approaches either -1 or 1,
fz(p) approaches —oo or co. Thus, the transformed difference between 0.9
and 0.99 is roughly the same as that between 0.99 and 0.999; more signifi-
cantly, it is the same as between 0 and 0.8.

This phenomenon can cause pairs of exceedingly correlated genes to be
deemed DC, due to slight variation from condition to condition, especially
when sample sizes are small. If this is a concern to the user, s/he may filter
these gene pairs out a posteriori, using the D matrix as a guide.

12

3.7.3 Insufficient prior components

On occasion, the prior diagnostic may look bad in one or more conditions.
If this appears to be due to the prior being too simple (e.g., the prior has
only one mixture component and is hence a univariate Normal density, while
the empirical prior predictive density appears to be quite bumpy) this may
be remedied by rerunning the EM with a more complex prior. Since initial-
izeHP() returned a less complex-model, it considered that model optimal and
hence you’ll have to make the new initialization yourself. This can be done
by taking the output of initializeHP() and assigning new values, like this:

> newInitHP <- initHP

> newInitHP$G <- 3

> newInitHP$MUS <- c(-0.5, 0, 0.5)

> newInitHP$TAUS <- c¢(0.1, 0.2, 0.2)

> newInitHP$WEIGHTS <- c(0.25, 0.5, 0.25)

Since they’re initial values, the specific numbers don’t have to be perfect,
just in line with what’s eyeballed. Then run the one-step or full TCA-ECM
(latter preferred in this situation) and the EM will adjust your guesses to
match the data, just as it adjusted initializeHP()’s initializations before.

4 Meta-analysis

Meta-analysis in our framework assumes that that each study has its own
study-specific parameters. Thus, those parameters should be estimated using
a single-study DC function on each study, and then saving the resulting
study-specific parameters. The meta-analysis itself is then run using

> ebCoexpressMeta(DList, conditionsList, pattern, hpEstsList)

It is perhaps easiest to explain the flow of execution through an example.
Since it is not important that this example be realistic with respect to the
data, and we want the example to run quickly, let us assume we have two
studies that are each identical to the fiftyGenes data set, and so we can
reuse the D matrix and the initialized values we computed earlier. The meta
analysis would proceed thusly:

13

D1 <-D

D2 <- D

DList <- 1list(D1, D2)

condl <- tinyCond

cond2 <- tinyCond

conditionsList <- 1list(condl, cond2)

pattern <- ebPatterns(c("1,1","1,2"))

initHP1 <- initHP

initHP2 <- initHP

outl <- ebCoexpressZeroStep(D1, condl, pattern, initHP1)

vV VVVVVVVVYV

Zero-Stepper Time: 0.142
> out2 <- ebCoexpressZeroStep(D2, cond2, pattern, initHP2)
Zero-Stepper Time: 0.149

> hpEstsList <- list(out1$MODEL$HPS, out2$MODEL$HPS)
> metaResults <- ebCoexpressMeta (
+ DList, conditionsList, pattern, hpEstsList)

Running the [E M1] Cycle ...
Iteration: 1
Meta Analysis Time: 0.309000000000001

where the metaResults output is similar in format to that of the other, single-
study analyses. Dawson and Kendziorski (2011) has a rather lengthy example
of a meaningful meta-analysis involving three prostate cancer data sets; we
will not deal with meta-analysis any further here.

5 Visualization

EBcoexpress contains two visualization functions that act as wrappers for
plot() and plot.igraph(), allowing the user to use various output from EBco-
express functions to look at co-expression at the gene-pair and network levels.

First, we’ll use showNetwork() to build a co-expression network, with
edges (pairs) colored according to the correlation between the gene (nodes)
exhibited by the D matrix. showNetwork() is a wrapper for plot.igraph()

14

from the igraph package; as such it requires that package in order to work
properly, along with the colorspace package. It takes as inputs an array of
gene names (specifying the nodes), the D matrix (specifying the edges) and a
condition to focus on. Additionally, the user may specify a layout recognized
by igraph, such as random, circle or kamada.kawai (the default). Further
options recognized by igraph, such as those used to specify node and edge
characteristics like size or shape, may also be provided; see the documentation
for more information.

It’s more than a little cluttered to run showNetwork() on all fifty genes;
so let’s restrict our genes of interest to the first ten in each of the two sets:

> twentyGeneNames <- dimnames(fiftyGenes) [[1]][c(1:10,26:35)]

> showNetwork (twentyGeneNames, D, condFocus = 1, gsep = "7",
+ layout = "kamada.kawai', seed = 5, vertex.shape='"circle",
+ vertex.label.cex=1, vertex.color="white", edge.width=2,

+ vertex.frame.color="black", vertex.size=20,

+ vertex.label.color="black", vertex.label.family="sans")

> showNetwork (twentyGeneNames, D, condFocus = 2, gsep = "7",
+ layout = "kamada.kawai', seed = 5, vertex.shape='"circle",
+ vertex.label.cex=1, vertex.color="white", edge.width=2,

+ vertex.frame.color="black", vertex.size=20,

+ vertex.label.color="black", vertex.label.family="sans")

The networks generated are shown in Figure 2. Nodes are genes and edges are
gene pairs, with color indicating strength of correlation, ranging from blue
(negative correlation) to white (uncorrelated) to red (positively correlated).
Even with this smaller number of genes, things are still a little busy. We
can remove edges corresponding to small magnitude correlations by using
the hidingThreshold= option:

> showNetwork (twentyGeneNames, D, condFocus = 1, gsep = "7",
+ layout = "kamada.kawai", seed = 5, vertex.shape='"circle",
+ vertex.label.cex=1, vertex.color="white", edge.width=2,
+ vertex.frame.color="black", vertex.size=20,

+ vertex.label.color="black", vertex.label.family="sans",

+ hidingThreshold=0.3)

15

Figure 2. A network of selected genes involved in DC pairs, created by showNetwork(); (a) and (b) correspond to
conditions 1 and 2, respectively. Nodes are genes and edges are gene pairs, with color indicating strength of correlation,
ranging from blue (negative correlation) to white (uncorrelated) to red (positively correlated). These networks include all
pairs as thus are somewhat cluttered; a cleaned-up version may be found in Figure 3.

> showNetwork (twentyGeneNames, D, condFocus = 2, gsep = "™",
+ layout = "kamada.kawai', seed = 5, vertex.shape='"circle",
+ vertex.label.cex=1, vertex.color="white", edge.width=2,
+ vertex.frame.color="black", vertex.size=20,

+ vertex.label.color="black", vertex.label.family="sans",

+ hidingThreshold=0.3)

We can look at the expression data for any given pair using showPair(),
which plots the pair on a two-dimensional X-Y plane, colored by condition.
By using the regLine= option (TRUE by default), the user can also have a
line superimposed for each condition, indicating the trend; this line may be
made ‘robust’ so that it is calculated using only those points used by biweight
midcorrelation by setting useBWMC=TRUE. Other options specific to plot()
may also be passed along. In Figure 4 we focus in on the co-expression
between genes X1 and X2; see the demo for other examples.

> showPair("X1°X2", fiftyGenes, tinyCond, pch=20,
+ xlim=c(-4,4), ylim=c(-4,4))

16

4
N

L
OA >
LK

V) %

Figure 3. The network of selected genes involved in DC pairs from Figure 2, where (a) and (b) correspond to conditions 1
and 2, respectively. Nodes are genes and edges are gene pairs, with color indicating strength of correlation, ranging from
blue (negative correlation) to white (uncorrelated) to red (positively correlated). Additionally, correlations less than 0.3
have been made transparent and hence removed from the network.

17

X1

Figure 4. Expression data for a pair of genes, X1 and X2, from the fiftyGenes expression matrix. Colors represent
condition (1 is black, 2 is red), and a robust line is added to indicate trend in each condition.

18

References

Dawson, J. A. and Kendziorski, C. (2011). An empirical
Bayesian approach for identifying differential co-expression in
high-throughput experiments. Biometrics E-publication be-
fore print: http://onlinelibrary.wiley.com/doi/10.1111/j.1541-

0420.2011.01688.x/abstract.

Fisher, R. A. (1928). The general sampling distribution of the multiple corre-
lation coefficient. Journal of the Royal Statistical Society (Series A) 121,
654-673.

Fraley, C. and Raftery, A. E. (2002). Model-based clustering, discriminant
analysis and density estimation. Journal of the American Statistical As-
soctation 97, 611-631.

Fraley, C. and Raftery, A. E. (2006). MCLUST version 3 for R: Normal
mixture modeling and model-based clustering. Technical Report 504, Uni-
versity of Washington, Department of Statistics. (revised 2009).

19

