Training of boolean logic models of signalling networks using prior
knowledge networks and perturbation data with CellNOptR

(version 1.3.30 and above)

Camille Terfve, Thomas Cokelaer, Aidan MacNamara, Julio Saez-Rodriguez

April 16, 2015

Contents
1 Installation 1
2 Introduction 2
3 Quick Start 2
4 Loading the data and prior knowledge network. 3
5 Preprocessing the model 7
5.1 Finding and cutting the non observable and non controllable species 7
5.2 Compressing the model L 7
5.3 Expanding the gates L L 7
5.4 Preprocessing function oL 8
6 Training of the model 8
7 Plotting the optimised model 13
8 Writing your results 13
9 The one step version 15
10 A real example 16
11 A toy example with two time points 20
12 What else 24

1 Installation

Before starting, make sure you have installed the latest version of R (3.0). For more information and download
of R, please refer to http://wuw.r-project.org/. For more information about how to install R packages,
please refer to http://cran.r-project.org/doc/manuals/R-admin.html#Installing-packages. This
package relies on several Bioconductor package (RBGL, graph, methods, etc.). As an example, you can
install RGBL package by typing:

http://www.r-project.org/
http://cran.r-project.org/doc/manuals/R-admin.html#Installing-packages

> source("http://bioconductor.org/biocLite.R")
> biocLite("RBGL")

Before starting this tutorial you also need to install the package CellNOptR. You can either install
CellNOptR from Bioconductor by typing:

> source("http://bioconductor.org/biocLite.R")
> biocLite("CellNOptR")

or from a tar ball as follows:

> install.packages ("path_to_CellNOptR/CellNOptR_1.0.0.tar.gz",
+ repos=NULL, type="source")

or, using the R GUI by clicking on "Packages & Data” then "Package installer”, then choosing "local source”
from the dropdown menu, clicking "install”, choosing CelINOptR_1.0.0.tar.gz and finally clicking "open”.

A series of books about R can be found on the R project website (http://www.r-project.org/), and
many tutorials are available on the internet. If you are a complete beginner, all you need to know is that by
typing "?nameOfFunction” you get the help page about the function that you are interested in.

2 Introduction

The package CellNOptR integrates prior knowledge about protein signalling networks and perturbation
data to infer functional characteristics of a signalling network. CelINOptR is a reduced version of Cell-
NetOptimiser http://www.ebi.ac.uk/saezrodriguez/software.html#CellNetOptimizer). It performs
optimisation using a boolean formalism only[4]. However, it includes some data importing and normalis-
ing capabilities (as in DataRail toolbox [3] in the MatLab pipeline (available at http://www.ebi.ac.uk/
saezrodriguez/software.html#DataRail). Moreover it is used by other packages that implement more
complex formalisms. Such packages are available on BioConductor as well: CNORdt, CNORode (ordinary
equation-based), CNORfuzzy (constrained fuzzy logic). More information about the methods and application
of the Matlab pipeline can be found in reference [2] and http://www.cellnopt.org.

This tutorial shows how to use CellNOptR to analyse 1 or 2 time points data sets on a toy example (1
time point), a realistic example and another toy example (with 2 time points). The whole analysis can also
be performed in one step using a wrapper function as described in section 6.

The first step of an analysis with CellNOptR is to load the library, and create a directory where you can
perform your analysis, then set it as your working directory.

> library(CellNOptR)

> dir.create("CNOR_analysis")
> setwd("CNOR_analysis")

3 Quick Start

Assuming that you have a prior knowledge network stored in SIF format and a MIDAS file, the optimisation
of your problem can be done in a couple of steps:

> H e load the library and get a SIF and MIDAS file
> library(CellNOptR)

> #

> # examples are provided in CellNOptR

> data("ToyModel", package="CellNOptR")

> data("CNOlistToy", package="CellNOptR")

http://www.r-project.org/
http://www.ebi.ac.uk/saezrodriguez/software.html#CellNetOptimizer
http://www.ebi.ac.uk/saezrodriguez/software.html#DataRail
http://www.ebi.ac.uk/saezrodriguez/software.html#DataRail
http://www.cellnopt.org

pknmodel = ToyModel
cnolist = CNOlist(CNOlistToy)

- alternatively you can read your own files:
pknmodel = readSIF("ToyModel.sif")
cnolist = CNOlist("ToyDataMMB.csv")

—————————————————————— preprocess the network
model = preprocessing(cnolist, pknmodel)

e perform the analysis
res = gaBinaryT1(cnolist, model, verbose=FALSE)

plot the results
cutAndPlot (cnolist, model, list(res$bString))

VVVVVVVVVVVVVYVYV
**

See the following sections for details.

4 Loading the data and prior knowledge network.
Let us first create a directory where to store the file that will be created:

> cpfile<-dir(system.file("ToyModel",package="CellNOptR") ,full=TRUE)
> file.copy(from=cpfile, to=getwd (), overwrite=TRUE)

The example that we use is the toy model example from CellNOpt, which is a data set and associated
network that have been created in silico. This data and network can be found in the inst/ToyModel directory
of this package. The data is read using the function read MIDAS, which as the name states expects a MIDAS
formatted CSV file (see the documentation of DataRail and [3] for more information about that file format).
Then, you will need to convert the data into a CNOlist, which is the data structure used in CelINOptR. Please
note that this data is already normalised for boolean modelling. If it had not been the case we would have
had to normalise the data first to scale it between 0 and 1, which can be done using the normaliseCNOlist
function of CelNOptR (see the help of this function for more information about the normalisation procedure).
This normalisation procedure is the one used in [4] as implemented in DataRail.

Before version 1.3.30, you would type the following combinaison of commands to create a CNOlist from
a MIDAS file:

> dataToy<-readMIDAS("ToyDataMMB.csv", verbose=FALSE)
> CNOlistToy<-makeCNOlist (dataToy,subfield=FALSE, verbose=FALSE)

Alternatively, this data is provided within CellNOptR so you can also load it as follows
> data(CNOlistToy, package="CellNOptR", verbose=FALSE)

However, since version 1.3.30, you can use the CNOlist class to load the data in a single command line
> CNOlistToy = CNOlist ("ToyDataMMB.csv")

Note for the users familiar with the previous commands (readMIDAS and and makeCNOlist) that you
can easily convert the old data structure into an instance of CNOlist class as follows:

> data(CNOlistToy, package="CellNOptR")
> CNOlistToy = CNOlist(CNOlistToy)

‘ Akt ‘Hsp27 H NFkB H Erk HpQORSKH Jnk

A L4144 1R
IAAA T LI
AAAAA | W
A A4 11
o e e I I I |
A A4 11| M
S I 5 S I I
S 0 O) |
AN

Figure 1: CNOlist data shown by plotting function (either plot or plotCNOlist)

cJun Cues

00 05 00 05 00 05 00 O

A CNOlist is the central data object of this package; it contains measurements of elements of a prior
knowledge network under different combinations of perturbations of other nodes in the network. A CNOlist
comprises the following attributes: signals, cues, stimuli, inhibitors and timepoints. The attributes cues (and
its derivatives stimuli and inhibitors) are boolean matrices that contain for each condition (row) a 1 when
the corresponding cue (column) is present, and a zero otherwise.

You can have a look at your data and the CNOlist format by typing:

> CNOlistToy

class: CNOlist

cues: EGF TNFa Raf PI3K

inhibitors: Raf PI3K

stimuli: EGF TNFa

timepoints: 0 10

signals: Akt Hsp27 NFkB Erk p90RSK Jnk cJun

variances: Akt Hsp27 NFkB Erk p90RSK Jnk cJun

To see the values of any data contained in this instance, just use the
appropriate getter method (e.g., getCues(cnolist), getSignals(cnolist),

You can also visualise your data using the method plot (or a function called plotCNOlist) which will
produce a plot on your screen with a subplot for each signal and each condition, and an image plot for each
condition that contains the information about which cues are present in each condition. This plot can also
be produced and stored in your working directory as a single PDF file using the function plotCNOlistPDF.

> plot(CNOlistToy)

> plotCNO1istPDF(CNOlist=CNOlistToy,filename="ToyModelGraph.pdf")

We then load the prior knowledge network (PKN), contained in a Cytoscape SIF format file, using the
function readSIF (alternatively, this example model can be loaded as a R data object already formatted,
similarly to what is done above for the CNOlist). Cytoscape [5] is a software for network visualisation and

analysis. You can build a network within Cytoscape and simply save it as the default SIF file format, which
can then be imported in CellNOptR. If you choose to do this, then you should make sure that if you have
‘and’ gates in your network they are present as dummy nodes named ’and’ followed by a number from 1 to
the number of ’and’ nodes that you have.

Alternatively, you can create your network file as a text file formatted as a SIF file. Briefly, the expected
file format is a tab delimited text file with a line for each directed interaction and the following three elements
per line: name of source node, 1 or -1 if the source node is activating or inhibiting the target node, name of
target node. The names of the species in the model must match some of the nodes in the model (and this is
case sensitive). "And’ hyperedges are expected to be represented in the SIF file as dummy nodes named ’and’
followed by a number. For example if you have an interaction of the type ’a & b=c’, your SIF file should
contain the following three rows: ’a 1 and1’, ’b 1 and1’, ’andl 1 ¢’. Please be aware that when building the
scaffold network for optimisation, the software will create all possible and’ combinations (with maximum 3
inputs) of edges coming into each node, so in the general case it is not necessary to put 2 or 3 input ’and’
hyperedges in the prior knowledge network since the software will create them if the corresponding single
edges are present.

> pknmodel<-readSIF("ToyPKNMMB.sif")
> data(ToyModel,package="CellNOptR")

Having loaded both the data set and corresponding model, we run a check to make sure that our data
and model were correctly loaded and that our data matches our model (i.e. that species that were inhib-
ited /stimulated /measured in our data set are present in our model).

> checkSignals(CNOlistToy, pknmodel)

The SIF model that you have just loaded is visible on figure 2 as displayed by plotModel (requires
Rgraphviz to be installed).

> plotModel (pknmodel, CNOlistToy)

-

NFkB

| cJun |

Hsp27

PIORSK

Figure 2: Prior knowledge network (original SIF file visualised by plotModel) for the Toy Model example.

5 Preprocessing the model

Prior to optimisation, the model has to be pre-processed in 3 steps: removal of non-observable /non-controllable
species, compression, and expansion. Each one of these steps is described in more details below.

Since version 0.99.24, a preprocessing function is available and makes the following 3 steps in 1 command
line. However, the description of the 3 steps remains available here below. If you do not bother about details,
you can jump directly to section 5.4.

5.1 Finding and cutting the non observable and non controllable species

Non observable nodes are those that do not have a path to any measured species in the PKN, whereas non
controllable nodes are those that do not receive any information from a species that is perturbed in the data.
As we won’t be able to conclude anything about these species, we will find them and remove them from the
model. Please note that in this particular case there are no nodes to cut, but we still include these steps
here because they are necessary in a general case.

> indicesToy<-indexFinder (CNOlistToy, pknmodel, verbose=TRUE)

[1] "The following species are measured: Akt, Hsp27, NFkB, Erk, p90RSK, Jnk, cJun"
[1] "The following species are stimulated: EGF, TNFa"
[1] "The following species are inhibited: Raf, PI3K"

> ToyNCNOindices<-findNONC (pknmodel, indicesToy,verbose=TRUE)

[1] "The following species are not observable and/or not controllable: "

> ToyNCNOcut<-cutNONC (pknmodel, ToyNCNOindices)
> indicesToyNCNOcut<-indexFinder (CNOlistToy, ToyNCNOcut)

5.2 Compressing the model

Compressing the model consists of collapsing paths in which a series of non measured or perturbed nodes input
into a measured or perturbed node. This step is performed because such paths do not bring any additional
information compared to their compressed version, and unnecessarily complicate the model. Typically this
includes linear cascades for examples, but this excludes any node that would be:

1. involved in complex logics (more than one input and also more than one output)
2. involved in self loops

Compression is performed using the function compressModel.

> ToyNCNOcutComp<-compressModel (ToyNCNOcut, indicesToyNCNOcut)
> indicesToyNCNOcutComp<-indexFinder (CNOlistToy, ToyNCNOcutComp)

5.3 Expanding the gates

The last preprocessing step consists in expanding the gates present in the PKN, i.e. creating new logic
combinations of gates from the ones present in the prior knowledge network. This is performed in 2 steps:
i) any AND node present in the PKN is split into its constituent branches, and ii) every time a nodes gets
more than one input, then all ’AND’ combinations of the inputs are produced, although only exploring
combinaisons of AND gates with a maximum of 2, 3 or 4 input nodes (for instance for a 5 inputs case, only
C3, C3, or C§ combinations are created). This step is performed because although connections between nodes
might be known or inferred from functional relationships, the particular logic with which these interactions
work or are combined to influence a target node are generally not known.

This step, performed by the function expandGates, will create additional fields SplitANDs and newANDs
in the model that inform you about new edges that have been crated from splitting ’AND’ hyperedges, and
about new hyperedges that have been created from combinations of edges.

> model<-expandGates (ToyNCNOcutComp, maxInputsPerGate=3)

Note that here we set the option mazlnputsPerGate to 3 whereas the default value is 2.

5.4 Preprocessing function

In CellNOptR (from version 1.2), a function called preprocessing gathers the previous three preprocessing
steps in a single command line:

> model <- preprocessing(CNOlistToy, pknmodel, expansion=TRUE,
+ compression=TRUE, cutNONC=TRUE, verbose=FALSE)

In the previous commands, although the default behaviour of the preprocessing function is to perform the
expansion, compression and removing of non-observable and non-controlable nodes, we set these options to
TRUE so as to emphasize the usage of the function.

6 Training of the model

By 7optimising the model”, we mean exploring the space of possible combinations of expanded gates in the
PKN in order to find the combination that reproduces most closely the data. Comparison between model and
data is obtained by simulating the steady state behaviour of the model under all conditions present in the
data, and comparing these binary values to the normalised data points. The match between data and model
is quantified using an objective function with parameters sizeFac and NAFac. This function is the sum of a
term that computes the fit of the simulated data to the experimental data, a term that penalises increased
model size (weighted by the parameter sizeFac), and a term that penalises NAs in the output of the simulation
(i.e. nodes that are in a non resolved state, typically negative feedbacks; weighted by the parameter NAFac).
Typically this has the following structure: % Zt,z,k(Mt,l,k — Dyik)? + a% Zedges €edges + Bnn 4, where n is
the number of data points, M the model output for time t, readout 1, condition k, D is the corresponding
measurement, « is the size factor, e is the number of inputs for the egde considered (where edges are all
edges present in the optimised model), s is the number of hyperdeges in the model, § is the NA factor, and
ny 4 is the number of undetermined values returned by the model.

The optimisation itself is done using a genetic algorithm that tries to optimise a string of Os and 1s
denoting the presence or absence of each gate in the model, where the fitness of each individual string is
obtained based on the value of the objective function (score). This genetic algorithm uses the following
methods: random initialisation of the population (although an initial string is given to the algorithm in the
parameter initBstring) of size set by popSize, linear ranking based on the scores for fitness assignment (with
a default selective pressure of 1.2, set by the parameter selPress), stochastic uniform sampling for selection
(with an elitism parameter that allows the best x strings to be carried on ’as is’ to the next generation),
uniform crossover probability, and a mutation probability over the sequence set to 0.5 as default (set by
pMutation). The search can be stopped using three conditions: a maximum time in seconds (mazTime), a
maximum number of generations (maxGens), and a maximum number of stall generations (i.e. generations
where the best string is identical, stallGenMaz).

The genetic algorithm function returns a list object that collects a number of informations such as the
best string and corresponding score at each iteration, the average fit at each generation, etc. The function
also returns strings that were obtained across the whole optimisation process and that obtained scores that
were closed to the best string, where 'close’ is defined by a relative tolerance on the score which is set by
the parameter relTol. This is an important piece of information because when the data cannot constrain the

model tightly then many strings are obtained with a fit that is close to the optimal one, and interpretation
of edges present in the optimal model is therefore more subtle.

We start off by computing the residual error, which is the minimum error that is unavoidable with a
boolean network and comes from the discrete nature of such a model (please remember that although the
data is normalised in this pipeline, it is not discretised, and therefore we compare 0/1 values to continuous
values between 0 and 1). This value is important because however good is our optimisation, the value of the
goodness of fit term cannot go under this residual error.

> resECNOlistToy<-residualError (CNOlistToy)

Then, we create an initial bit string for the optimisation, which in this case is just a string of 1s, but
could be a meaningful string if you have prior expectation about the topology of the model.

> initBstring<-rep(1,length(model$reacID))

We can now start the optimisation, in this case with default values for all non essential parameters of
the genetic algorithm. If you set the argument verbose to TRUE, this function will print the following
information, at each generation: generation number, best score and best string at this generation, stall
generation number, average score of this generation and iteration time. You can also find these informations
in the object that is returned by this function, as well as the best string the bbString field, and strings within
the relative tolerance limits in StringsTol.

> ToyTlopt<-gaBinaryT1(CNOlist=CNOlistToy, model=model,
+ initBstring=initBstring, verbose=FALSE)

We will now produce plots of our analysis. First, we plot the results of simulating the data with our
best model alongside the actual data set in a plot similar to that obtained above with plotCNOlist, except
that the simulated data is overlaid in dashed blue lines, and the background of the plot reflects the absolute
difference between simulated and experimental data (greener=closer to 0; redder=closer to 1; white=NA,
either for data or simulation). Second, we will plot the evolution of the average score and best score during
the evolution of the population of models, as a function of generations. This is useful to detect problems in
the optimisation.

> cutAndPlot (model=model, bStrings=list(ToyTlopt$bString),
+ CNOlist=CNOlistToy,plotPDF=TRUE)

$filenames
$filenames[[1]]
[1] "SimResultsT1_1.pdf"

$mse

[,11 [,2] [,31 [,4] [,5] [,61 [,7]
[1,] 0.00405 0.000 0.3698 0.02 0.0072 0.00000 0.00
[2,] 0.01620 0.045 0.0050 0.00 0.0000 0.03125 0.08
[3,] 0.00405 0.045 0.0050 0.02 0.0072 0.03125 0.08
[4,] 0.00405 0.000 0.3698 0.00 0.0000 0.00000 0.00
[5,] 0.01620 0.045 0.0050 0.00 0.0000 0.03125 0.08
[6,] 0.00405 0.045 0.0050 0.00 0.0000 0.03125 0.08
[7,] 0.00000 0.000 0.0000 0.02 0.0072 0.00000 0.00
[8,] 0.00000 0.045 0.0050 0.00 0.0000 0.03125 0.08
[9,1 0.00000 0.045 0.0050 0.02 0.0072 0.03125 0.08

$simResults

$simResults[[1]]
$simResults[[1]]$t0
[,11 [,2]1 [,3] [,4]1 [,5] [,6] [,7]
[1,] 0 0 0 0 0 0 0
[2,] 0 0 0 0 0 0 0
[3,] 0 0 0 0 0 0 0
[4,] 0 0 0 0 0 0 0
(5,] 0 0 0 0 0 0 0
[6,] 0 0 0 0 0 0 0
[7,] 0 0 0 0 0 0 0
[8,] 0 0 0 0 0 0 0
[9,1] 0 0 0 0 0 0 0
$simResults[[1]]$t1
[,11 [,2]1 [,3] [,4] [,5] [,6] [,7]

[1,] 1 0 0 1 1 0 0
2,1 1 1 1 0 0 0 0
[3,] 1 1 1 1 1 0 0
4,1 1 0 0 0 0 0 0
[5,] 1 1 1 0 0 0 0
(6,1 1 1 1 0 0 0 0
(7,1 0 0 0 1 1 0 0
[8,] 0 1 1 0 0 0 0
[9,] 0 1 1 1 1 0 0

> plotFit (optRes=ToyTlopt)

Akt Hsp27 NFkB Erk p9ORSK Jnk cJun Stim Inh Error
T P4 A
P . P
2z 7 z 0
0.5 z 2z
P
1 7 d d d
. . P . P
. . P . .
05 z 7’ z ’ 7z
P . . P
P P P
7 il P 7 PA il I
p . P . P . .
P . P . P . .
0.5+ 7’ 2 z 2z ’ z
. P . P
P P
P
P
0.5
1 7 d P kd
. . P .
. . P . .
0.5 z ’ 2 ’ ’
P . . P
P P P
q 7 4 d
P . P .
P . P . .
0.5 7’ 2 ’ 7z
. . P
P P P
1 g Z
. .
. P
05— z 2z
P
| il P il
. P .
. P . .
0.5+ 7’ 2 ’ z
. . P
P P
q 7] 4 d A d
. P . P .
. P . P . .
0.5 7’ 2 z 2z ’ 7z
. P . P
P P P
T TT T T TT T
100 100 100 100 100 100

Figure 3: Results of the cutAndPlot function on the Toy Model example.

11

0.14
l

Average score of generation
0.10
|

Best Score
0.03 0.04 0.05 0.06 0.07 0.06

I I I I I I
0 20 40 60 80 100

Generations

Setting the plotPDF argument to "TRUE” means that a PDF figure will be produced (advised, this will
then be linked to your report). To produce a PDF of the evolution of fit as well (advised), type:

> cutAndPlot(

+ model=model,

+ bStrings=1ist(ToyTlopt$bString),
+ CNOlist=CNOlistToy,

+ plotPDF=TRUE)

> pdf ("evolFitToyT1.pdf")

> plotFit(optRes=ToyTlopt)

> dev.off()

Note that for now, you can not set the output filename. It is going to be named SimResultsT1_1.pdf (if
several plots are generated, you get SimResultsT1_2.pdf and so on). In the future, users should be able to
provide the name. You can still call cutAndPlot without the PDF option and use the R pdf function like in
the example above when calling plotFit function.

12

! 1 ! 1
ank) TRARS f Ras h
/ L- - -\) -I-)
! '
Akt Ink yooes Akt
[,

Figure 4: Processed model (left) and original PKN (right). The edges are on (black or red) or off (grey or
pink) according to the best set of parameters found during the optimisation (the best bit string). To obtain
the right hand side model, the mapBack function has been used.

PIORSK PIORSK

7 Plotting the optimised model

Once you have optimised the processed model the bitstring found correspond to the best model and you may
want to look at the result:

> plotModel (model, CNOlistToy, bString=ToyTlopt$bString)

You may also want to look at the correspondence on the original model. To do so, you will need to
mapback your best model on top of the PKN. This is done in two steps:

> bs = mapBack(model, pknmodel, ToyTlopt$bString)
> plotModel (pknmodel, CNOlistToy, bs, compressed=model$speciesCompressed)

8 Writing your results

The next function, writeScaffold, allows you to write in a Cytoscape SIF file the scaffold network that was used
for optimisation as well as two corresponding edge attribute files: one that tells you when the edge was called
present in the optimised networks (ie 0=absent, 1=present), and one that tells you the weight of each edge as
the fraction of models within the relative tolerance distance of the best model’s score that actually included
the edge. The function also writes the scaffold to a graphviz (http://www.graphviz.org/Credits.php) dot
file, where the presence/absence is represented by the color of the edge (grey if absent, blue if present) and
the weight is represented by the penwidth of the edges.

We then also write the prior knowledge network, using the function writeNetwork, which again produces
a SIF file and corresponding attributes, and a dot file. The SIF file has a corresponding edge attribute file
that contains the present/absent information mapped back to the PKN, and the node attribute file contains
information about the status of the node (compressed, non-observable/non-controllable, signal, inhibited,
stimulated). The dot file encodes the edge information as above and the node information in the color of

13

http://www.graphviz.org/Credits.php

Jnk

A)

Erk

!

p90RSK Hsp27 cdun NFkB

Figure 5: Scaffold network generated by the function writeScaffold for the Toy Model example.

Erk

NFkB cdun Hsp27 p90RSK

Figure 6: PKN generated by the function writeNetwork for the Toy Model example.

14

the node: signals are in blue, inhibited nodes are in red, stimulated nodes are in green, and compressed/cut
nodes are in white with dashed contour. Examples of such files can be found on figures 5 and 6.

You can then write a report that contains relevant information about your analysis and links to the
various plots that you created. This will be in the form of an html file called CelNOptReport.html, which
will be stored along with all of your plots in a directory that you create and name (the name of that folder
is a parameter in the function writeReport). Please not that the function writeReport will create the folder
and move all of the files given by the list namesFiles into this directory. The files given by the arguments
dataPlot, evolFitT1, optimResT1 will then be hyperlinked to your html report.

> writeScaffold(

+ modelComprExpanded=model,
+ optimResT1=ToyTl1lopt,
+ optimResT2=NA,

+ modelOriginal=pknmodel,
+ CNO1ist=CNOlistToy)
> writeNetwork(

+ modelOriginal=pknmodel,
+ modelComprExpanded=model,
+ optimResT1=ToyTlopt,
+ optimResT2=NA,

+ CNO1ist=CNOlistToy)
> namesFilesToy<-list(
+ dataPlot="ToyModelGraph.pdf",
+ evolFitT1="evolFitToyT1.pdf",
+ evolFitT2=NA,

+ simResultsT1="SimResultsT1_1.pdf",
+ simResultsT2=NA,
+ scaffold="Scaffold.sif",

+ scaffoldDot="Scaffold.dot",

+ tscaffold="TimesScaffold.EA",

+ wscaffold="weightsScaffold.EA",

+ PKN="PKN.sif",

+ PKNdot="PKN.dot",

+ wPKN="TimesPKN.EA",

+ nPKN="nodesPKN.NA")

> writeReport(

+ modelOriginal=pknmodel,

+ modelOpt=model,

+ optimResT1=ToyTl1lopt,

+ optimResT2=NA,

+ CNO1ist=CNOlistToy,

+ directory="testToy",

+ namesFiles=namesFilesToy,

+ namesData=1ist (CNOlist="Toy",model="ToyModel"))

9 The one step version

If you do not want to bother with all of these steps, there is a function that allows you to do the whole
analysis in one step. In order to do this, you must first load the model and data, as above (assuming that
you have already loaded the library and have copied the relevant files in your working directory).

> dataToy<-readMIDAS("ToyDataMMB.csv")

15

[1] "Your data set comprises 18 conditions (i.e. combinations of time point and treatment)"

[1] "Your data set comprises measurements on 7 different species"

[1] "Your data set comprises 4 stimuli/inhibitors and 1 cell line(s) (mock)"

[1] "Please be aware that CNO only handles measurements on one cell line at this time."

[1] "Your data file contained 'NaN'. We have assumed that these were missing values and replaced them b

> CNOlistToy<-makeCNOlist (dataToy,subfield=FALSE)
[1] "Please be aware that if you only have some conditions at time zero (e.g.only inhibitor/no inhibito:
> pknmodel<-readSIF("ToyPKNMMB.sif")

Then you have two possibilities, either you keep all optimisation parameters to their default values and
just type

> res <- CNORwrap(

+ paramsList=NA,

name="Toy",

namesData=1ist (CNOlist="ToyData",model="ToyModel"),
data=CNOlistToy,

model=pknmodel)

+ + + +

or you want to have some control over the parameters of the optimisation, in which case you create a
parameters list with fields Data (the CNOlist containing your data), model (your model object), sizeFac
(default to 1e-04), NAFac (default to 1), popSize (default to 50), pMutation (default to 0.5), mazTime
(default to 60), mazGens (default to 500), stallGenMaz (default to 100), selPress (default to 1.2), elitism
(default to 5), relTol (default to 0.1), verbose (default to FALSE). You can then call the wrapper function
with this set of parameters.

> pList<-defaultParameters(CNOlistToy, pknmodel)
> #pList$data = CNOlistToy

> #pList$model = ToyModel

> res <- CNORwrap(

+ paramsList=pList,
+ name="Toy1Step",
+ namesData=1ist (CNOlist="ToyData",model="ToyModel"))

[1] "The following species are measured: Akt, Hsp27, NFkB, Erk, p90RSK, Jnk, cJun"
[1] "The following species are stimulated: EGF, TNFa"
[1] "The following species are inhibited: Raf, PI3K"
[1] "The following species are not observable and/or not controllable:

Both of these versions will generate the graphs produced above on your graphics window, and as PDF’s
that will be hyperlinked to your html report, and you will be able to find all of these hyperlinked with your
html report, all in a directory called by the Name parameter, in your working directory.

10 A real example

This package also contains a slightly larger and more realistic data set, which is a part of the network analysed
in [41] and comprises 40 species and 58 interactions in the PKN. This network was also used for the signaling
challenge in DREAM 4 (see http://www.the-dream-project.org/). The associated data was collected in
hepatocellular carcinoma cell line HepG2 (see [1]). The same analysis as above can be performed on this
data set. In order to load this data, you need to copy the files in the "1DREAMModel” directory to you
working directory (see below) then use readMIDAS, readSIF and makeCNOlist, or load the pre-formatted
model and CNOlist objects, as above.

16

http://www.the-dream-project.org/

> #0Option 1: copy the SIF and MIDAS files (followed by readMIDAS, makeCNOlist and readSIF)
> cpfile<-dir(system.file("DREAMModel",package="CellNOptR"),full=TRUE)
> file.copy(from=cpfile,to=getwd(),overwrite=TRUE)

logical(0)

> #Option 2: load the CNOlist and model objects
> data(CNO1istDREAM,package="CellNOptR")
> data(DreamModel, package="CellNOptR")

Having loaded both data and model, you can now visualise your data using plotCNOlist and plotCNO-
listPDF. You can now start the preprocessing of the model, i.e. find the non-observable/non-controllable
species, compress the model, and expand the gates (preprocessing).

Having obtained a pre-processed model, we run the training function (gaBinaryT1). Finally, we plot the
results of our training (cutAndPlot, see figure 7) as well as the information about the evolution of fit during
optimisation (plotFit).

> model = preprocessing(CNOlistDREAM, DreamModel, verbose=FALSE)

> res = gaBinaryT1(CNOlistDREAM, model, verbose=FALSE, maxTime=10)

> cutAndPlot (CNOlistDREAM, model, bStrings=list(res$bString), plotPDF=TRUE,
+ plotParams=1ist (maxrow=25, margin=0.1, width=20, height=20))

>

>

Our analysis is then complete and we can write our results (scaffold network (writeScaffold), prior knowl-

edge network (writeNetwork) and html report (writeReport)). An example of the html report generated for
this analysis is shown on figure 8. The scaffold network produced by writeScaffold is shown on figure 9 .

17

akt erkl2

p38

hsp27

mek12

Stim

Error ‘

Figure 7: Plot of simulated and experimental data for the DREAM data and model presented above.

18

General information:

data: Dream
time point(s): 1
Resldual error: t1: 1.87508076 (scaled: 0.0114)
network: D
PKN 40 species and 58 interactions
Scaffold (compressed and expanded): 17 species and 75 interactions

(Optimisation t1:

« generations: 157 (best model obtained after 35)
» best string: 20 interactions, objective function = 0.0836980852121212
« number of strings within the tolerance limits: 2507

Scaffold network:

« cytoscape sif format: DreamNCNOcutCompExpScaffold.sif

« graphviz dot format: dot

» edge attribute files: DreamNCNOcutCi EA and DreamNCNOcutCompExpTimesScaffold. EA

« edge attributes respectively reflect the weight of the edge calculated as the frequency of the edge in the best in the last i imisatit and the time stamp on each edge
(i.e. absent/fpresent at t1/present at t2)

Previous knowledge network:

sif format: Di ModelPKN.sif
graphviz dot format: Di KN.dot
edge attribute file: DreamModel TimesPKN.EA
node attribute file: DreamModelnodesPKN.NA
the edge attribute is a time stamp on each edge of the scaffold network (i.e. absenr.ipresenl att1/present att2) mapped back m the original network
the node attribute reflects the information about which nodes are si

Wed May 18 10:49:52 2011

Figure 8: Report generated by CellNOptR for the DREAM data set and model training process.

———

\ erk12
\

hsp27

Figure 9: Scaffold network for the DREAM model, as produced by writeScaffold.

19

11 A toy example with two time points

In this section we will demonstrate the use of CelNOptR used when the data comprises two time points
where we assume that different mechanisms of regulation are at play, which act on separate time scales. The
data set that we use is the toy model example from CellNOpt, adapted for an optimisation based on two
time points (i.e. all signals are kept at the same value as t1 except for cJun and Jnk which go down to zero).
The model that we will load is the toymodel from CellNOpt where we added a negative feedback between
cJun and Jnk (lcJun=Jnk). We are going to try and capture this feedback, assuming that this is a slow
mechanism that shuts the cJun - Jnk branch down at the second, slower time scale.

In this case the data comprises two time points that we assume are pseudo steady states corresponding
to different time scales. The optimisation will therefore be performed in 2 steps, one that finds the reactions
present at time 1, and one that finds the reactions that were not present at time 1 and might have entered
into play at time 2, explaining the evolution of the signals from time 1 to time 2. First, we load the data
and model, and perform the optimisation just as we did for the Toy model above.

> data(CNOlistToy2,package="CellNOptR")
> data(ToyModel2, package="CellNOptR")
> pknmodel = ToyModel2
> cnolist = CNOlist(CNOlistToy2)
> plot(cnolist)
> plotCNOlistPDF(cnolist,filename="ToyModelGraphT2.pdf")
pdf
2

> model = preprocessing(cnolist, pknmodel, verbose=FALSE)
> Tlopt <- gaBinaryT1(cnolist, model, stallGenMax=10, maxTime=60, verbose=FALSE)

> cutAndPlot (model=model, bStrings=1ist(Tlopt$bString),
+ CNOlist=cnolist, plotPDF=TRUE)

$filenames
$filenames[[1]]
[1] "SimResultsT1_1.pdf"

$mse
[,11 [,2] [,3]1 [,4] [,6] [,6] [,7]

[1,] 0.00405 0.000 0.3698 0.02 0.0072 0.000 0.0000000
[2,] 0.01620 0.045 0.0050 0.00 0.0000 0.125 0.0261793
[3,] 0.00405 0.045 0.0050 0.02 0.0072 0.125 0.0261793
[4,]1 0.00405 0.000 0.3698 0.00 0.0000 0.000 0.0000000
[65,] 0.01620 0.045 0.0050 0.00 0.0000 0.125 0.0261793
[6,] 0.00405 0.045 0.0050 0.00 0.0000 0.125 0.0261793
[7,1 0.00000 0.000 0.0000 0.02 0.0072 0.000 0.0000000
[8,] 0.00000 0.045 0.0050 0.00 0.0000 0.125 0.0261793
[9,1 0.00000 0.045 0.0050 0.02 0.0072 0.125 0.0261793

$simResults

$simResults[[1]]

$simResults[[1]11$t0

(,11 [,2] [,3] [,4] [,5] [,6] [,7]

20

(1,1]
[2,]
(3,1
4,]
(5,]
(6,1
(7,1
(s,]
(9,1

O OO OO OO oo

O OO O O OO oo

$simResults[[1]]$t1
[,11 [,2]1 [,3]

[1,]
[2,]
(3,]
4,]
(5,1
(6,1
(7,1
(s,]
[9,]

1

O OO KR P, R, R, .

0

B R, O R P OR P

O O O OO OO oo

B P, O R, P, ORFR PO

O O O O O OO oo

(,4] [,5

P O R, OO0, OR

> pdf ("evolFitToy2T1.pdf")
> plotFit (optRes=Tlopt)
> dev.off()

pdf

2

> plotFit(optRes=Tlopt)

> T2opt<-gaBinaryTN(cnolist, model,
stallGenMax=10, maxTime=60, verbose=FALSE)

+

O O O O OO O oo

]

P O R, OO0 O

O OO O OO O oo
O O O O O O O OO

™
~
—

[,6]

B

PR, ORFRrRFPROREFLO
B), O R, P, ORFR P, O

We can now optimise the second time point.

Finally, we produce all the plots and write the report.

cutAndPlot (

model=model,
bStrings=1ist(Tlopt$bString, T2opt$bString),

CNOlist=cnolist,
plotPDF=TRUE, plotParams=1list(cex=0.8, cmap_scale=0.5,

[,1]
.0054
.0216
.0054
.0054
.0216
.0054
.0000

O O O O O O o

O OO O OO O M

O O O O O O o

[,3]

.493066667
.006666667
.006666667
.493066667
.006666667
.006666667
.000000000

O O O O O O o

[,4]
.02666667
.00000000
.02666667
.00000000
.00000000
.00000000
.02666667

O O O O O oo

[,5]

.0096
.0000
.0096
.0000
.0000
.0000
.0096

21

[,6]

.33333333
.08333333
.08333333
.33333333
.08333333
.08333333
.33333333

O O O O O oo

bStrings=1ist (Tlopt$bString),

margin=0.2))

[,7]

.33333333
.01745286
.01745286
.33333333
.01745286
.01745286
.33333333

[8,]1 0.0000 0.06 0.006666667 0.00000000 0.0000 0.08333333 0.01745286
[9,] 0.0000 0.06 0.006666667 0.02666667 0.0096 0.08333333 0.01745286
$filenames
list()
$simResults
$simResults[[1]]

(,1] [,2] [,3] [,4] [,5] [,6] [,7]

[t,] 0o o0 0 0 0 0 0
[2,] 0 0 0 0 0 0 0
[3,] 0 0 0 0 0 0 0
[4,] 0 0 0 0 0 0 0
[5,] 0 0 0 0 0 0 0
6,0 o 0 o0 ©0o 0 0 0
[7,1 0 0 0 0 0 0 0
[8,] 0 0 0 0 0 0 0
[9,1] 0 0 0 0 0 0 0
$simResults[[2]]

(,11 [,21 [,3] [,4] [,5] [,6]

,_|
~
—

B

[1,] 1 0 0 1 1 0 0
[2,] 1 1 1 0 0 1 1
[3,] 1 1 1 1 1 1 1
[4,] 1 0 0 0 0 0 0
[5,] 1 1 1 0 0 1 1
(6,1 1 1 1 0 0 1 1
(7,1 0 0 0 1 1 0 0
[8,] 0 1 1 0 0 1 1
[9,] 0 1 1 1 1 1 1
$simResults[[3]]

—/
~
—

(.11 [,21 [,3] [,4] [,5] [,6]

B

[1,] 1 0 0 1 1 1 1
[2,] 1 1 1 0 0 0 0
[3,] 1 1 1 1 1 0 0
[4,] 1 0 0 0 0 1 1
[5,] 1 1 1 0 0 0 0
[6,] 1 1 1 0 0 0 0
[7,] 0 0 0 1 1 1 1
[8,] 0 1 1 0 0 0 0
[9,] 0 1 1 1 1 0 0

22

Akt Hsp27 NFkB Erk POORSK Jnk Inh Error
e =
L |
05
B e Wl 0N N T
[N
05+ O
N
s
TET T T ,\ .
N
05+ ©
N
s
N ljl:
I - : JL
[N
05 N 05
N
s
B ,\ '\ .I
[N
05+ O
N
s
| B UJ
054
| — ,\ ,\ JJ
N
05 \
N
s
| c N ---—,\ '\ .J
[N
05 N
N
s
TT TTT TTT TTT TTT TTT TTT T =
0 100 100 100 100 100 100 100 & g

EGI

TNFa
PI3Ki

Figure 10: Output of the cutAndPlot function on the 2-time data set.

23

12 What else

More tutorials can be found in www.cellnopt.org and http://www.cellnopt.org/ in particulat on http:
//www.cellnopt.org/doc/cnodocs/.

References

[1]

Alexopoulos, L.G., Saez-Rodriguez, J., Cosgrove, B.D., Lauffenburger, D.A., Sorger, P.K.: Networks
inferred from biochemical data reveal profound differences in toll-like receptor and inflammatory signaling
between normal and transformed hepatocytes. Molecular & Cellular Proteomics: MCP 9(9), 1849-1865
(2010).

M.K. Morris, I. Melas, J. Saez-Rodriguez. Construction of cell type-specific logic models of signalling
networks using CellNetOptimizer. Methods in Molecular Biology: Computational Toxicology, Ed. B.
Reisfeld and A. Mayeno, Humana Press.

J. Saez-Rodriguez, A. Goldsipe, J. Muhlich, L.G. Alexopoulos, B. Millard, D.A. Lauffenburger and
P.K. Sorger. Flexible informatics for linking experimental data to mathematical models via DataRail.
Bioinformatics, 24:6, 2008.

J. Saez-Rodriguez, L. Alexopoulos, J. Epperlein, R. Samaga, D. Lauffenburger, S. Klamt and P.K. Sorger.
Discrete logic modelling as a means to link protein signalling networks with functional analysis of mam-
malian signal transduction. Molecular Systems Biology, 5:331, 2009.

P. Shannon, A. Markiel, O. Ozier, N.S.. Baliga, J.T. Wang, D. Ramage, N. Amin, B. Schiwkowski and
T. Ideker. Cytoscape: a software for integrated models of biomolecular interaction networks. Genome
Research, 13(11):2498-504, 2003.

24

http://www.cellnopt.org/
http://www.cellnopt.org/doc/cnodocs/
http://www.cellnopt.org/doc/cnodocs/

	Installation
	Introduction
	Quick Start
	Loading the data and prior knowledge network.
	Preprocessing the model
	Finding and cutting the non observable and non controllable species
	Compressing the model
	Expanding the gates
	Preprocessing function

	Training of the model
	Plotting the optimised model
	Writing your results
	The one step version
	A real example
	A toy example with two time points
	What else

