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1 Introduction

Figure 1: The art of multiple sequence align-
ment.

This document is intended to illustrate the art of multiple
sequence alignment in R using DECIPHER. Even though its
beauty is often concealed, multiple sequence alignment is a
form of art in more ways than one. Take a look at Figure 1 for
an illustration of what is happening behind the scenes dur-
ing multiple sequence alignment. The practice of sequence
alignment is one that requires a degree of skill, and it is that
art which this vignette intends to convey. It is not simply
enough to “plug” sequences into a multiple sequence aligner
and blindly trust the result. An appreciation for the art as
well a careful consideration of the results are required.

What really is multiple sequence alignment, and is there
a single correct alignment? Generally speaking, alignment
seeks to perform the act of taking multiple divergent biolog-
ical sequences of the same “type” and fitting them to a form
that reflects some shared quality. That quality may be how
they look structurally, how they evolved from a common an-
cestor, or optimization of a mathematical construct. As with
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most multiple sequence aligners, DECIPHER is “trained” to
maximize scoring metrics in order to accomplish a combination of both structural alignment and evolutionary
alignment. The idea is to give the alignment a biological basis even though the molecules that the sequences
represent will never meet each other and align under any natural circumstance.

The workhorse for sequence alignment in DECIPHER is AlignProfiles, which takes in two aligned sets of
DNA, RNA, or amino acid (AA) sequences and returns a merged alignment. For more than two sequences, the
function AlignSeqs will perform multiple sequence alignment in a progressive/iterative manner on sequences
of the same kind. In this case, multiple alignment works by aligning two sequences, merging with another
sequence, merging with another set of sequences, and so-forth until all the sequences are aligned. This
process is iterated to further refine the alignment. There are other functions that extend use of AlignSeqs
for different purposes:

1. The first is AlignTranslation, which will align DNA/RNA sequences based on their amino acid
translation and then reverse translate them back to DNA/RNA. Aligning protein sequences is more
accurate since amino acids are more conserved than their corresponding coding sequence.

2. The second function, AlignDB, enables generating alignments from many more sequences than possible
to fit in memory. Its main purpose is to merge sub-alignments where each alignment alone is composed
of many thousands of sequences. This is accomplished by storing all of the sequences in a database
and only working with “profiles” representing the sequences.

3. The function AdjustAlignment takes in an existing alignment and shifts groups of gaps right and left
to achieve a better alignment. Its purpose is to eliminate artifacts that accumulate during progressive
alignment, and to replace the tedious & subjective process of manually correcting an alignment.

4. Finally, StaggerAlignment will create a“staggered”alignment by separating potentially non-homologous
positions into separate columns. This function will help minimize false homologies when building a
phylogenetic tree, although the resulting alignment is not as aesthetically pleasing.

2 Alignment Speed

Figure 2: The possible alignment space.

The dynamic programming method using by DECIPHER for
aligning two profiles requires order N*M time and memory space
where N and M are the width of the pattern and subject. Since
multiple sequence alignment is an inherently challenging prob-
lem for large sequences, heuristics are employed to maximize
speed while maintaining reasonable accuracy. In this regard,
the two critical parameters available to the user are restrict and
anchor . The objective of the restrict parameter is to convert
the problem from one taking quadratic time to linear time. The
goal of the anchor parameter is do the equivalent for memory
space so that very long sequences can be efficiently aligned.

The orange anti-diagonal line in Figure 2 shows the opti-
mal path for aligning two sequence profiles. The blue segments
to the left and right of the optimal path give the constraint
boundaries, which the user controls with the restrict parame-
ter. Areas above and below the upper and lower (respectively)
constraint boundaries are neglected from further consideration.
A higher (less negative) value of restrict will further constrain
the possible “alignment space,” which represents all possible
alignments between two sequences. Since the optimal path is
not known till completion of the matrix, it is risky to overly
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constrain the matrix. This is particularly true in situations
where the sequences are not mostly overlapping because the optimal path will likely not be diagonal, causing
the path to cross a constraint boundary. In the non-overlapping case restrict should be set below the default
to ensure that the entire “alignment space” is available.

Neglecting the “corners” of the alignment space effectively converts a quadratic time problem into a
near-linear time problem. We can see this by comparing AlignProfiles with and without restricting the
matrix at different sequence lengths. To extend our comparison we can include the Biostrings function
pairwiseAlignment. In this simulation, two sequences with 90% identity are aligned and the elapsed
time is recorded for a variety of sequence lengths. As can be seen in Figure 3 below, without restriction
AlignProfiles takes quadratic time in the same manner as pairwiseAlignment. However, with restriction
AlignProfiles takes linear time, requiring only a few microseconds per nucleotide.
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Figure 3: Global Pairwise Sequence Alignment Timings.

The parameter anchor controls the fraction of sequences that must share a common region to anchor the
alignment space (Fig. 2). AlignProfiles will search for shared anchor points between the two sequence
sets being aligned, and if the fraction shared is above anchor (70% by default) then that position is fixed in
the “alignment space.” Anchors are 15-mer (for DNA/RNA) or 7-mer (for AA) exact matches between two
sequences that must occur in the same order in both sequence profiles. Anchoring generally does not affect
accuracy, but can greatly diminish the amount of memory required for alignment. In Fig. 2, the largest
white box represents the maximal memory space required with anchoring, while the entire alignment space
(grey plus white areas) would be required without anchoring. The longest pair of sequence profiles that can
be aligned without anchoring is 46 thousand nucleotides as shown by the end of the red dotted line in Figure
3. If regularly spaced anchor points are available then the maximum sequence length is greatly extended.
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In the vast majority of cases anchoring gives the same result as without anchoring, but with less time and
memory space required.

3 Alignment Accuracy

Figure 4 compares the performance of DECIPHER and other sequence alignment software on structural amino
acid benchmarks [2]. All benchmarks have flaws, some of which can easily be found by eye in highly similar
sequence sets, and therefore benchmark results should treated with care [4]. As can be seen in the figure,
the performance of DECIPHER is similar to that of other popular alignment software such as MAFFT [5]
and MUSCLE [3]. Most importantly, the accuracy of protein alignment begins to drop-off when sequences
in the reference alignment have less than 40% average pairwise identity. A similar decline in performance is
observed with DNA/RNA sequences, but the drop-off occurs much earlier at around 60% sequence identity.
Therefore, it is generally preferable to align coding sequences by their translation using AlignTranslation.
This function first translates the input DNA/RNA sequences, then aligns the translation, and finally reverse
translates to obtain aligned DNA/RNA sequences. Nevertheless, even protein alignment cannot be considered
reliable when the sequences being aligned differ by more than 70%.
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Figure 4: Performance comparison between different programs for multiple alignment ([7], [3], [5]) using
amino acid structural benchmarks. The x-axis shows percent identity between sequences in each reference
alignment. The y-axis gives the percentage of correctly aligned residues in the estimated alignment according
to the reference alignment (SP-score). The upper-left plot is for the PREFAB (version 4) benchmark [3].
The upper-right plot shows the results of the BALIBASE (version 3) benchmark [8]. The lower-left plot is
for SABMARK (version 1.65) [9]. The lower-right plot gives the results on the OXBENCH alignments [6].
A comparison of these benchmarks can be found in reference [2].
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Figure 5: Flow-chart depicting how to choose the best combination of alignment functions and parameters
for the most common multiple sequence alignment problems.

4 Recommendations for optimal performance

DECIPHER has a number of alignment functions and associated parameters. The flow-chart in Figure 5 is
intended to simplify this process for the most frequently encountered multiple sequence alignment tasks. For
more information on any of these suggestions, refer to the examples in the following sections of this vignette.
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5 Example: Single Gene Alignment

For this example we are going to align the rplB coding sequence from many different Bacteria. The rplB
gene encodes one of the primary ribosomal RNA binding proteins: the 50S ribosomal protein L2. We begin
by loading the library and importing the sequences from a FASTA file. Be sure to change the path names
to those on your system by replacing all of the text inside quotes labeled “<<path to ...>>” with the actual
path on your system.

> library(DECIPHER)

> # specify the path to your sequence file:

> fas <- "<<path to FASTA file>>"

> # OR find the example sequence file used in this tutorial:

> fas <- system.file("extdata", "50S_ribosomal_protein_L2.fas", package="DECIPHER")

> dna <- readDNAStringSet(fas)

> dna # the unaligned sequences

A DNAStringSet instance of length 317

width seq names

[1] 819 ATGGCTTTAAAAAATTTTAATC...ATTTATTGTAAAAAAAAGAAAA Rickettsia prowaz...

[2] 822 ATGGGAATACGTAAACTCAAGC...CATCATTGAGAGAAGGAAAAAG Porphyromonas gin...

[3] 822 ATGGGAATACGTAAACTCAAGC...CATCATTGAGAGAAGGAAAAAG Porphyromonas gin...

[4] 822 ATGGGAATACGTAAACTCAAGC...CATCATTGAGAGAAGGAAAAAG Porphyromonas gin...

[5] 819 ATGGCTATCGTTAAATGTAAGC...CATCGTACGTCGTCGTGGTAAA Pasteurella multo...

... ... ...

[313] 819 ATGGCAATTGTTAAATGTAAAC...TATCGTACGTCGCCGTACTAAA Pectobacterium at...

[314] 822 ATGCCTATTCAAAAATGCAAAC...TATTCGCGATCGTCGCGTCAAG Acinetobacter sp....

[315] 864 ATGGGCATTCGCGTTTACCGAC...GGGTCGCGGTGGTCGTCAGTCT Thermosynechococc...

[316] 831 ATGGCACTGAAGACATTCAATC...AAGCCGCCACAAGCGGAAGAAG Bradyrhizobium ja...

[317] 840 ATGGGCATTCGCAAATATCGAC...CAAGACGGCTTCCGGGCGAGGT Gloeobacter viola...

We can align the DNA by either aligning the coding sequences or their translations (amino acid sequences).
Both methods result in an aligned set of DNA sequences, unless the argument asAAStringSet is TRUE in
AlignTranslation. A quick inspection reveals that the method of translating before alignment yields a more
appealing result. In particular, the reading frame is maintained when aligning the translations. However, if
the dna did not code for a protein then the only option would be to use AlignSeqs because the translation
would be meaningless.

> AA <- AlignTranslation(dna, asAAStringSet=TRUE) # align the translation

> BrowseSeqs(AA, highlight=1) # view the alignment

> DNA <- AlignTranslation(dna) # align the translation then reverse translate

> DNA <- AlignSeqs(dna) # align the sequences directly without translation

> # write the aligned sequences to a FASTA file

> writeXStringSet(DNA, file="<<path to output file>>")

6 Example: Building a Guide Tree

The AlignSeqs function uses a guide tree to decide in which order to align pairs of sequence profiles. The
guideTree input is a data.frame with the grouping of each sequence at increasing levels of dissimilarity
between the groups. By default this guide tree is generated directly from the sequences using the order of
shared k-mers (i.e., when the argument guideTree is NULL). This default guide tree performs very well, but
it may desirable or necessary to specify a guide tree when aligning thousands of sequences. For example,
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Figure 6: Comparison between the default and chained guide trees when aligning increasing numbers of
Cytochrome P450 sequence sets. Use of a chained guide tree often provides an alignment with equivalent
accuracy when aligning thousands of protein sequences.
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beyond 46,340 sequences an alternative guide tree is always required because this is the largest guide tree
that can be constructed by DECIPHER.

As the number of sequences being aligned increases beyond a certain point, the performance of the default
guide tree tends to diminish. It has been shown that reasonably accurate alignments of tens of thousands of
sequences can be obtained by using a chain guide tree [1]. With a chained guide tree, sequences are added
one-by-one to a growing profile representing all of the aligned sequences. Figure 6 shows the result of using
DECIPHER to align increasing numbers of Cytochrome P450 sequences (in accordance with the method in
reference [1]), using either a chained guide tree or the default guide tree. A chained guide tree requires
negligible time to construct and often gives an alignment of preferable quality when thousands of sequences
are being aligned. A chained guide tree can easily be generated, as shown below.

> # form a chained guide tree

> gT <- data.frame(seq_along(dna))

> # use the guide tree as input for alignment

> DNA <- AlignTranslation(dna, guideTree=gT) # align by translation

Use of a chained guide tree is recommended when aligning thousands of sequences. With a moderate
number of sequences the automatically generated (default) guide tree tends to provide the best result,
especially if the input sequences vary in width considerably.

7 Example: Aligning Two Aligned Sequence Sets

It is sometimes useful to align two or more previously-aligned sets of sequences. Here we can use the function
AlignProfiles to directly align profiles of the two sequence sets:

> half <- floor(length(dna)/2)

> dna1 <- dna[1:half] # first half

> dna2 <- dna[(half + 1):length(dna)] # second half

> AA1 <- AlignTranslation(dna1, asAAStringSet=TRUE)

> AA2 <- AlignTranslation(dna2, asAAStringSet=TRUE)

> AA <- AlignProfiles(AA1, AA2)

When the two sequence sets are very large it may be impossible to fit both sets of input sequences and
the output alignment into memory at once. The function AlignDB can align the sequences in two database
tables, or two sets of sequences corresponding to separate identifiers in the same table. AlignDB takes as
input two tblNames and/or identifiers, and iteratively builds a profile for each of those respective sequence
alignments in the database. These profiles are aligned, and the insertions are iteratively applied to each of
the input sequences until the completed alignment has been stored in add2tbl .

> # Align DNA sequences stored in separate tables:

> dbConn <- dbConnect(SQLite(), ":memory:")

> Seqs2DB(AA1, "DNAStringSet", dbConn, "AA1", tblName="AA1")

> Seqs2DB(AA2, "DNAStringSet", dbConn, "AA2", tblName="AA2")

> AlignDB(dbConn, tblName=c("AA1", "AA2"), add2tbl="AA",

type="AAStringSet")

> AA <- SearchDB(dbConn, tblName="AA", type="AAStringSet")

> BrowseDB(dbConn, tblName="AA")

> dbDisconnect(dbConn)

The number of sequences required to fit into memory when aligning two sequence sets with AlignDB is
controlled by the batchSize parameter. In this way AlignDB can be used to align large sequence alignments
with only minimal memory required.
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There are several steps that can be taken after alignment to verify or improve the alignment. The most
important step is to look at the result to ensure that it meets expectations. Spurious (unalignable) sequences
can then be removed and the alignment process repeated as desired. The simplest way to view sequences
with DECIPHER is with the function BrowseSeqs. The highlight parameter controls which sequence, if any,
is in focus (highlighted). A value of zero highlights the consensus sequence as shown below.

> BrowseSeqs(DNA, highlight=0)

All DECIPHER multiple sequence alignments are optimized using AdjustAlignment (unless the input
argument FUN is changed by the user), with the goal of removing artifacts of the progressive alignment
process. This function will efficiently correct most obvious inaccuracies that could be found by-eye. Therefore,
making manual corrections is not recommended unless additional expert knowledge of the sequences is
available. The advantage of using AdjustAlignment is that it is a repeatable process that not subjective,
unlike most manual adjustments. In order to further refine an existing alignment, AdjustAlignment can be
called directly.

> DNA_adjusted <- AdjustAlignment(DNA)

It is common to use alignment as the initial step in the creation of a phylogenetic tree. DECIPHER,
like the majority of alignment programs, attempts to maximize homologous positions between the sequences
being aligned. Such an alignment is particularly useful when investigating which residues are in the same
structural position of a protein. However, disparate sequence regions tend to be concentrated into the same
“gappy” areas of the alignment. When viewed from a phylogenetic perspective these homologies have highly
implausible insertion/deletion scenarios.

To mitigate the problem of false homologies, StaggerAlignment will automatically generate a staggered
version of an existing alignment. Staggered alignments separate potentially non-homologous regions into
separate columns of the alignment. The result is an alignment that is less visually appealing, but likely more
accurate in a phylogenetic sense. As such, this is an important post-processing step whenever the alignment
will be used to construct a phylogenetic tree (e.g., with IdClusters).

> DNA_staggered <- StaggerAlignment(DNA)

8 Session Information

All of the output in this vignette was produced under the following conditions:

� R version 3.2.2 (2015-08-14), x86_64-pc-linux-gnu

� Base packages: base, datasets, grDevices, graphics, methods, parallel, stats, stats4, utils

� Other packages: BiocGenerics 0.14.0, Biostrings 2.36.4, DBI 0.3.1, DECIPHER 1.14.5, IRanges 2.2.7,
RSQLite 1.0.0, S4Vectors 0.6.4, XVector 0.8.0

� Loaded via a namespace (and not attached): tools 3.2.2, zlibbioc 1.14.0
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