Alleliclmbalance Vignette

Jesper R. Gadin and Lasse Folkersen

2015-05-17
Contents
1 Introduction 1
2 ASEset 2
2.1 Simple example of building an ASEset object 2
2.2 Building an ASEset object using Bcfor Vcffileso 2
2.3 Using strand information 3
2.4 Two useful helper functions 4
2.5 Adding phenotype data L 4
2.6 Adding phase information L 5
2.7 Adding reference and alternative allele information 5
3 Tests 6
3.1 Statistical analysis of an ASEset object 7
4 Base graphics 7
4.1 Plotting of an ASEset object 7
4.2 Plot with annotation L 10
4.3 locationplot 11
4.4 Top allele criteria e 12
5 Grid graphics 13
5.1 gharplot . . . e 14
5.2 glocationplot L 15
5.3 Custom location plots L 17
6 Summary functions 18
7 Conclusion 19
8 Links 19
9 Session Info 19

[y

Introduction

This Alleliclmbalance package contains functions for investigating allelic imbalance effects in RNA-seq data. Maternal
and paternal alleles could be expected to show identical transcription rate, resulting in a 50%-50% mix of maternal and
paternal mRNA in a sample. However, this turns out to sometimes not be the case. The most extreme example is the
X-chromosome inactivation in females, but many autosomal genes also have deviations from identical transcription rate.
The causes of this are not always known, but one likely cause is the difference in DNA, namely heterozygous SNPs,
affecting enhancers, promoter regions, splicing and stability. Identifying this allelic imbalance is therefore of interest to the
characterization of the genome and the aim of the Allelicimbalance package is to facilitate this.

Load Alleliclmbalance

http://bioconductor.org/packages/release/bioc/html/AllelicImbalance.html

library(AllelicImbalance)

2 ASEset

The ASEset object is the central class of objects in the Allelicimbalance package. The ASEset object has the Summarized-
Experiment from the GenomicRanges package as parent class, and all functions you can apply on this class you can also
apply on an ASEset.

2.1 Simple example of building an ASEset object

In this section we will walk through the various ways an ASEset object can be created. Although the preprocessing of
RNA-seq data is not the primary focus of this package, it is a necessary step before analysis. There exists several different
methods for obtaining a bam file, and this section should just be considered an example. For further details we refer to
the web-pages of tophat, bowtie, bwa and samtools found in the links section at the end of this document.

wget ftp://ftp.sra.ebi.ac.uk/voll/fastq/ERRO09/ERR009135/*

bowtie -q --best --threads 5 --sam hgl9 +

> -1 ERR009135_1.fastq.gz -2 ERR009135_2.fastq.gz "ERR009135.sam"
samtools view -S -b ERR009135.sam > ERR009135.bam

In the above code one paired-end RNA sequencing sample is downloaded and aligned to the human genome, then converted
to bam using samtools. The resulting bam files can be the direct input to the Allelicimbalance package. Other aligners
can be used as well, as long as bam files are provided as input. The example code following illustrates how to use the
import mechanism on a chromosome 17-located subset of 20 RNA-seq experiments of HapMap samples. The output is an
ASEset object containing allele counts for all heterozygote coding SNPs in the region.

searchArea <- GRanges(seqnames = c("17"), ranges = IRanges(79478301, 79478361))
pathToFiles <- system.file("extdata/ERP000101_subset", package = "AllelicImbalance")
reads <- impBamGAL(pathToFiles, searchArea, verbose = FALSE)

heterozygotePositions <- scanForHeterozygotes(reads, verbose = FALSE)

countList <- getAlleleCounts(reads, heterozygotePositions, verbose = FALSE)

a.simple <- ASEsetFromCountList(heterozygotePositions, countList)

a.simple

class: ASEset

dim: 3 20

exptData(0):

assays(3): countsUnknown mapBias phase

rownames(3): chrl7_79478287 chri17_79478331 chr17_79478334
rowRanges metadata column names(0):

colnames(20): ERR0O09097.bam ERR009102.bam ... ERR009160.bam
ERR009167.bam

colData names(0):

2.2 Building an ASEset object using Bcf or Vcf files

If more than a few genes and a few samples are analyzed we recommend that a SNP-call is instead made using the
samtools mpileup function (see links section). The scanForHeterozygotes function is merely a simple SNP-caller and it is
not as computationally optimized as e.g. mpileup. In this bash code we download reference sequence for chromosome 17
and show how to generate mpileup calls on one of the HapMap samples that were described above.

http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html

#download the reference chromosome in fasta format
wget ftp://hgdownload.cse.ucsc.edu/goldenPath/hgl9/chromosomes/chrl7.fa.gz

#Vcf format
samtools mpileup -uf hgl9.fa ERR009135.bam > ERR009135.vct

#Bcf format
samtools mpileup -uf hgl9.fa ERR009135.bam | bcftools view -bvcg - > ERR009135.bcf

Samtools mpileup generates by default a Vcf file which contains SNP and short INDEL positions. Piping the output to
bcftools we get its binary equivalent (Bcf), which takes less space and can be queried more effective.

The Vcf file is a text file that stores information about positions in the genome. In addition to the location, stored
informationn could for example be genotype, phase, reference and alternative alleles for a collection of samples. More
detailed information can be found following this link.

In the VariantAnnotation package there is a lot of useful tools to handle Vcf files. The readVcf function reads Vcf data
into R, which can be subset to only ranges by granges to get a GRanges object that is the object type required by the
getAlleleCounts function.

pathToVcf <- paste(pathToFiles,"/ERP000101.vcf",sep="")
VCF <- readVcf (pathToVct, "hgl9")
gr <- granges(VCF)

#only use bi-allelic posttions
gr.filt <- gr[width(mcols(gr)[,"REF"]) == 1 |
unlist (lapply(mcols(gr) [,"ALT"],width))==1]

countList <- getAlleleCounts(reads, gr.filt, verbose=FALSE)
a.vcf <- ASEsetFromCountList(rowRanges = gr, countList)

With the Bcf files the process of generating an ASEset object starts with a call to the impBcfGR function instead. This
function will import the Bcf file containing all SNP calls that were generated with the samtools mpileup function.

BcfGR <- impBcfGR(pathToFiles,searchArea,verbose=FALSE)
countListBcf <- getAlleleCounts(reads, BcfGR,verbose=FALSE)
a.bcf <- ASEsetFromCountList(BcfGR, countListBcf)

2.3 Using strand information

Many RNA-seq experiments do not yield useful information on the strand from which a given read was made. This is
because they involve a step in which a double-stranded cDNA is created without tracking strand-information. Some
RNA-seq setups do however give this information and in those cases it is important to keep track of strand in the
ASE-experiment. The example data from above is from an experiment which created double-stranded cDNA before
labelling and so the ‘+’ and ‘-' information in it is arbitrary. However, if we assume that the information has strand
information, then the correct procedure is as follows:

plus <- getAlleleCounts(reads, heterozygotePositions, strand="+",verbose=F)
minus <- getAlleleCounts(reads, heterozygotePositions, strand="-",verbose=F)

a.stranded <-
ASEsetFromCountList (
heterozygotePositions,
countListPlus=plus,
countListMinus=minus

http://samtools.github.io/hts-specs/VCFv4.1.pdf
http://bioconductor.org/packages/release/bioc/html/VariantAnnotation.html

)

a.stranded

class: ASEset

dim: 3 20

exptData(0):

assays(5): countsPlus countsMinus countsUnknown mapBias phase
rownames(3): chrl7_79478287 chri17_79478331 chril7_79478334

rowRanges metadata column names(0):

colnames(20): ERR0O09097.bam ERR009102.bam ... ERR009160.bam
ERR009167.bam

colData names(0):

The main effect of doing this, is in the plotting functions which will separate reads from different strands if they are
specified as done here. It is important, however, to make sure that the imported RNA-seq experiment does in fact have
proper labeling and tracking of strand information before proceeding with this method.

2.4 Two useful helper functions

At this stage it is worth highlighting two useful helper functions that both uses existing BioC annotation objects. One
is the getAreaFromGeneNames which quickly retrieves the above mentioned searchArea when given just genesymbols
as input, and relies on org.Hs.eg.db. The other other is the getSnpldFromLocation function which attempts to rename
location-based SNP names to established rs-IDs in case they exist. These functions work as follows:

#Getting searchArea from genesymbol
library(org.Hs.eg.db)
searchArea<-getAreaFromGeneNames ("ACTG1" ,org.Hs.eg.db)

#Getting rs—-IDs

library(SNPlocs.Hsapiens.dbSNP.20120608)

gr <- rowRanges(a.simple)

updatedGRanges<-getSnpIdFromLocation(gr, SNPlocs.Hsapiens.dbSNP.20120608)
rowRanges(a.simple)<-updatedGRanges

2.5 Adding phenotype data

Typically an RNA-seq experiment will include additional information about each sample. It is an advantage to include
this information when creating an ASEset because it can be used for subsequent highlights or subsetting in plotting and
analysis functions.

#simulate phenotype data

pdata <- DataFrame (
Treatment=sample(c("ChIP", "Input"),length(reads),replace=TRUE),
Gender=sample(c("male", "female"),length(reads),replace=TRUE),
row.names=paste("individual",1:length(reads),sep=""))

#make new ASEset with pdata

a.new <- ASEsetFromCountList (
heterozygotePositions,
countlList,
colData=pdata)

#add to existing object
colData(a.simple) <- pdata

http://bioconductor.org/packages/release/data/annotation/html/org.Hs.eg.db.html

2.6 Adding phase information

For some functionality phase information is necessary. Phasing can be obtained from many external sources e.g. samtools.
The phase information is often present in VCF-files. The lines below show how to access that information and transfer
it to an ASEset. The ASEset follows the VCF-conventions on how to describe the phase, i.e. each patients phase will
be described by the established notation of the form “1|0”,“1|1" or “1/0". There the left number is the description of
the maternal allele and the right number is the description of the paternal allele. If it is O the allele is the same as the
reference allele, and if it is 1 it is the alternative allele. For “|" the phase is known and for “/" the phase is not known.
Note, that in the Allelicilmbalance package only bi-allelic expression is allowed.

The phase can be manually added by constructing a user-generated matrix, or transforming the data into a matrix from
an external source. The most convenient way of importing phase information is probably by reading it from a Vcf file,
which is commonly used to store phase information. The readGT function from the VariantAnnotation package will return
a matrix ready to just attach to an ASEset object.

#construct an example phase matriz

set.seed(1)

rows <-nrow(a.simple)

cols <- ncol(a.simple)

pl <- matrix(sample(c(1,0),replace=TRUE, size=rows*cols), nrow=rows, ncol=cols)

p2 <- matrix(sample(c(1,0),replace=TRUE, size=rows*cols), nrow=rows, ncol=cols)

phase.mat <- matrix(paste(pl,sample(c("[","[|","/"), size=rows*cols, replace=TRUE), p2, sep=""),
Nrow=rows, ncol=cols)

phase(a.simple) <- phase.mat

#use the phase information from a Vcf file

pathToVcf <- system.file("extdata/ERP000101_subset/ERP000101.vcf", package = "AllelicImbalance")
p <- readGT(pathToVcf)

#The example Vcf file contains only 19 out of our 20 samples

#So we have to subset and order

a.subset <- a.simple[,colnames(a.simple) %in% colnames(p)]

p.subset <- p[, colnames(p) %in’, colnames(a.subset)]

p.ordered <- p.subset[, match(colnames(a.subset), colnames(p.subset))]

2.7 Adding reference and alternative allele information

Having the information of reference and alternative allele is important to investigate any presence of mapping bias. It is
also important to be able to use phasing information. The reference and alternative alleles are stored in the meta-columns
and can be accessed and set through the mcols() function. All functions that require reference or alternative allele will
visit the meta-columns “ref” or “alt” to extract that information.

#from simulated data
ref (a.simple) <- c("G","T","C")

#infer and set alternative allele
alt <- inferAltAllele(a.simple)
alt(a.simple) <- alt

#from reference genome
data(ASEset.sim)
fasta <- system.file('extdata/hgl9.chrl7.subset.fa', package='AllelicImbalance')

http://bioconductor.org/packages/release/bioc/html/VariantAnnotation.html

ref <- refAllele(ASEset.sim,fasta=fasta)
ref (ASEset.sim) <- ref

Using reference allele information when measuring the impact of mapping bias globally, can be done by measuring the
average reference allele fraction from a representative set of SNPs. Below the simulated example uses 1000 SNPs to
assess any presence of mapping bias. Any deviations from 0.5 suggests a bias favouring one or the other allele. The
most likely outcome is a value higher than 0.5 and is probably due to mapping bias, i.e., the reference allele actually has
mapped more often than the alternative allele.

#make an example countList including a global sample of SNPs
set.seed (1)
countListUnknown <- list()
samples <- paste(rep("sample",10),1:10,sep="")
snps <- 1000
for(snp in 1:snps){
count<-matrix(0, nrow=length(samples), ncol=4, dimnames=list(samples, c('A','T','G"','C')))
alleles <- sample(1:4, 2)
for(sample in 1:length(samples)){
count [sample, alleles] <- as.integer(rnorm(2,mean=50,sd=10))
}

countListUnknown[[snp]] <- count

#make example rowRanges for the corresponding information

gr <- GRanges(
seqnames = Rle(sample(paste('"chr",1:22,sep=""),snps, replace=TRUE)),
ranges = IRanges(l:snps, width = 1, names= paste("snp",1:snps,sep="")),
strand="x*"

#make ASEset
a <- ASEsetFromCountList(gr, countListUnknown=countListUnknown)

#set a random allele as Teference
genotype(a) <- inferGenotypes(a)
ref(a) <- randomRef (a)

#get the fraction of the reference allele
refFrac <- fraction(a, top.fraction.criteria="ref")

#check mean
mean (refFrac)

[1] 0.5013641

The reference fraction mean mean(refFrac) is in this case very close to 0.5, and suggests that the mapbias globally is
low if present. In this example we randomly assigned the reference genome to one of the two most expressed allele by the
randomRef function, so it should not be any reference allele bias (mapbias).

3 Tests

3.1 Statistical analysis of an ASEset object

One of the simplest statistical test for use in allelic imbalance analysis is the chi-square test. This test assumes that the
uncertainty of ASE is represented by a normal distribution around an expected mean (i.e 0.5 for equal expression). A
significant result suggests an ASE event. Every strand is tested independently.

#use a subset for tests

a2 <- a.stranded[,5:8]

#binomial test

binom.test(a2,"+")

chr17_79478287 chri17_ 79478331 chrl7_ 79478334
[1,] NA NA NA
[2,] 0.7265625 0.006610751 0.2668457
[3,] NA 0.107752144 NA
[4,] NA NA NA

#chi-square test
chisq.test(a2,"-")

it chrl7 79478287 chrl7_ 79478331 chrl7_ 79478334
[1,] NA NA NA
[2,] 0.7962534 NA NA
[3,] NA NA NA
[4,] NA NA NA

4 Base graphics

4.1 Plotting of an ASEset object

The barplot function for ASEset objects plots the read count of each allele in each sample. This is useful for getting a very
detailed view of individual SNPs in few samples. As can be seen below, four samples from the HapMap data contains a
strong imbalance at the chrl7:79478331 position on the plus strand. By default the p-value is calculated by a chi-square
test. To use other test results the arguments testValue and testValue2 can be used. When the counts for one allele are
below 5 for one allele the chi-square test returns NA. This is why there is no P-value above the first bar in the example
below.

barplot(a.stranded[1], strand="+", xlab.text="", legend.interspace=2)

mm weq/.917600443
weq'097600443
weq'69T600443
weq/.9T600d43
weqySTe00d4d3
weq’.y1600d43

weq'9y1600443

I

btp, xlab.text="", legend.interspace

chrl7_79478287

] Wed v1600443
] Wed'zr1600443
| wea'TrT600443

l

| wea-6zT600443

l weq'221600443

weq'9¢1600443

weq'geTe00dd3

chrl7_79478287

weq'¢ec1600443

i\

#use another source of p-values

| wea'sTT600443
mm] WRdETT600M:3
| weaeoT6004x3

| wea-zote00443

l

weq.60600d443

20
15 1
10
5
0 -

speal

btp <- binom.test(a.stranded[1],"+")

=2)

barplot(a.stranded[1], strand="+", testValue

o<
mm weq'.97600443
weq091600443
weq'6571600443
weq’'.97T600443
weqy51600443
weq'.y1600443

weq'9y1600443

I

Another example of plotting that is useful is the one invoked with the plotting type argument “fraction

] Wed vyT600443
] Wed'zyT600443
| wea'TrT600443

l

| wea'6z1600443

l weq'.21600443

weq9¢1600444

weq'seT600d43

weq¢e1600444

s\

| wea'sTT600443
P KL RA RSN
| wea-eoT600443

| wea-zoTe00443

l

weq’'.60600443

20 A
15 A
0_

speal

. This plotting

mechanism is useful to illustrate more SNPs and more samples in less space than the standard plot. As can be seen here

several other samples are not heterozygote at the chrl7:79478331 location.

barplot(a.simple[1], type="fraction", cex.main = 0.7)

1s2230159

75%

509

fraction

25%

samples

A typical question would be to ask why certain heterozygote samples have allele specific expression. The arguments

sampleColour.top and sampleColour.bot allows for different highligts such as illustrated here below for gender. This could

also be used to highlight based on genotype of proximal non-coding SNPs if available.

#top colour

sampleColour.top <-rep("palevioletred",ncol(a.simple))

sampleColour.top[colData(a.simple) [, "Gender"]%in%"male"] <- "darkgreen"

#bottom colour

sampleColour.bot <- rep("blue",ncol(a.simple))

sampleColour.bot[colData(a.simple) [, "Gender"]%inj)"male"] <- "seashell2"

barplot(a.simple[1], type="fraction", sampleColour.top=sampleColour.top,
sampleColour.bot=sampleColour.bot, cex.main = 0.7)

10

rs2230159

75%

509

fraction

25%

samples

4.2 Plot with annotation

It is often of interest to combine the RNA sequencing data with genomic annotation information from online databases.
For this purpose there is a function to extract variant specific annotation such as gene, exon, transcript and CDS.

library(org.Hs.eg.db)

barplot(a.simple[1],0rgDb=org.Hs.eg.db,
cex.main = 0.7,
xlab.text="",
ypos.annotation = 0.08,
annotation.interspace=1.3,
legend.interspace=1.5

)

reads

11

EhSESIRS RS
Ssymbol: .Symbo
Y rs2230159 ynoe
60 g8 A
50
40 -
30
20 4
5

N [l
LJi L _m B l _ i _ = _

- N [s2) < n © N~ @ [o)] o — N ™ < o © M~ [ee] (o] o

T T € ¥ €§ € 8 8§ 8 = = o o o o o o = o o

> > > > > > > > > © © © © © [} [} [} [© ©

o o =] =] o o =] e o > > > > > > > > > > >

S 355535353 3% 2 8 % 2 2 8 8 2 2 T

5 5 8 5 5 % T % % = =2 =2 =2 =2 =2 2 2 2 2 =2

c c c c c c c < c e} e} e} e} =] =] e e} e} e} e}

- - - - - = = = "= £ £ £ £ £ £ £ £ £ £ £

4.3 locationplot

Finally a given gene or set of proximal genes will often have several SNPs close to each other. It is of interest to investigate
all of them together, in connection with annotation information. This can be done using the locationplot function. This
function in its simplest form just plot all the SNPs in an ASEset distributed by genomic location. Additionally it contains
methods for including gene-map information through the arguments OrgDb and TxDb.

library (TxDb.Hsapiens.UCSC.hgl9.knownGene)
#using count type

locationplot(a.stranded, type='"count", cex.main=0.7, cex.legend=0.4)

50

40

30

2

(=}

1

(=)

o

chrl7_79478287 . = chrl7_79478331 . = chrl7_79478334

60

&‘IIIJIIIIII L.IIIIIIIIIII | L.IIIIIIIIIIIII

HS

I
79478280

I I
79478300 79478320

genomic position on chromosome 17

79478340

12

#use annotation
a.stranded.sorted <- sort(a.stranded, decreasing=FALSE)
locationplot(a.stranded.sorted, OrgDb=org.Hs.eg.db, TxDb=TxDb.Hsapiens.UCSC.hgl9.knownGene)

V5% 75% 75%

pO% 50% 50%

P5% 25% 25%

ACTG1
| | | | |

79478280 79478300 79478320 79478340

genomic position on chromosome 17

4.4 Top allele criteria

The barplot with type="function’ can be visualized according to three different allele sorting criteria. The default behaviour
is just to shown the allele with highest overall abundance in the upper half of the plot. This works well for most single
SNP investigations. For more complex situations, however, it can be essential to keep track of phase information. This is
done either through the reference allele sorting function, or even better, through consistently showing the maternal allele
on top. When phase is know, this is essential to compare effect-directions of different coding SNPs

#load data
data(ASEset)

#using reference and alternative allele information
alt (ASEset) <- inferAltAllele(ASEset)
barplot (ASEset[1], type="fraction", strand="+", xlab.text="", top.fraction.criteria="ref")

13

4/(06551

75%

509

fraction

25%

#using phase information
phase (ASEset) <- phase.mat
barplot (ASEset[1], type="fraction", strand="+", xlab.text="", top.fraction.criteria="phase")

4/(6551

fraction

5 Grid graphics

To make use of the extra graphical flexibility that comes with grid graphics, the Allelicimbalance package has now functions
that can be integrated in the grid environment. The low level grid functions are located in the grid package, but higher
level functions based on grid can be found in popular packages such as e.g. /attice, ggplot2. The benefits using grid
graphics is a better control over different graphical regions and coordinate systems, how to construct and redirect graphical
output, such as lines, points, etc and their appearance.

One particular reason for the Allelicilmbalance to use grid graphics is the Gviz package, which uses grids functionality to
construct tracks to visualize genomic regions in a smart way. The Allelicimbalance package has grid based barplots and

functionality to create Gviz tracks. Observe the extra “g" prefix for the bar- and locationplot versions using the grid, see
examples below.

http://cran.fhcrc.org/web/packages/grid%20package/index.html
http://cran.fhcrc.org/web/packages/lattice/index.html
http://cran.fhcrc.org/web/packages/ggplot2/index.html
http://bioconductor.org/packages/release/bioc/html/Gviz.html

14

5.1 gbarplot

The standard barplot functions for ASEset objects have at the moment much more parameters that can be set by the user
than the gbarplot. Base graphics also produce graphs faster than the grid environment. The advantage of the gbarplot is

instead the possiblity to integrate into the Gviz package and other grid based environments.

#gbarplots with type "count"
gbarplot (ASEset, type="count")

40

30

reads
]
[

10
|

0
m
|
b
=
—
|
|
b
|

E E E E E E E E E E E E E E E E E E £ E
©] © © @© @© © @© @© © @®© @© ©] @© ©] @© © ©
84 29 o0 29 o8 8 89 9 9 8 2 8 9 8 8 49 89 9 49 9
N~ N ™ (92] Ln N (o] N~ (@] Lo i AN < (o} N~ < N~ [©2] o N~
(@] o o — i N (9V] N N (90} < < < < < o Lo o ¢} ©
o — — — — — — — — — — — — — — — — - — —
(o2} (2] (2] (e} (2] (2] (e} (o2} (2] (e} (o2} (2] (2] (o2} (2] (2] (o2} (2] (2] (o2}
o o o o o o o o o o o o o o o o o o o o
o o o o o o o o o o o o o o o o o o o o
r o rr r rr rr rr ¥ rr rr ¥ rr rr ¥ ¥ xr ¢ o o o
r o rr rr rr xr rr r r o x r o x xr xrr ¥ x o o
o o ow o owow o ow o owow owowow owow w W ow w uw
samples

gbarplots with type "fraction”
gbarplot (ASEset, type="fraction")

15

reads

E E E E E E E E E E E E E E E E E E E E
© I} @ © I} @ © © @ @© © @ @© © @ @ © @ @© ©
2 2 9 9 9 9 8 8 8 9 9 2 9 9 9 9 48 9 9 9
N~ N ™ (92] o N (o] N~ (o] Lo i AN < (o] N~ < N~ (o)) o N~
(*2} o o i i N N N N ™ < < < < < Lo Lo Lo © (o]
o — — — — — — — — — — — — — b — — — - —
[o2] (o] (o)) [*2] (o] (o)) (o)) (o] (o)) (o)) (o] (o)) (o)) (o] (o] (o)) [o2] (o] (o)) (o]
o o O o o O o o O O o O O o o O o o O o
o o O o o O (@) o O O o O O o o O o o O o
¥ @ @ ¥ ¥ ¥ @ @ @ @ & & X ¥ @
¥ @ @ ¥ ¥ ¥ @ @ ¥ ¥ & oo
o o oW ow ow ow ow owowowowow oW oww W w w uw
samples

5.2 glocationplot

The glocationplot is a wrapper to quickly get an overview of ASE in a region. The overview offers the possibility to view
consistency of SNP fractions over consecutive exons which is important to assess the reliability of the measured SNPs. In
the best case all fractions deviates from e.g. 0.3 for every SNP in the same gene for an individual. To be able to inspect
that the direction is right, it is possible to use the top.fraction.criteria and use phase information as explained earlier.

#remember to set the gemome
genome (ASEset) <- "hgl9"

glocationplot (ASEset,strand="'+")

#for ASEsets with fewer SNPs the 'count' type plot is useful
glocationplot (ASEset[,1:5], type="count")

16

17

5.3 Custom location plots

More flexibility and functionality from the Gviz package is accessed if the tracks are constructed separately. This is ueful
to evalute Al in respect to for example read coverage or transcript annotation. An inconsistency of Al could potentially
be explained by an uneven coverage over the exons, or lack of coverage. Below is an example using two samples from
the ASEset and the corresponding reads. Ensuring and setting the seqglevels equal is a security measure, for the internal
overlap calculations that otherwise might throw a warning. The GR object is defining the region that we want to plot.
The ASEDAnnotationTrack will create a track based on the gbarplots and the CoverageDataTrack a track based on
read coverage. The different tracks are then collected in a list with the first element appearing at the top in the final
plotting by the plotTracks function. The sizes vector defines the vertical space assigned to each track. To use transcript
annotation more detailed information can be found in the Gviz vignette

#subset ASEset and reads

x <- ASEset[,1:2]

r <- reads[1:2]

seqlevels(r, force=TRUE) <- seqlevels(x)

GR <- GRanges(seqnames=seqlevels(x),
ranges=IRanges (start=min(start(x)),end=max(end(x))),
strand='+', genome=genome (x))

deTrack <- ASEDAnnotationTrack(x, GR=GR, type='fraction',strand='+")
covTracks <- CoverageDataTrack(x, BamList=r, strand='+')

1st <- c(deTrack,covTracks)

sizes <- c(0.5,rep(0.5/1length(covTracks),length(covTracks)))

http://bioconductor.org/packages/release/bioc/vignettes/Gviz/inst/doc/Gviz.pdf

18

plotTracks(lst, from=min(start(x)), to=max(end(x)), sizes=sizes, col.line = NULL, showId = FALSE, main

main

r [TTTTT 1

6 Summary functions

The regionSummary function can be used to investigate if there is a consistent imbalance in the same direction over a
region (e.g. a transcript).

in this example every snp 1S on separate exons

region <- granges(ASEset)

rs <- regionSummary(ASEset, region)

head(rs)

#it het hom mean.fr sd.fr mean.delta sd.delta ai.up
ERR009097.bam 2 1 0.1961538 0.005439283 0.3038462 0.005439283 0
ERR009102.bam 0 3 NaN NA NaN NA 0
ERR009103.bam NA NA NaN NA NaN NA 0
ERR009113.bam O 3 NaN NA NaN NA 0
ERR009115.bam O 3 NaN NA NaN NA 0
ERR009122.bam 3 0 0.5567819 0.309060711 0.2277220 0.150229174 2
ai.down

ERR009097 .bam
ERR009102.bam
ERR009103.bam
ERR009113.bam
ERR009115.bam
ERR009122.bam

= O O O O N

1
)

19

7 Conclusion

In conclusion we hope that you will find this package useful in the investigation of the genetics of RNA-seq experiments.
The various import functions should assist in the task of actually retrieving allele counts for specific nucleotide positions
from all RNA-seq reads, including the non-trivial cases of intron-spanning reads. Likewise, the statistical analysis and
plotting functions should be helpful in discovering any allele specific expression patterns that might be found in your data.

8 Links

Bowtie link

BWA link

Samtools link
Samtools pileup link

Grid graphics link

9 Session Info

sessionInfo()

R version 3.2.0 (2015-04-16)
Platform: x86_64-unknown-linux-gnu (64-bit)
Running under: Ubuntu 14.04.2 LTS

##

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

[3] LC_TIME=en_US.UTF-8 LC_COLLATE=C

[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

##

attached base packages:

[1] stats4 parallel grid stats graphics grDevices utils
[8] datasets methods base

##

other attached packages:

[1] TxDb.Hsapiens.UCSC.hgl9.knownGene_3.1.2
[2] GenomicFeatures_1.20.1

[3] SNPlocs.Hsapiens.dbSNP.20120608_0.99.9
[4] BSgenome_1.36.0

[5] rtracklayer_1.28.2

[6] org.Hs.eg.db_3.1.2

[7] RSQLite_1.0.0

[8] DBI_0.3.1

[9] AnnotationDbi_1.30.1

[10] Biobase_2.28.0

[11] AllelicImbalance_1.6.2

[12] Gviz_1.12.0

http://bowtie-bio.sourceforge.net
http://bio-bwa.sourceforge.net/
http://samtools.sourceforge.net/
http://samtools.sourceforge.net/mpileup.shtml
https://www.stat.auckland.ac.nz/~paul/grid/grid.html

#it
#i#t
##
##
#it
#it
#it
##
##
##
#it
#it
#it
##
##
##
#i#t
#i#
##
##
##
#it
#i#t
##
##
##
#it
#it
#it

[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]

VariantAnnotation_1.14.1
GenomicAlignments_1.4.1

Rsamtools_1.20.2
Biostrings_2.36.1
XVector_0.8.0
GenomicRanges_1.20.3
GenomeInfoDb_1.4.0
TRanges_2.2.1
S4Vectors_0.6.0
BiocGenerics_0.14.0
BiocStyle_1.6.0

loaded via a namespace (and not attached):

[1]

[4]

[7]
[10]
[13]
[16]
[19]
[22]
[25]
[28]
[31]
[34]
[37]
[40]
[43]
[46]

reshape2_1.4.1
colorspace_1.2-6
XML_3.98-1.1
BiocParallel_1.2.1
matrixStats_0.14.0
zlibbioc_1.14.0
futile.logger_1.4.1
knitr_1.10.5
Rcpp_0.11.6
formatR_1.2
ggplot2_1.0.1
biovizBase_1.16.0
bitops_1.0-6
dichromat_2.0-0
futile.options_1.0.0
rmarkdown_0.6.1

splines_3.2.0
htmltools_0.2.6
survival_2.38-1
RColorBrewer_1.1-2
plyr_1.8.2
munsell_0.4.2
evaluate_0.7
biomaRt_2.24.0
acepack_1.3-3.3
Hmisc_3.16-0
digest_0.6.8
ade4_1.7-2
magrittr_1.5
Formula_1.2-1
seqinr_3.1-3
rpart_4.1-9

lattice_0.20-31
yaml_2.1.13
foreign_0.8-63
lambda.r_1.1.7
stringr_1.0.0
gtable_0.1.2
latticeExtra_0.6-26
proto_0.3-10
scales_0.2.4
gridExtra_0.9.1
stringi_0.4-1
tools_3.2.0
RCurl_1.95-4.6
cluster_2.0.1
MASS_7.3-40
nnet_7.3-9

“Who is is the master if nature provides the techniques to study itself”

20

	1 Introduction
	2 ASEset
	2.1 Simple example of building an ASEset object
	2.2 Building an ASEset object using Bcf or Vcf files
	2.3 Using strand information
	2.4 Two useful helper functions
	2.5 Adding phenotype data
	2.6 Adding phase information
	2.7 Adding reference and alternative allele information

	3 Tests
	3.1 Statistical analysis of an ASEset object

	4 Base graphics
	4.1 Plotting of an ASEset object
	4.2 Plot with annotation
	4.3 locationplot
	4.4 Top allele criteria

	5 Grid graphics
	5.1 gbarplot
	5.2 glocationplot
	5.3 Custom location plots

	6 Summary functions
	7 Conclusion
	8 Links
	9 Session Info

