Package ‘metaseqR’

October 9, 2015

Type Package

Title An R package for the analysis and result reporting of RNA-Seq
data by combining multiple statistical algorithms.

Author Panagiotis Moulos <moulos@fleming.gr>
Maintainer Panagiotis Moulos <moulos@fleming.gr>
Depends R (>=2.13.0), EDASeq, DESeq, limma, qvalue

Imports edgeR, NOISeq, baySeq, NBPSeq, biomaRt, utils, gplots,
corrplot, vsn, brew, rjson, log4r

Suggests BiocGenerics, GenomicRanges, rtracklayer, Rsamtools,
survcomp, VennDiagram, knitr, zoo, RUnit, BiocInstaller,
BSgenome, RSQLite

Enhances parallel, TCC, RMySQL

Description Provides an interface to several normalization and
statistical testing packages for RNA-Seq gene expression data.
Additionally, it creates several diagnostic plots, performs
meta-analysis by combinining the results of several statistical
tests and reports the results in an interactive way.

License GPL (>=3)
Encoding UTF-8
LazyLoad yes
LazyData yes

URL http://www.fleming.gr

biocViews Software, GeneExpression, DifferentialExpression,
WorkflowStep, Preprocessing, QualityControl, Normalization,
ReportWriting, RNASeq

VignetteBuilder knitr
Version 1.8.1

Date 2015-08-24

http://www.fleming.gr

2 R topics documented:

Collate 'metaseqr.annotation.R' 'metaseqr.argcheck.R'
'metaseqr.count.R' 'metaseqr-data.R' 'metaseqr.export.R’
'metaseqr.filter.R' 'metaseqr.main.R' 'metaseqr.meta.R’
‘metaseqr.norm.R' 'metaseqR-package.R' 'metaseqr.plot.R’
'metaseqr.query.R' 'metaseqr.sim.R' 'metaseqr.stat.R’
'metaseqr.util.R' 'zzz.R'

NeedsCompilation no

R topics documented:

metaseqR-package 5
as.class.vector e 5
build.eXport 6
calcflscore e 7
calc.otr L e 8
cddat L e 9
cdplot e e 10
check.contrast.format L 11
checkfile.args L e 11
check.graphics.file 12
check.graphics.type L 12
checklibsize L 13
check.main.args e 13
check.num.args L e 14
check.packages 15
check.parallel 16
check.text.args L. 16
combine.bonferroni Lo 17
combiNe.MAXD v e e e e e e e e e e e e 18
combiNe.MIND ot e e e e e e 18
combine.SIMES« . ot e e e e e 19
combine.weight L. L 20
construct.gene.model Lo 20
diagplotavg.ftd 21
diagplot.boxplot L 23
diagplot.cor e e e e 24
diagplot.de.heatmap 25
diagplot.edaseq e 26
diagplot.filtered 27
diagplot.ftd e e 28
diagplotmds e 29
diagplot.metaseqr e e e e 30
diagplot.nOiSeq o e e e 32
diagplot.noiseq.saturation e e e e e e e 34
diagplot.pairs e e e e e 35
diagplot.roc 36

diagplot.venn L e 37

R topics documented: 3

diagplot.volcano e e e e 38
disp . . .o e 40
downsample.countsl e e 40
estimate.aufc.weights oL 41
estimate.Sim.params v v vt e e e e e e e e e e e e e e e e e 42
filter.exons L e e e 44
filter.genes 45
filter.high e 46
filter.dow L e e 46
fishermethod 47
fishermethod.perm L 48
fisher.sum 50
et.annotation e e e e e 51
GELALE . o . ot e e e e e e e e e e e e e 52
geLDIOLYPES e e e e e 53
get.bs.organism 54
getdataset L. e e 54
get.defaults L. e 55
get.ensembl.annotationo Lo e e 56
getexon.attributes L. L e e 57
GEL.EC.CONLENT o i v it e e e e e 57
get.gene.attributes L. L e e e 58
gethost L e 59
GELPIESELOPLS . « . v v v v e e e e e e e e e e e 59
get.strict.biofilter L. L 60
EeLUCSC.ANNOtAtION v v it e e e e e e e e e e e e 61
getucsc.credentials Lo 62
getucsc.dblo 62
GELUCSC.OTZANISIN v v v v v v e e e e e e e e e e e e e e e 63
GELUCSC.QUETY . « & v v v v e 64
getucsc.tabledef 64
getucsc.tbltpl e 65
get.validchrs o 0oL 66
get.weights 67
graphics.close 67
GraphiCs.OpPen i i e e e e e e e e 68
hgl9.exon.counts 69
libsize.list.hgl9 69
libsize.listmm9 L 70
load.bs.genome 70
log2disp 71
make.contrast.list 71
make.export.Jist e 72
make.fold.change 72
make.grid L 73
make.highcharts.points 74
make.htmlbody 75

make.html.cells e 75

Index

R topics documented:

make.htmlheader 76
make.htmlrowso 77
make.html.table 78
make.matrix e e e 79
make.path.structo L 80
make.permutation e e e e e e e e e e e 80
make.project.path 81
mMake.report.MmesSagest e e e e e e e e 82
make.sample.dist L e e 82
make.sim.data.sd L 83
make.sim.data.tcc Lo 84
make.stat L e 85
make.transformation L. 86
Make.VeNN.areas e e e e e e e 87
make.venn.colorscheme 88
mMake.VeNN.COUNLS v v vt e it e et e e e e e e e 88
mMake.VeNn.pairs e e e e 89
MELA.PEIM ot vt et e e e e e e e 90
MEALESt L e e e e e e e e e 91
metaworker L 93
MELASEAT . .« . . ¢ o v e e e e e e e e e e e e 94
mlfo . . . 109
mmO.gene.Counts e 110
nat2log e e 110
normalize.deseq 111
normalize.edaseq L e e 112
normalize.edger L. e 113
normalize.nbpseq L. L 114
normalize.noiseq L. e 115
read.targets L e e e e e e e e 116
1ead2COUnt L. e e e e e e 117
redUCe.eXONS e e e 119
reduce.gene.data L 120
sample.list.hgl9o 121
sampledistmm9 e 121
SELATE « . v v o i e e e e e e e e e e e e e 122
StAt.baySeq e e e e e e e 122
stat.deseq e e 123
stat.edger L e e e e 124
statlimma 125
Stat.nbpseq 126
SLALNOISEq o e e e e e e 128
validate.alg.args e e e 129
validate.list.args L L. 130
WapPLy . . e e e 131
wp.adjust ..o e e 132

133

as.class.vector 5

metaseqR-package The metaseqR Package

Description

An R package for the analysis and result reporting of RNA-Seq gene expression data, using multiple
statistical algorithms.

Details
Package: metaseqR
Type: Package
Version: 0.99.1
Date: 2014-03-11

Depends: R (>=2.13.0), EDASeq, DESeq, limma, NOISeq, baySeq
Encoding: UTF-8

License: GPL (>=3)

LazyLoad: yes

URL: http://www.fleming.gr

Provides an interface to several normalization and statistical testing packages for RNA-Seq gene
expression data. Additionally, it creates several diagnostic plots, performs meta-analysis by com-
binining the results of several statistical tests and reports the results in an interactive way.

Author(s)

Panagiotis Moulos <moulos@fleming.gr>

as.class.vector Create a class vector

Description

Creates a class vector from a sample list. Internal to the stat.* functions. Mostly internal use.

Usage

as.class.vector(sample.list)

Arguments

sample.list the list containing condition names and the samples under each condition.

6 build.export

Value

A vector of condition names.

Author(s)

Panagiotis Moulos

Examples

sample.list <- list(A=c("A1","A2"),B=c("B1","B2","B3"))
clv <- as.class.vector(sample.list)

build.export Results export builder

Description

This function help build the output files of the metaseqr pipeline based on several elements produced
during the pipeline execution. It is intended for internal use and not available to the users.

Usage
build.export(gene.data, raw.gene.counts,
norm.gene.counts, flags, sample.list, cnt,
statistics, raw.list, norm.list,
p.mat = matrix(NA, nrow(gene.data), length(statistics)),
adj.p.mat = matrix(NA, nrow(gene.data), length(statistics)),
sum.p = rep(NA, nrow(gene.data)),
adj.sum.p = rep(NA, nrow(gene.data)),
export.what = c("annotation”, "p.value”, "adj.p.value”, "meta.p.value”,
"adj.meta.p.value”, "fold.change”, "stats"”, "counts”,"flags"),
export.scale = c("natural”, "log2", "logl1@", "rpgm”, "vst"),
export.values = c("raw”, "normalized"),
export.stats = c("mean”, "median", "sd", "mad”, "cv", "rcv"),
log.offset = 1, report = TRUE)
Arguments
gene.data an annotation data frame (such the ones produced by get.annotation).

raw.gene.counts

a matrix of filtering flags (0,1), created by the filtering functions.
norm.gene.counts

a matrix of normalized gene counts.

flags a matrix of normalized gene counts.
sample.list see the documentation of metaseqr.

cnt the statistical contrast for which the export builder is currently running.

calc.flscore 7

statistics the statistical tests used (see the documentation of metaseqr).

raw.list a list of transformed un-normalized counts, see the documentation of make . transformation.
norm.list a list of transformed normalized counts, see the documentation of make . transformation.
p.mat a matrix of p-values, see the documentation of metaseqr.

adj.p.mat a matrix of adjusted p-values, see the documentation of metaseqr.

sum. p a vector of combined p-values, see the documentation of metaseqr.

adj.sum.p a vector of adjusted combined p-values, see the documentation of metaseqr.

export.what see the documentation of metaseqr.

export.scale see the documentation of metaseqr.
export.values see the documentation of metaseqr.

export.stats see the documentation of metaseqr.

log.offset see the documentation of metaseqr.
report see the documentation of metaseqr.
Value

A list with three members: a data frame to be exported in a text file, a long string with the result in
a html formatted table (if report=TRUE) and the column names of the output data frame.

Author(s)

Panagiotis Moulos

Examples

Not run:
Not yet available

End(Not run)

calc.fl1score Calculate the F1-score

Description

This function calculates the F1 score (2*(precision*recall/precision+racall) or 2*TP/(2*TP+FP+FN)
given a matrix of p-values (one for each statistical test used) and a vector of ground truth (DE or
non-DE). This function serves as a method evaluation helper.

Usage

calc.fl1score(truth, p, sig = 0.05)

8 calc.otr

Arguments

truth the ground truth differential expression vector. It should contain only zero and
non-zero elements, with zero denoting non-differentially expressed genes and
non-zero, differentially expressed genes. Such a vector can be obtained for ex-
ample by using the make.sim.data. sd function, which creates simulated RNA-
Seq read counts based on real data. It MUST be named with gene names, the
same as in p.

p a p-value matrix whose rows correspond to each element in the truth vector.
If the matrix has a colnames attribute, a legend will be added to the plot using
these names, else a set of column names will be auto-generated. p can also be a
list or a data frame. In any case, each row (or element) MUST be named with
gene names (the same as in truth).

sig a significance level (0 < sig <=1).

Value

A named list with two members. The first member is a data frame with the numbers used to calculate
the TP/(FP+FN) ratio and the second member is the ratio TP/(FP+FN) for each statistical test.

Author(s)

Panagiotis Moulos

Examples

pl <- 0.001*matrix(runif(300),100,3)

p2 <- matrix(runif(300),100,3)

p <- rbind(p1,p2)

rownames(p) <- paste(”gene",1:200,sep="_")

colnames(p) <- paste(”"method”,1:3,sep="_")

truth <- c(rep(1,40),rep(-1,40),rep(0,20),rep(1,10),
rep(2,10),rep(0,80))

names(truth) <- rownames(p)

f1 <- calc.f1score(truth,p)

calc.otr Calculate the ratio TP/(FP+FN)

Description

This function calculates the ratio of True Positives to the sum of False Positives and False Negatives
given a matrix of p-values (one for each statistical test used) and a vector of ground truth (DE or
non-DE). This function serves as a method evaluation helper.

Usage

calc.otr(truth, p, sig = 0.05)

cddat 9

Arguments

truth the ground truth differential expression vector. It should contain only zero and
non-zero elements, with zero denoting non-differentially expressed genes and
non-zero, differentially expressed genes. Such a vector can be obtained for ex-
ample by using the make.sim.data. sd function, which creates simulated RNA-
Seq read counts based on real data. It MUST be named with gene names, the
same as in p.

p a p-value matrix whose rows correspond to each element in the truth vector.
If the matrix has a colnames attribute, a legend will be added to the plot using
these names, else a set of column names will be auto-generated. p can also be a
list or a data frame. In any case, each row (or element) MUST be named with
gene names (the same as in truth).

sig a significance level (0 < sig <=1).

Value

A named list with two members. The first member is a data frame with the numbers used to calculate
the TP/(FP+FN) ratio and the second member is the ratio TP/(FP+FN) for each statistical test.

Author(s)

Panagiotis Moulos

Examples

pl <- 0.001*matrix(runif(300),100,3)

p2 <- matrix(runif(300),100,3)

p <- rbind(p1,p2)

rownames(p) <- paste("gene",1:200,sep="_")

colnames(p) <- paste(”"method”,1:3,sep="_")

truth <- c(rep(1,40),rep(-1,40),rep(0,20),rep(1,10),
rep(2,10),rep(0,80))

names(truth) <- rownames(p)

otr <- calc.otr(truth,p)

cddat Old functions from NOISeq

Description

Old functions from NOISeq to create the "readnoise” plots. Internal use only.

Usage

cddat(input)

10 cdplot

Arguments

input input to cddat.

Value

a list with data to plot.

Note

Adopted from an older version of NOISeq package (author: Sonia Tarazona).

Author(s)

Panagiotis Moulos

cdplot Old functions from NOISeq

Description

Old functions from NOISeq to create the "readnoise” plots. Internal use only.

Usage
cdplot(dat, samples = NULL, ...)
Arguments
dat the returned list from cddat.
samples the samples to plot.
further arguments passed to e.g. par.
Value

Nothing, it created the old RNA composition plot.

Note

Adopted from an older version of NOISeq package (author: Sonia Tarazona)

Author(s)

Panagiotis Moulos

check.contrast.format 11

check.contrast.format Contrast validator

Description

Checks if the contrast vector follows the specified format. Internal use only.

Usage
check.contrast.format(cnt, sample.list)
Arguments
cnt contrasts vector.
sample.list the input sample list.
Author(s)

Panagiotis Moulos

Examples

sample.list <- list(A=c("A1","A2"),B=c("B1","B2","B3"))
cnt <- c("A_vs_B") # Will work

#cent <- c("A_vs_C") ## Will throw error!
check.contrast.format(cnt,sample.list)

check.file.args File argument validator

Description

Checks if a file exists for specific arguments requiring a file input. Internal use only.

Usage
check.file.args(arg.name, arg.value)
Arguments
arg.name argument name to display in a possible error.
arg.value the filename to check.
Author(s)

Panagiotis Moulos

12 check.graphics.type

Examples

OK

check.file.args("file"”,system.file("metaseqr_report.html”,
package="metaseqR"))

Error!

#check.file.args("file"”,system.file("metaseqr_report.htm",

package="metaseqR"))

check.graphics.file Check graphics file

Description

Graphics file checker. Internal use only.

Usage
check.graphics.file(o)
Arguments
o) the plotting device, see main metaseqr function
Author(s)

Panagiotis Moulos

check.graphics. type Check plotting device

Description

Plotting device checker. Internal use only.

Usage
check.graphics. type (o)
Arguments
o the plotting device, see main metaseqr function
Author(s)

Panagiotis Moulos

check.libsize 13

check.libsize Library size validator

Description

Checks the names of the supplied library sizes. Internal use only.

Usage

check.libsize(libsize.list, sample.list)

Arguments

libsize.list the samples-names library size list.

sample.list the input sample list.

Author(s)

Panagiotis Moulos

Examples

sample.list <- list(A=c("A1","A2"),B=c("B1","B2","B3"))
libsize.list.1 <- list(Al=1e+6,A2=1.1e+6,B1=1.2e+6,
B2=1.3e+6,B3=1.5e+6)

libsize.list.2 <- list(Al=1e+6,A2=1.1e+6,B1=1.2e+6,

B2=1.3e+6)

check.libsize(libsize.list.1,sample.list) # Will work
#tcheck.libsize(libsize.list.2,sample.list) # Will throw error!

check.main.args Main argument validator

Description

Checks if the arguments passed to metaseqr are valid and throws a warning about the invalid ones

(which are ignored anyway because of the . .. in metaseqr. However, for this reason this function
is useful as some important parameter faults might go unnoticed in the beginning and cause a failure
afterwards.

Usage

check.main.args(main.args)

14 check.num.args

Arguments
main.args a list of parameters with which metaseqr is called (essentially, the output of
match.call.
Author(s)

Panagiotis Moulos

check.num.args Numeric argument validator

Description

Checks if one or more given numeric argument(s) satisfy several rules concerning numeric argu-
ments, e.g. proper bounds or proper format (e.g. it must be a number and not a character). Mostly
for internal use.

Usage

check.num.args(arg.name, arg.value, arg.type, arg.bounds,
direction)

Arguments

arg.name the name of the argument that is checked (for display purposes).
arg.value the value(s) of the argument to be checked.

arg.type either the string "numeric” to denote generic double-like R numerics or "integer”
for integer values.

arg.bounds a numeric or a vector with 2 elements, restraining arg.value to be within the
bounds defined by the input vector or e.g. larger (smaller) than the numeric
value. See examples.

direction a string denoting to which direction the arg.value should be compared with
arg.bounds. For example, "both” should be given with a two element vector
against which, arg.value will be checked to see whether it is smaller than the
low boundary or larger than the higher boundary. In that case, the function
will throw an error. The direction parameter can be one of: "both” (described
above), "botheq” (as above, but the arg.val is also checked for equality -
closed intervals), "gt" or "gte" (check whether arg.val is smaller or smaller
than or equal to the first value of arg.bounds), "1t" or "1te"” (check whether
arg.val is larger or larger than or equal to the first value of arg.bounds).

Author(s)

Panagiotis Moulos

check.packages 15

Examples

pcut <- 1.2 # A probability cannot be larger than 1! It will throw an error!
#check.num.args("pcut”,pcut, "numeric”,c(@,1), "botheq”)

pcut <- 0.05 # Pass

check.num.args("pcut”,pcut, "numeric”,c(@,1),"botheq")

gc.col <- 3.4 # A column in a file cannot be real! It will throw an error!
#check.num.args("gc.col”,gc.col,"integer",0,"gt")

gc.col <- 5L # Pass

check.num.args("gc.col”,gc.col,"integer”,0,"gt")

check.packages Required packages validator

Description

Checks if all the any required packages, not attached during installation or loading, are present
according to metaseqR input options. Internal use only.

Usage
check.packages(m, p)
Arguments
m meta-analysis method.
p QC plot types.
Author(s)

Panagiotis Moulos

Examples

check.packages(c("simes”, "whitlock"),

non

c("gcbias”,"correl”))

16 check.text.args

check.parallel Parallel run validator

Description

Checks existence of multiple cores and loads multicore package.

Usage
check.parallel(rc)
Arguments
rc fraction of available cores to use.
Author(s)

Panagiotis Moulos

Examples

multic <- check.parallel(9.8)

check.text.args Text argument validator

Description

Checks if one or more given textual argument(s) is/are member(s) of a list of correct arguments. It’s
a more package-specific function similar to match.arg. Mostly for internal use.

Usage
check.text.args(arg.name, arg.value, arg.list,
multiarg=FALSE)
Arguments
arg.name the name of the argument that is checked (for display purposes).
arg.value the value(s) of the argument to be checked.
arg.list a vector of valid argument values for arg.value to be matched against.
multiarg a logical scalar indicating whether arg. name accepts multiple arguments or not.

In that case, all of the values in arg.value are checked against arg.list.

combine.bonferroni 17

Author(s)

Panagiotis Moulos

Examples

OK
check.text.args("count.type"”,"gene",c("gene”, "exon"),
multiarg=FALSE)

Error!
#check.text.args("statistics”, "ebseq”,c("deseq”, "edger”,
"noiseq”,"bayseq”,"”limma"), multiarg=TRUE)
combine.bonferroni Combine p-values with Bonferroni’s method
Description

This function combines p-values from the various statistical tests supported by metaseqR using the
Bonferroni’s method (see reference in the main metaseqr help page or in the vignette).

Usage
combine.bonferroni(p)
Arguments
p a p-value matrix (rows are genes, columns are statistical tests).
Value

A vector of combined p-values.

Author(s)

Panagiotis Moulos

Examples

p <- matrix(runif(300),100,3)
pc <- combine.bonferroni(p)

18 combine.minp

combine.maxp Combine p-values using the maximum p-value

Description

This function combines p-values from the various statistical tests supported by metaseqR by taking
the maximum p-value.

Usage
combine.maxp(p)
Arguments
p a p-value matrix (rows are genes, columns are statistical tests).
Value

A vector of combined p-values.

Author(s)

Panagiotis Moulos

Examples

p <- matrix(runif(300),100,3)
pc <- combine.maxp(p)

combine.minp Combine p-values using the minimum p-value

Description
This function combines p-values from the various statistical tests supported by metaseqR by taking
the minimum p-value.

Usage

combine.minp(p)

Arguments

p a p-value matrix (rows are genes, columns are statistical tests).

combine.simes 19

Value

A vector of combined p-values.

Author(s)

Panagiotis Moulos

Examples

p <- matrix(runif(300),100,3)
pc <- combine.minp(p)

combine.simes Combine p-values with Simes’ method

Description

This function combines p-values from the various statistical tests supported by metaseqR using the
Simes’ method (see reference in the main metaseqr help page or in the vignette).

Usage
combine.simes(p)
Arguments
p a p-value matrix (rows are genes, columns are statistical tests).
Value

A vector of combined p-values.

Author(s)

Panagiotis Moulos

Examples

p <- matrix(runif(300),100,3)
pc <- combine.simes(p)

20 construct.gene.model

combine.weight Combine p-values using weights

Description

This function combines p-values from the various statistical tests supported by metaseqR using
p-value weights.

Usage
combine.weight(p, w)
Arguments
a p-value matrix (rows are genes, columns are statistical tests).
w a weights vector, must sum to 1.
Value

A vector of combined p-values.

Author(s)

Panagiotis Moulos

Examples

p <- matrix(runif(300),100,3)
pc <- combine.weight(p,w=c(0.2,0.5,0.3))

construct.gene.model Assemble a gene model based on exon counts

Description

This function assembles gene models (single genes, not isoforms) based on the input exon read
counts file and a gene annotation data frame, either from an external file provided by the user, or
with the get.annotation function. The gene.data argument should have a specific format and
for this reason it’s better to use one of the two aforementioned ways to supply it. This function is
intended mostly for internal use but can be used if the requirements are met.

Usage

construct.gene.model(exon.counts, sample.list, gene.data,
multic = FALSE)

diagplot.avg.ftd 21

Arguments
exon.counts the exon counts data frame produced by reading the exon read counts file.
sample.list the list containing condition names and the samples under each condition.
gene.data an annotation data frame from the same organism as exon.counts (such the
ones produced by get.annotation).
multic a logical value indicating the presence of multiple cores. Defaults to FALSE. Do
not change it if you are not sure whether package multicore has been loaded or
not.
Value

A named list where names represent samples. Each list member is a also a named list where names
correspond to gene ids and members are named vectors. Each vector is named according to the
exons corresponding to each gene and contains the read counts for each exon. This structure is used
for exon filtering and assembling final gene counts in the metaseqr pipeline.

Author(s)

Panagiotis Moulos
Examples

Takes some time to run...

data("hgl19.exon.data",package="metaseqR")

gene.data <- get.annotation("hg19”,"gene", "ensembl")

reduced.gene.data <- reduce.gene.data(hgl19.exon.counts,
gene.data)

multic <- check.parallel(0.4)

gene.model <- construct.gene.model(hgl19.exon.counts,
sample.list.hg19,gene.data,multic)

diagplot.avg.ftd Create average False (or True) Discovery curves

Description
This function creates false (or true) discovery curves using a list containing several outputs from
diagplot.ftd.

Usage

diagplot.avg.ftd(ftdr.obj, output = "x11",
path = NULL, draw = TRUE, ...)

22

Arguments

ftdr.obj

output

path

draw

Value

diagplot.avg.ftd

a list with outputs from diagplot.ftd.

one or more R plotting device to direct the plot result to. Supported mechanisms:

non

"x11" (default), "png”, "jpg",

non

bmp”, "pdf" or "ps”.
the path to create output files.

boolean to determine whether to plot the curves or just return the calculated
values (in cases where the user wants the output for later averaging for example).
Defaults to TRUE (make plots).

further arguments to be passed to plot devices, such as parameter from par.

A named list with two members: the first member (avg. ftdr) contains a list with the means and the
standard deviations of the averaged ftdr.obj and are used to create the plot. The second member
(path) contains the path to the created figure graphic.

Author(s)

Panagiotis Moulos

Examples

p11 <- 0.001*matrix(runif(300),100,3)

p12 <- matrix(runif(300),100,3)

p21 <- 0.001*matrix(runif(300),100,3)

p22 <- matrix(runif(300),100,3)

p31 <- 0.001*matrix(runif(300),100,3)

p32 <- matrix(runif(300),100,3)

p1 <= rbind(p11,p21)

p2 <- rbind(p12,p22)

p3 <- rbind(p31,p32)

rownames(p1) <- rownames(p2) <- rownames(p3) <-
paste("gene”,1:200,sep="_")

colnames(p1) <- colnames(p2) <- colnames(p3) <-

paste("method”,1:3, sep=

non

truth <- c(rep(1,40),rep(-1,40),rep(9,20),
rep(1,10),rep(2,10),rep(0,80))

names (truth)
ftd.obj.1 <-
ftd.obj.2 <-
ftd.obj.3 <-

<- rownames(p1)

diagplot.ftd(truth,pl,N=100,draw=FALSE)
diagplot.ftd(truth,p2,N=100,draw=FALSE)
diagplot.ftd(truth,p3,N=100,draw=FALSE)

ftd.obj <- list(ftd.obj.1,ftd.obj.2,ftd.obj.3)
avg.ftd.obj <- diagplot.avg.ftd(ftd.obj)

diagplot.boxplot 23

diagplot.boxplot Boxplots wrapper for the metaseqR package

Description

A wrapper over the general boxplot function, suitable for matrices produced and processed with the
metaseqr package. Intended for internal use but can be easily used as stand-alone. It can colors
boxes based on group depending on the name argument.

Usage
diagplot.boxplot(mat, name = NULL, log.it = "auto”,
y.lim = "default”, is.norm = FALSE, output = "x11",
path = NULL, ...)
Arguments
mat the count data matrix.
name the names of the samples plotted on the boxdiagplot. If NULL, the function check
the column names of mat. If they are also NULL, sample names are autogener-
ated. If name="none", no sample names are plotted. If name is a list, it should
be the sample.list argument provided to the manin metaseqr function. In that
case, the boxes are colored per group.
log.it whether to log transform the values of mat or not. It can be TRUE, FALSE or
"auto” for auto-detection. Auto-detection log transforms by default so that the
boxplots are smooth and visible.
y.lim custom y-axis limits. Leave the string "default” for default behavior.
is.norm a logical indicating whether object contains raw or normalized data. It is not
essential and it serves only plot annotation purposes.
output one or more R plotting device to direct the plot result to. Supported mechanisms:
"x11" (default), "png"”, "jpg", "bmp”, "pdf", "ps" or "json". The latter is cur-
rently available for the creation of interactive volcano plots only when reporting
the output, through the highcharts javascript library (JSON for boxplots not yet
available).
path the path to create output files.
further arguments to be passed to plot devices, such as parameter from par.
Value

The filename of the boxplot produced if it’s a file.

Author(s)

Panagiotis Moulos

24 diagplot.cor

Examples

Non-normalized boxplot

require(DESeq)

data.matrix <- counts(makeExampleCountDataSet())
sample.list <- list(A=c("A1","A2"),B=c("B1","B2","B3"))
diagplot.boxplot(data.matrix,sample.list)

Normalized boxplot

norm.args <- get.defaults(”normalization”,"deseq")

object <- normalize.deseq(data.matrix,sample.list,norm.args)
diagplot.boxplot(object,sample.list)

diagplot.cor Summarized correlation plots

Description

This function uses the read counts matrix to create heatmap or correlogram correlation plots.

Usage
diagplot.cor(mat, type = c("heatmap”, "correlogram”),
output = "x11", path = NULL, ...)
Arguments
mat the read counts matrix or data frame.
type create heatmap of correlogram plots.
output one or more R plotting device to direct the plot result to. Supported mechanisms:
“X-I -I n (default), Ilpngll’ ijglﬁ, Ilbmpll’ Ilpd.Fll Or “pS".
path the path to create output files.
further arguments to be passed to plot devices, such as parameter from par.
Value

The filename of the pairwise comparisons plot produced if it’s a file.

Author(s)

Panagiotis Moulos

Examples

require(DESeq)

data.matrix <- counts(makeExampleCountDataSet())
diagplot.cor(data.matrix, type="heatmap")
diagplot.cor(data.matrix, type="correlogram”)

diagplot.de.heatmap 25

diagplot.de.heatmap Diagnostic heatmap of differentially expressed genes

Description

This function plots a heatmap of the differentially expressed genes produced by the metaseqr work-
flow, useful for quality control, e.g. whether samples belonging to the same group cluster together.

Usage
diagplot.de.heatmap(x, con = NULL, output = "x11",
path = NULL, ...)
Arguments
X the data matrix to create a heatmap for.
con an optional string depicting a name (e.g. the contrast name) to appear in the title
of the volcano plot.
output one or more R plotting device to direct the plot result to. Supported mechanisms:
1IX-I -I n (default)’ Ilpngll’ lljpgll’ Ilbmpll’ 1Ipdf‘ll’ IIpS”.
path the path to create output files.
further arguments to be passed to plot devices, such as parameter from par.
Value

The filenames of the plots produced in a named list with names the which.plot argument. If
output="x11", no output filenames are produced.

Author(s)

Panagiotis Moulos
Examples

require(DESeq)

data.matrix <- counts(makeExampleCountDataSet())
sample.list <- list(A=c("A1","A2"),B=c("B1","B2","B3"))
contrast <- "A_vs_B"

M <- normalize.edger(data.matrix,sample.list)

p <- stat.edger(M,sample.list,contrast)
diagplot.de.heatmap(data.matrix[p[[1]]<0.05,]1)

26 diagplot.edaseq

diagplot.edaseq Diagnostic plots based on the EDASeq package

Description

A wrapper around the plotting functions availale in the EDASeq normalization Bioconductor pack-
age. For analytical explanation of each plot please see the vignette of the EDASeq package. It is
best to use this function through the main plotting function diagplot.metaseqr.

Usage
diagplot.edaseq(x, sample.list, covar = NULL,
is.norm = FALSE,
which.plot = c("meanvar”, "meandiff"”, "gcbias"”, "lengthbias"”),
output = "x11", path = NULL, ...)
Arguments
X the count data matrix.
sample.list the list containing condition names and the samples under each condition.
covar The covariate to plot counts against. Usually "gc" or "length”.
is.norm a logical indicating whether object contains raw or normalized data. It is not
essential and it serves only plot annotation purposes.
which.plot the EDASeq package plot to generate. It can be one or more of "meanvar”,
"meandiff”, "gcbias” or "lengthbias”. Please refer to the documentation of
the EDASeq package for details on the use of these plots. Thewhich.plot="1engthbias"
case is not covered by EDASeq documentation, however it is similar to the GC-
bias plot when the covariate is the gene length instead of the GC content.
output one or more R plotting device to direct the plot result to. Supported mechanisms:
1IX-I -I n (default)’ Ilpngll’ ijgﬂ’ Ilbmpll, Ilpdf‘ll OI' Hpsll.
path the path to create output files.
further arguments to be passed to plot devices, such as parameter from par.
Value

The filenames of the plot produced in a named list with names the which.plot argument. If output="x11",
no output filenames are produced.

Author(s)

Panagiotis Moulos

diagplot.filtered 27
Examples

require(DESeq)

data.matrix <- counts(makeExampleCountDataSet())

sample.list <- list(A=c("A1","A2"),B=c("B1","B2","B3"))
diagplot.edaseq(data.matrix,sample.list,which.plot="meandiff")

diagplot.filtered Diagnostic plot for filtered genes

Description

This function plots a grid of four graphs depicting: in the first row, the numbers of filtered genes
per chromosome in the first column and per biotype in the second column. In the second row, the
percentages of filtered genes per chromosome related to the whole genome in the first columns and
per biotype in the second column.

Usage
diagplot.filtered(x, y, output = "x11", path = NULL, ...)
Arguments
X an annotation data frame like the ones produced by get.annotation. x should
be the filtered annotation according to metaseqR’s filters.
y an annotation data frame like the ones produced by get.annotation. y should
contain the total annotation without the application of any metaseqr filter.
output one or more R plotting device to direct the plot result to. Supported mechanisms:
”X1 -l n (default)’ Mpng", ”jpgﬂ, Ilbmpll, de,f_‘ll Or Hpsll.
path the path to create output files.
further arguments to be passed to plot devices, such as parameter from par.
Value

The filenames of the plots produced in a named list with names the which.plot argument. If
output="x11", no output filenames are produced.

Author(s)

Panagiotis Moulos

Examples

y <- get.annotation(”"mm9","gene")
x <= y[-sample(1:nrow(y),10000),]
diagplot.filtered(x,y)

28

diagplot.ftd

diagplot.ftd

Create False (or True) Positive (or Negative) curves

Description

This function creates false (or true) discovery curves using a matrix of p-values (such a matrix can
be derived for example from the result table of metaseqr by subsetting the table to get the p-values
from several algorithms) given a ground truth vector for differential expression.

Usage

diagplot.ftd(truth, p, type = "fpc”, N = 2000,

Arguments

truth

type

output

path

draw

Value

output = "x11", path = NULL, draw = TRUE, ...)

the ground truth differential expression vector. It should contain only zero and
non-zero elements, with zero denoting non-differentially expressed genes and
non-zero, differentially expressed genes. Such a vector can be obtained for ex-
ample by using the make.sim.data. sd function, which creates simulated RNA-
Seq read counts based on real data. The elements of truth MUST be named
(e.g. each gene’s name).

a p-value matrix whose rows correspond to each element in the truth vector.
If the matrix has a colnames attribute, a legend will be added to the plot using
these names, else a set of column names will be auto-generated. p can also be a
list or a data frame. The p-values MUST be named (e.g. each gene’s name).

what to plot, can be "fpc” for False Positive Curves (default), "tpc” for True
Positive Curves, "fnc” for False Negative Curves or "tnc” for True Negative
Curves.

create the curves based on the top (or bottom) N ranked genes (default is 2000)
to be used with type="fpc" or type="tpc".

one or more R plotting device to direct the plot result to. Supported mechanisms:
“X-I -I n (default), Ilpngll’ ijglﬁ’ Ilbmpll’ Ilpd.FIl OI' llpsll.

the path to create output files.

boolean to determine whether to plot the curves or just return the calculated
values (in cases where the user wants the output for later averaging for example).
Defaults to TRUE (make plots).

further arguments to be passed to plot devices, such as parameter from par.

A named list with two members: the first member (ftdr) contains the values used to create the plot.
The second member (path) contains the path to the created figure graphic.

diagplot.mds 29

Author(s)

Panagiotis Moulos

Examples

pl <- 0.001*matrix(runif(300),100,3)

p2 <- matrix(runif(300),100,3)

p <- rbind(p1,p2)

rownames(p) <- paste(”gene”,1:200,sep="_")

colnames(p) <- paste(”"method”,1:3,sep="_")

truth <- c(rep(1,40),rep(-1,40),rep(0,20),
rep(1,10),rep(2,10),rep(0,80))

names(truth) <- rownames(p)

ftd.obj <- diagplot.ftd(truth,p,N=100)

diagplot.mds Multi-Dimensinal Scale plots or RNA-Seq samples

Description

Creates a Multi-Dimensional Scale plot for the given samples based on the count data matrix. MDS
plots are very useful for quality control as you can easily see of samples of the same groups are
clustered together based on the whole dataset.

Usage
diagplot.mds(x, sample.list, method = "spearman”,
log.it = TRUE, output = "x11", path = NULL, ...)
Arguments
X the count data matrix.
sample.list the list containing condition names and the samples under each condition.
method which correlation method to use. Same as the method parameter in cor function.
log.it whether to log transform the values of x or not.
output one or more R plotting device to direct the plot result to. Supported mechanisms:
"x11" (default), "png"”, "jpg"”, "bmp”, "pdf", "ps" or "json". The latter is cur-
rently available for the creation of interactive volcano plots only when reporting
the output, through the highcharts javascript library.
path the path to create output files.
further arguments to be passed to plot devices, such as parameter from par.
Value

The filename of the MDS plot produced if it’s a file.

30 diagplot.metaseqr

Author(s)

Panagiotis Moulos

Examples

require(DESeq)

data.matrix <- counts(makeExampleCountDataSet())
sample.list <- list(A=c("A1","A2"),B=c("B1","B2","B3"))
diagplot.mds(data.matrix,sample.list)

diagplot.metaseqr Diagnostic plots for the metaseqR package

Description

This is the main function for producing sructured quality control and informative graphs base on the
results of the various steps of the metaseqR package. The graphs produced span a variety of issues
like good sample reproducibility (Multi-Dimensional Scaling plot, biotype detection, heatmaps.
diagplot.metaseqr, apart from implementing certain package-specific plots, is a wrapper around
several diagnostic plots present in other RNA-Seq analysis packages such as EDASeq and NOISeq.

Usage

diagplot.metaseqr(object, sample.list, annotation = NULL,
contrast.list = NULL, p.list = NULL,
thresholds = list(p = 0.05, f = 1),
diagplot.type = c("mds”, "biodetection”, "countsbio”, "saturation”,
"readnoise”, "rnacomp”, "correl”, "pairs"”, "boxplot", "gcbias”,
"lengthbias”, "meandiff”, "meanvar"”, "deheatmap”, "volcano",
"biodist”, "filtered”, "venn"),
is.norm = FALSE, output = "x11", path = NULL, ...)

Arguments

object a matrix or a data frame containing count data derived before or after the normal-
ization procedure, filtered or not by the metaseqR’s filters and/or p-value. The
object can be fed to any of the diagplot.metaseqr plotting systems but not
every plot is meaningful. For example, it’s meaningless to create a "biodist"
plot for a count matrix before normalization or statistical testing.

sample.list the list containing condition names and the samples under each condition.

annotation a data frame containing annotation elements for each row in object. Usually,
a subset of the annotation obtained by get.annotation or a subset of possi-
bly embedded annotation with the input counts table. This parameter is optional
and required only when diagplot.type is any of "biodetection”, "countsbio”,
"saturation”, "rnacomp”, "readnoise”, "biodist”, "gcbias”, "lengthbias”

or "filtered".

diagplot.metaseqr 31

contrast.list anamed structured list of contrasts as returned by make.contrast.list or just
the vector of contrasts as defined in the main help page of metaseqr. This pa-
rameter is optional and required only when diagplot. type is any of "deheatmap”,
"volcano"” or "biodist”.

p.list a list of p-values for each contrast as obtained from any of the stat.* methods
of the metaseqr package. This parameter is optional and required only when

n o n

diagplot.type is any of "deheatmap”, "volcano” or "biodist”.

thresholds a list with the elements "p"” and "f" which are the p-value and the fold change
cutoff when diagplot.type="volcano”.

diagplot.type one or more of the diagnostic plots supported in metaseqR package. Many of
these plots require the presence of additional package, something that is checked
while running the main metaseqr function. The supported plots are "mds”,

non non non n on non

"biodetection”, "countsbhio”, "saturation”, "rnacomp”, "boxplot”, "gcbias”,
"lengthbias”, "meandiff”, "meanvar”, "deheatmap”, "volcano”, "biodist",
"filtered"”, "readnoise”, "venn", "correl”, "pairwise”. For a brief de-

scription of these plots please see the main metaseqr help page.

is.norm a logical indicating whether object contains raw or normalized data. It is not
essential and it serves only plot annotation purposes.

output one or more R plotting device to direct the plot result to. Supported mecha-
nisms: "png”, "jpg"”, "bmp”, "pdf"”, "ps"” or "json". The latter is currently
available for the creation of interactive volcano plots only when reporting the
output, through the highcharts javascript library. The default plotting ("x11") is
not supported due to instability in certain devices.

path the path to create output files.

further arguments to be passed to plot devices, such as parameter from par.

Value

A named list containing the file names of the produced plots. Each list member is names according
to the selected plotting device and is also a named list, whose names are the plot types. The final
contents are the file names in case the plots are written to a physical location (not meaningful for
"x11").

Note

In order to make the best out of this function, you should generally provide the annotation argument
as most and also the most informative plots depend on this. If you don’t know what is inside your
counts table or how many annotation elements you can provide by embedding it, it’s always best
to set the annotation parameter of the main metaseqr function to "download” to use predefined
annotations that work better with the functions of the whole package.

Author(s)

Panagiotis Moulos

32 diagplot.noiseq

Examples

require(DESeq)

data.matrix <- counts(makeExampleCountDataSet())

sample.list <- list(A=c("A1","A2"),B=c("B1","B2","B3"))

contrast <- "A_vs_B"
diagplot.metaseqr(data.matrix,sample.list,diagplot.type=c("mds", "boxplot”))

norm.args <- get.defaults(”"normalization”,"deseq")
object <- normalize.deseq(data.matrix,sample.list,norm.args)
diagplot.metaseqr(object,sample.list,diagplot.type="boxplot")

p <- stat.deseq(object,sample.list)
diagplot.metaseqr(object,sample.list,contrast.list=contrast,p.list=p,
diagplot.type="volcano")

diagplot.noiseq Diagnostic plots based on the NOISeq package

Description

A wrapper around the plotting functions availale in the NOISeq Bioconductor package. For analyt-
ical explanation of each plot please see the vignette of the NOISeq package. It is best to use this
function through the main plotting function diagplot.metaseqr.

Usage
diagplot.noiseq(x, sample.list, covars,
which.plot = c("biodetection”, "countsbio”, "saturation”, "rnacomp”,
"biodist"),
output = "x11",
biodist.opts = list(p = NULL, pcut = NULL, name = NULL),
path = NULL, is.norm = FALSE, ...)
Arguments
X the count data matrix.
sample.list the list containing condition names and the samples under each condition.
covars a list (whose annotation elements are ideally a subset of an annotation data frame

produced by get.annotation) with the following members: data (the data ma-
trix), length (gene length), gc (the gene gc_content), chromosome (a data frame
with chromosome name and co-ordinates), factors (a factor with the experimen-
tal condition names replicated by the number of samples in each experimental
condition) and biotype (each gene’s biotype as depicted in Ensembl-like anno-
tations).

diagplot.noiseq

which.plot

biodist.opts

output

path

is.norm

Value

33

the NOISeq package plot to generate. It can be one or more of "biodetection”,
"countsbio”, "saturation”, "rnacomp”, "readnoise” or "biodist”. Please
refer to the documentation of the EDASeq package for details on the use of these
plots. The which.plot="saturation" case is modified to be more informative

by producing two kinds of plots. See diagplot.noiseq.saturation.

a list with the following members: p (a vector of p-values, e.g. the p-values of
a contrast), pcut (a unique number depicting a p-value cutoff, required for the
"biodist" case), name (a name for the "biodist"” plot, e.g. the name of the
contrast.

one or more R plotting device to direct the plot result to. Supported mechanisms:

n on n o n

"x11" (default), "png”, "jpg", "bmp”, "pdf" or "ps”.
the path to create output files.

a logical indicating whether object contains raw or normalized data. It is not
essential and it serves only plot annotation purposes.

further arguments to be passed to plot devices, such as parameter from par.

The filenames of the plots produced in a named list with names the which.plot argument. If

output="x11", no

Note

output filenames are produced.

Please note that in case of "biodist"” plots, the behavior of the function is unstable, mostly due
to the very specific inputs this plotting function accepts in the NOISeq package. We have tried to
predict unstable behavior and avoid exceptions through the use of tryCatch but it’s still possible that
you might run onto an error.

Author(s)

Panagiotis Moulos

Examples

require(DESeq)

data.matrix <- counts(makeExampleCountDataSet())
sample.list <- list(A=c("A1","A2"),B=c("B1","B2","B3"))
lengths <- round(1000*runif(nrow(data.matrix)))

starts <- round(1000*runif(nrow(data.matrix)))

ends <- starts +
covars <- list(

lengths

data=data.matrix,
length=lengths,
gc=runif(nrow(data.matrix)),
chromosome=data. frame(
chromosome=c(rep("chr1”,nrow(data.matrix)/2),
rep(”"chr2” nrow(data.matrix)/2)),
start=starts,

34 diagplot.noiseq.saturation

end=ends
),
factors=data.frame(class=as.class.vector(sample.list)),
biotype=c(rep("protein_coding”,nrow(data.matrix)/2),rep(”"ncRNA",
nrow(data.matrix)/2))
)
p <- runif(nrow(data.matrix))
diagplot.noiseq(data.matrix,sample.list,covars=covars,
biodist.opts=1list(p=p,pcut=0.1,name="A_vs_B"))

diagplot.noiseq.saturation

Simpler implementation of saturation plots inspired from NOISeq
package

Description

Helper function for diagplot.noiseq to plot feature detection saturation as presented in the NOISeq
package vignette. It has two main outputs: a set of figures, one for each input sample depicting the
saturation for each biotype and one single multiplot which depicts the saturation of all samples
for each biotype. It expands the saturation plots of NOISeq by allowing more samples to be ex-
amined in a simpler way. Don’t use this function directly. Use either diagplot.metaseqr or
diagplot.noiseq.

Usage
diagplot.noiseq.saturation(x, o, tb, path = NULL)
Arguments
X the count data matrix.
o one or more R plotting device to direct the plot result to. Supported mechanisms:
HX-I -I n (default), Ilpngll’ ijgu’ Ilbmpll, Ilpd_FII OI' Hpsll.
th the vector of biotypes, one for each row of x.
path the path to create output files.
Value

The filenames of the plots produced in a named list with names the which.plot argument. If
output="x11", no output filenames are produced.

Author(s)

Panagiotis Moulos

diagplot.pairs 35

diagplot.pairs Massive X-Y, M-D correlation plots

Description

This function uses the read counts matrix to create pairwise correlation plots. The upper diagonal
of the final image contains simple scatterplots of each sample against each other (log2 scale) while
the lower diagonal contains mean-difference plots for the same samples (log2 scale). This type of
diagnostic plot may not be interpretable for more than 10 samples.

Usage
diagplot.pairs(x, output = "x11", path = NULL, ...)
Arguments
X the read counts matrix or data frame.
output one or more R plotting device to direct the plot result to. Supported mechanisms:
IIX-I 1 n (default), Ilpngll’ ijgﬂ’ "bmp"’ Ilpdfll Or Ilpsll'
path the path to create output files.
further arguments to be passed to plot devices, such as parameter from par.
Value

The filename of the pairwise comparisons plot produced if it’s a file.

Author(s)

Panagiotis Moulos

Examples

require(DESeq)
data.matrix <- counts(makeExampleCountDataSet())
diagplot.pairs(data.matrix)

36 diagplot.roc

diagplot.roc Create basic ROC curves

Description

This function creates basic ROC curves using a matrix of p-values (such a matrix can be derived for
example from the result table of metaseqr by subsetting the table to get the p-values from several
algorithms) given a ground truth vector for differential expression and a significance level.

Usage
diagplot.roc(truth, p, sig = 0.05, x = "fpr”,
y = "tpr"”, output = "x11", path = NULL,
draw = TRUE, ...)
Arguments

truth the ground truth differential expression vector. It should contain only zero and
non-zero elements, with zero denoting non-differentially expressed genes and
non-zero, differentially expressed genes. Such a vector can be obtained for ex-
ample by using the make.sim.data. sd function, which creates simulated RNA-
Seq read counts based on real data.

p a p-value matrix whose rows correspond to each element in the truth vector.
If the matrix has a colnames attribute, a legend will be added to the plot using
these names, else a set of column names will be auto-generated. p can also be a
list or a data frame.

sig a significance level (0 < sig <=1).

X what to plot on x-axis, can be one of "fpr”, "fnr", "tpr”, "tnr" for False
Positive Rate, False Negative Rate, True Positive Rate and True Negative Rate
respectively.

y what to plot on y-axis, same as x above.

output one or more R plotting device to direct the plot result to. Supported mechanisms:
HX-I -I n (default), llpngll’ ijglﬁ, Ilbmpll’ Upd.FIl OI' “pS".

path the path to create output files.

draw boolean to determine whether to plot the curves or just return the calculated
values (in cases where the user wants the output for later averaging for example).
Defaults to TRUE (make plots).
further arguments to be passed to plot devices, such as parameter from par.

Value

A named list with two members. The first member is a list containing the ROC statistics: TP (True
Postives), FP (False Positives), FN (False Negatives), TN (True Negatives), FPR (False Positive Rate),
FNR (False Negative Rate), TPR (True Positive Rate), TNR (True Negative Rate), AUC (Area Under
the Curve). The second is the path to the created figure graphic.

diagplot.venn 37

Author(s)

Panagiotis Moulos

Examples

pl <- 0.001*matrix(runif(300),100,3)

p2 <- matrix(runif(300),100,3)

p <- rbind(p1,p2)

rownames(p) <- paste(”gene",1:200,sep="_")

colnames(p) <- paste(”"method”,1:3,sep="_")

truth <- c(rep(1,40),rep(-1,40),rep(0,20),rep(1,10),
rep(2,10),rep(0,80))

names(truth) <- rownames(p)

roc.obj <- diagplot.roc(truth,p)

diagplot.venn Venn diagrams when performing meta-analysis

Description

This function uses the R package VennDiagram and plots an up to 5-way Venn diagram depicting
the common and specific to each statistical algorithm genes, for each contrast. Mostly for internal
use because of its main argument which is difficult to construct, but can be used independently if
the user grasps the logic.

Usage

diagplot.venn(pmat, fcmat = NULL, pcut = 0.05,
fcut = 0.5, direction = c("dereg"”, "up"”, "down"),
nam = as.character(round(1000 * runif(1))),
output = "x11", path = NULL, alt.names = NULL, ...)

Arguments

pmat a matrix with p-values corresponding to the application of each statistical algo-
rithm. The p-value matrix must have the colnames attribute and the colnames
should correspond to the name of the algorithm used to fill the specific column

non

(e.g. if "statistics"=c("deseq"”, "edger”, "nbpseq") then colnames(pmat) <-

n o n n o n

c("deseq"”,"edger”, "nbpseq").

fcmat an optional matrix with fold changes corresponding to the application of each
statistical algorithm. The fold change matrix must have the colnames attribute
and the colnames should correspond to the name of the algorithm used to fill the
specific column (see the parameter pmat).

pcut if fcmat is supplied, an absolute fold change cutoff to be applied to fcmat to
determine the differentially expressed genes for each algorithm.

fcut a p-value cutoff for statistical significance. Defaults to 0. 05.

38

direction

nam

output

path

alt.names

Value

diagplot.volcano

if fcmat is supplied, a keyword to denote which genes to draw in the Venn dia-
grams with respect to their direction of regulation. It can be one of "dereg” for
the total of regulated genes, where abs(fcmat[,n])>=fcut (default), "up” for
the up-regulated genes where fcmat[,n]>=fcut or "down" for the up-regulated
genes where fcmat[,n]<=-fcut.

a name to be appended to the output graphics file (if "output” is not "x11").

one or more R plotting device to direct the plot result to. Supported mechanisms:
”X-I -I n (default), llpngll’ ijgll, llbmpll’ def’ll Or Ilpsll.

the path to create output files. If "path” is not NULL, a file with the intersections
in the Venn diagrams will be produced and written in "path”.

an optional named vector of names, e.g. HUGO gene symbols, alternative or
complementary to the unique gene names which are the rownames of pmat. The
names of the vector must be the rownames of pmat.

further arguments to be passed to plot devices, such as parameter from par.

The filenames of the plots produced in a named list with names the which.plot argument. If
output="x11", no output filenames are produced.

Author(s)

Panagiotis Moulos

Examples

pl <- 0.01*matrix(runif(300),100,3)
p2 <- matrix(runif(300),100,3)

p <- rbind(p1,p2)

rownames(p) <- paste("gene"”,1:200,sep="_"

colnames(p) <- paste("method”,1:3,sep=

)
2"

venn.contents <- diagplot.venn(p)

diagplot.volcano

(Interactive) volcano plots of differentially expressed genes

Description

This function plots a volcano plot or returns a JSON string which is used to render aninteractive in
case of HTML reporting.

Usage

diagplot.volcano(f, p, con = NULL, fcut = 1, pcut = 0.05,
alt.names = NULL, output = "x11", path = NULL, ...)

diagplot.volcano 39

Arguments
f the fold changes which are to be plotted on the x-axis.
p the p-values whose -log10 transformation is going to be plotted on the y-axis.
con an optional string depicting a name (e.g. the contrast name) to appear in the title
of the volcano diagplot.
fcut a fold change cutoff so as to draw two vertical lines indicating the cutoff thresh-
old for biological significance.
pcut a p-value cutoff so as to draw a horizontal line indicating the cutoff threshold
for statistical significance.
alt.names an optional vector of names, e.g. HUGO gene symbols, alternative or comple-
mentary to the unique names of f or p (one of them must be named!). It is used
only in JSON output.
output one or more R plotting device to direct the plot result to. Supported mechanisms:
"x11" (default), "png"”, "jpg", "bmp"”, "pdf", "ps" or "json". The latter is cur-
rently available for the creation of interactive volcano plots only when reporting
the output, through the highcharts javascript library.
path the path to create output files.
further arguments to be passed to plot devices, such as parameter from par.
Value

The filenames of the plots produced in a named list with names the which.plot argument. If
output="x11", no output filenames are produced.

Author(s)

Panagiotis Moulos

Examples

require(DESeq)

data.matrix <- counts(makeExampleCountDataSet())
sample.list <- list(A=c("A1","A2"),B=c("B1","B2","B3"))
contrast <- "A_vs_B"

M <- normalize.edger(data.matrix,sample.list)

p <- stat.edger(M,sample.list,contrast)

ma <- apply(M[,sample.list$A],1,mean)

mb <- apply(M[,sample.list$B],1,mean)

f <- log2(ifelse(mb==0,1,mb)/ifelse(ma==0,1,ma))
diagplot.volcano(f,p[[1]],con=contrast)

j <- diagplot.volcano(f,p[[1]1],con=contrast,output="json")

40 downsample.counts

disp Message displayer

Description

Displays a message during execution of the several functions. Internal use.

Usage

disp(...)

Arguments

a vector of elements that compose the display message.

Author(s)

Panagiotis Moulos

Examples
i<-1
disp(”"Now running iteration ",i,"...")
downsample.counts Downsample read counts
Description

This function downsamples the library sizes of a read counts table to the lowest library size, accord-
ing to the methdology used in (Soneson and Delorenzi, BMC Bioinformatics, 2013).

Usage
downsample.counts(counts, seed=42)
Arguments
counts the read counts table which is subjected to downsampling.
seed random seed for reproducible downsampling.
Value

The downsampled counts matrix.

estimate.aufc.weights 41

Author(s)

Panagiotis Moulos
Examples

Dowload locally the file "bottomly_count_table.txt” from

the ReCount database

download.file(paste("http://bowtie-bio.sourceforge.net/",
"recount/countTables/bottomly_count_table.txt"”,sep=""),
destfile="~/bottomly_count_table.txt")

M <- as.matrix(read.delim("~/bottomly_count_table.txt", row.names=1))

D <- downsample.counts(M)

estimate.aufc.weights Estimate AUFC weights

Description

This function automatically estimates weights for the "weight" and "dperm.weight” options of
metaseqR for combining p-values from multiple statistical tests. It creates simulated dataset based
on real data and then performs statistical analysis with metaseqR several times in order to derive
False Discovery Curves. Then, the average areas under the false discovery curves are used to
construct weights for each algorithm, according to its performance when using simulated data.

Usage
estimate.aufc.weights(counts, normalization,
statistics, nsim = 10, N = 10000,
samples = c(3, 3), ndeg = c(500, 500),
top = 500, model.org = "mm9”, fc.basis=1.5,
seed = NULL, draw.fpc = FALSE, multic = FALSE,
)
Arguments
counts the real raw counts table from which the simulation parameters will be esti-

mated. It must not be normalized and must contain only integer counts, without
any other annotation elements and unique gene identifiers as the rownames at-
tribute.

normalization same as normalization in metaseqr.
statistics same as statistics in metaseqr.
nsim the number of simulations to perform to estimate the weights. It default to 10.

N the number of genes to produce. See make.sim.data.sd.

42

samples

ndeg

fc.basis

top

model.org

seed
draw. fpc
multic

Value

estimate.sim.params

a vector with 2 integers, which are the number of samples for each condition
(two conditions currently supported).

a vector with 2 integers, which are the number of differentially expressed genes
to be produced. The first element is the number of up-regulated genes while the
second is the number of down-regulated genes.

the minimum fold-change for deregulation.

the top top best ranked (according to p-value) to use, to calculate area under the
false discovery curve.

the organism from which the data are derived. It must be one of metaseqr
supported organisms.

a list of seed for reproducible simulations. Defaults to NULL.
draw the averaged false discovery curves? Default to FALSE.
whether to run in parallel (if package parallel is present or not.
Further arguments to be passed to estimate.sim.params.

A vector of weights to be used in metaseqr with the weights option.

Author(s)

Panagiotis Moulos

Examples

data("mm9.gene.data",package="metaseqR")

multic <- check.parallel(0.8)

weights <- estimate.aufc.weights(
counts=as.matrix(mm9.gene.counts[,9:12]),
normalization="edaseq",

non

statistics=c("deseq”, "edger"),

nsim=3,N=100,

ndeg=c(10,10), top=10,model.org="mm9",

seed=10,multic=multic,libsize.gt=1e+5

estimate.sim.params Estimate negative binomial parameters from real data

Description

This function reads a read counts table containing real RNA-Seq data (preferebly with more than
20 samples so as to get as much accurate as possible estimations) and calculates a population of
count means and dispersion parameters which can be used to simulate an RNA-Seq dataset with

synthetic genes by

drawing from a negative binomial distribution. This function works in the same

way as described in (Soneson and Delorenzi, BMC Bioinformatics, 2013) and (Robles et al., BMC

Genomics, 2012).

estimate.sim.params

Usage

43

estimate.sim.params(real.counts, libsize.gt = 3e+6,
rowmeans.gt = 5,eps = 1e-11,
restrict.cores = 0.8, seed = 42, draw = FALSE)

Arguments

real.counts

libsize.gt

rowmeans. gt

eps
restrict.cores
seed

draw

Value

a text tab-delimited file with real RNA-Seq data. The file should strictly contain
a unique gene name (e.g. Ensembl accession) in the first column and all other
columns should contain read counts for each gene. Each column must be named
with a unique sample identifier. See examples in the ReCount database http:
//bowtie-bio.sourceforge.net/recount/.

a library size below which samples are excluded from parameter estimation (de-
fault: 3000000).

a row means (mean counts over samples for each gene) below which genes are
excluded from parameter estimation (default: 5).

the tolerance for the convergence of optimize function. Defaults to le-11.
in case of parallel optimization, the fraction of the available cores to use.
a seed to use with random number generation for reproducibility.

boolean to determine whether to plot the estimated simulation parameters (mean
and dispersion) or not. Defaults to FALSE (do not draw a mean-dispersion scat-
terplot).

A named list with two members: mu.hat which contains negative binomial mean estimates and
phi.hat which contains dispersion estimates.

Author(s)

Panagiotis Moulos

Examples

Dowload locally the file "bottomly_read_counts.txt” from

the ReCount database

download.file(paste("http://bowtie-bio.sourceforge.net/",
"recount/countTables/bottomly_count_table.txt",sep=""),
destfile="~/bottomly_count_table.txt")

Estimate simulation parameters

par.list <- estimate.sim.params(”~/bottomly_count_table.txt")

http://bowtie-bio.sourceforge.net/recount/
http://bowtie-bio.sourceforge.net/recount/

44

filter.exons

filter.exons

Filter gene expression based on exon counts

Description

This function performs the gene expression filtering based on exon read counts and a set of exon
filter rules. For more details see the main help pages of metaseqr.

Usage

filter.exons(the.counts, gene.data, sample.list,
exon.filters, restrict.cores = 0.8)

Arguments

the.counts

gene.data

sample.list

exon.filters

restrict.cores

Value

a named list created with the construct.gene.model function. See its help
page for details.

an annotation data frame usually obtained with get.annotation containing the
unique gene accession identifiers.

the list containing condition names and the samples under each condition.

a named list with exon filters and their parameters. See the main help page of
metaseqr for details.

in case of parallel execution of several subfunctions, the fraction of the available
cores to use. In some cases if all available cores are used (restrict.cores=1
and the system does not have sufficient RAM, the running machine might sig-
nificantly slow down.

a named list with two members. The first member (result is a named list whose names are the
exon filter names and its members are the filtered rownames of gene.data. The second member is
a matrix of binary flags (0 for non-filtered, 1 for filtered) for each gene. The rownames of the flag
matrix correspond to gene ids.

Author(s)

Panagiotis Moulos

Examples

data("hgl19.exon.data",package="metaseqR")

exon.counts <- hgl9.exon.counts

gene.data <- get.annotation("hg19”,"gene")

sample.list <- sample.list.hgl9

exon.filters <- get.defaults("exon.filter")

the.counts <- construct.gene.model(exon.counts,sample.list,

filter.genes 45

gene.data)
filter.results <- filter.exons(the.counts,gene.data,
sample.list,exon.filters)

filter.genes Filter gene expression based on gene counts

Description

This function performs the gene expression filtering based on gene read counts and a set of gene
filter rules. For more details see the main help pages of metaseqr.

Usage
filter.genes(gene.counts, gene.data, gene.filters)
Arguments
gene.counts a matrix of gene counts, preferably after the normalization procedure.
gene.data an annotation data frame usually obtained with get . annotation containing the

unique gene accession identifiers.

gene.filters anamed list with gene filters and their parameters. See the main help page of
metaseqr for details.

Value

a named list with three members. The first member (result is a named list whose names are the
gene filter names and its members are the filtered rownames of gene.data. The second member
(cutoff is a named list whose names are the gene filter names and its members are the cutoff values
corresponding to each filter. The third member is a matrix of binary flags (0 for non-filtered, 1 for
filtered) for each gene. The rownames of the flag matrix correspond to gene ids.

Author(s)

Panagiotis Moulos

Examples

data("mm9.gene.data"”,package="metaseqR")

gene.counts <- mm9.gene.counts

sample.list <- sample.list.mm9

gene.counts <- normalize.edger(as.matrix(gene.counts[,9:12]),
sample.list)

gene.data <- get.annotation("mm9"”,"gene")

gene.filters <- get.defaults("gene.filter”,"mm9")

filter.results <- filter.genes(gene.counts,gene.data,
gene.filters)

46

filter.low

filter.high Filtering helper

Description

High score filtering function. Internal use.

Usage
filter.high(x, f)
Arguments
a data numeric matrix.
f a threshold.
Author(s)

Panagiotis Moulos

Examples

data("mm9.gene.data",package="metaseqR")
counts <- as.matrix(mm9.gene.counts[,9:12])
f <- filter.low(counts,median(counts))

filter.low Filtering helper

Description

Low score filtering function. Internal use.

Usage
filter.low(x, f)
Arguments
a data numeric matrix.
f a threshold.
Author(s)

Panagiotis Moulos

fisher.method 47

Examples

data("mm9.gene.data"”,package="metaseqR")
counts <- as.matrix(mm9.gene.counts[,9:12])
f <- filter.low(counts,median(counts))

fisher.method Perform Fisher’s Method for combining p-values

Description

Function for combining p-values by performing Fisher’s method. The approach as described by
Fisher’s combines p-values to a statistic

k
5:72210gp

, which follows a x? distribution with 2k degrees of freedom.

Usage

fisher.method(pvals, method = c("fisher"), p.corr = c("bonferroni”,
"BH", "none"), zero.sub = 1e-05, na.rm = FALSE, mc.cores=NULL)

Arguments
pvals A matrix or data.frame containing the p-values from the single tests
method A string indicating how to combine the p-values for deriving a sumary p-value.
Currently only the classical approach described by Fisher is implemented.
p.corr Method for correcting the summary p-values. BH: Benjamini-Hochberg (de-
fault); Bonferroni’s method or no (’none’) correction are currently supported.
zero.sub Replacement for p-values of 0
na.rm A flag indicating whether NA values should be removed from the analysis.
mc.cores Currently ignored
Details

As log(0) results in Inf we replace p-values of 0 by default with a small float. If you want to keep
them as O you have to provide 0 as a parameter in zero. sub.

Note that only p-values between 0 and 1 are allowed to be passed to this method.

Value

This method returns a data.frame containing the following columns

S The statistic
num.p The number of p-values used to calculate S
p.value The overall p-value

p.adj The adjusted p-value

48 fisher.method.perm

Note

This function was copied from the CRAN package MADAM which is no longer maintained. Recog-
nition goes to the original author(s) below.

Author(s)

Karl Kugler <karl @eigenlab.net>

References

Fisher, R.A. (1925). Statistical Methods for Research Workers. Oliver and Boyd (Edinburgh).
Moreau, Y.et al. (2003). Comparison and meta-analysis of microarray data: from the bench to the
computer desk. Trends in Genetics, 19(10), 570-577.

See Also

fisher.method.perm

Examples

set.seed(123)

pp <- matrix(c(runif(20),c(0.001,0.02,0.03,0.001)), ncol=4)
pp[2,3] <- NA

fisher.method(pp) #returns one NA row

fisher.method(pp, na.rm=TRUE) #ignore NA entry in that row

fisher.method.perm Derive a p-value for a summary statistic of p-values by permutation

Description

Given a set of p-values and a summary statistic S:

S = —QZlogp,

a p-value for this statistic can be derived by randomly generating summary statistics [Rhodes,2002].
Therefore, a p-value is randomly sampled from each contributing study and a random statistic is
calculated. The fraction of random statistics greater or equal to S then gives the p-value.

Usage

fisher.method.perm(pvals, p.corr = c("bonferroni”, "BH", "none"),
zero.sub = 1e-05, B = 10000, mc.cores = NULL, blinker = 1000)

fisher.method.perm 49

Arguments
pvals A matrix or data.frame containing the p-values from the single tests
p.corr Method for correcting the summary p-values. BH: Benjamini-Hochberg (de-
fault); Bonferroni’s method or no ('none’) correction are currently supported.
zero.sub Replacement for p-values of 0
B Number of random statistics
mc.cores Number of cores used for calculating the permutations. If not NULL the multicore
package is used for parallelization with the given number of cores.
blinker An indicator that prints "=" after each blinker rows of pvals in order to follow
the progress.
Details

At the moment this function only supports situations were all passed p-values are not NA. We plan
on extending this functionality in upcoming versions.

For large data sets and/or large B we strongly recommend using the mc. cores option as the calcu-
lation will otherwise be computationally demanding. This will call the mclapply function from the
multicore package, which you will have to install in that case.

n_mn

By default a blinker (a small string "=") is shown after each 1000 rows that were computed. This
function allows you to assess the progress of the analysis. If you don’t want to see the blinker set it
to NA.

As log(0) results in Inf we replace p-values of 0 by default with a small float. If you want to keep
them as O you have to provide 0 as a parameter in zero. sub.

Note that only p-values between 0 and 1 are allowed to be passed to this method.

Value

This method returns a data.frame containing the following columns

S The statistic
num.p The number of p-values used to calculate S
p.value The overall p-value
p.adj The adjusted p-value
Note

This function was copied from the CRAN package MADAM which is no longer maintained. Recog-
nition goes to the original author(s) below.
Author(s)

Karl Kugler <karl @eigenlab.net>

References

Rhodes, D. R., (2002). Meta-analysis of microarrays: interstudy alidation of gene expression pro-
files reveals pathway dysregulation in prostate cancer. Cancer research, 62(15), 4427-33.

50 fisher.sum

See Also

fisher.sum, fisher.method

Examples

set.seed(123)
pp <- matrix(c(runif(20),c(0.001,0.02,0.03,0.001)), ncol=4)
fisher.method.perm(pp, B=10, blinker=1)
Not run:
fisher.method.perm(pp, B=10000, mc.cores=3, blinker=1) #use multicore

End(Not run)

fisher.sum A function to calculate Fisher’s sum for a set of p-values

Description

This method combines a set of p-values using Fisher’s method:

S:—2Zlogp

Usage

fisher.sum(p, zero.sub=0.00001, na.rm=FALSE)

Arguments

p A vector of p-values

zero.sub Replacement for O values.

na.rm Should NA values be removed before calculating the sum
Details

As log(0) results in Inf we replace p-values of 0 by default with a small float. If you want to keep
them as 0 you have to provide 0 as a parameter in zero. sub.

Note that only p-values between 0 and 1 are allowed to be passed to this method.

Value

Fisher’s sum as described above.

Note

This function was copied from the CRAN package MADAM which is no longer maintained. Recog-
nition goes to the original author(s) below.

get.annotation 51

Author(s)

Karl Kugler <karl @eigenlab.net>

References

Fisher, R.A. (1925). Statistical Methods for Research Workers. Oliver and Boyd (Edinburgh).

See Also

fisher.method

Examples

fisher.sum(c(0.2,0.05,0.05))
fisher.sum(c(0.2,0.05,0.05, NA), na.rm=TRUE)

get.annotation Annotation downloader

Description

This function connects to the EBI’s Biomart service using the package biomaRt and downloads
annotation elements (gene co-ordinates, exon co-ordinates, gene identifications, biotypes etc.) for
each of the supported organisms. See the help page of metaseqr for a list of supported organisms.
The function downloads annotation for an organism genes or exons.

Usage
get.annotation(org, type, refdb="ensembl"”,
multic=FALSE)
Arguments
org the organism for which to download annotation.
type either "gene"” or "exon".
refdb the online source to use to fetch annotation. It can be "ensembl” (default),
"ucsc” or "refseq”. In the later two cases, an SQL connection is opened with
the UCSC public databases.
multic a logical value indicating the presence of multiple cores. Defaults to FALSE. Do

not change it if you are not sure whether package parallel has been loaded or not.
It is used in the case of type="exon" to process the return value of the query to
the UCSC Genome Browser database.

52 get.arg

Value

A data frame with the canonical (not isoforms!) genes or exons of the requested organism. When
type="genes", the data frame has the following columns: chromosome, start, end, gene_id, gc_content,
strand, gene_name, biotype. When type="exon" the data frame has the following columns: chro-
mosome, start, end, exon_id, gene_id, strand, gene_name, biotype. The gene_id and exon_id cor-
respond to Ensembl gene and exon accessions respectively. The gene_name corresponds to HUGO
nomenclature gene names.

Note

The data frame that is returned contains only "canonical" chromosomes for each organism. It does
not contain haplotypes or random locations and does not contain chromosome M.

Author(s)

Panagiotis Moulos

Examples

n on

hg19.genes <- get.annotation("hgl19"”,"gene","ensembl”)

non

mm9.exons <- get.annotation("mm9","exon”,"ucsc")

get.arg Argument getter

Description

Get argument(s) from a list of arguments, e.g. normalization arguments.

Usage
get.arg(arg.list, arg.name)
Arguments
arg.list the initial list of a method’s (e.g. normalization) arguments. Can be created with
the get.defaults function.
arg.name the argument name inside the argument list to fetch its value.
Value

The argument sub-list.

Author(s)

Panagiotis Moulos

get.biotypes

Examples

non

norm.list <- get.defaults(”normalization”,"egder")
a <- get.arg(norm.list,c("main.method”,"logratioTrim"))

53

get.biotypes Biotype converter

Description

Returns biotypes as character vector. Internal use.

Usage
get.biotypes(a)
Arguments
a the annotation data frame (output of get.annotation).
Value

A character vector of biotypes.

Author(s)

Panagiotis Moulos

Examples

hg18.genes <- get.annotation("hg18","gene")
hg18.bt <- get.biotypes(hg18.genes)

54 get.dataset

get.bs.organism Return a proper formatted BSgenome organism name

Description

Returns a properly formatted BSgenome package name according to metaseqR’s supported organ-
ism. Internal use.

Usage
get.bs.organism(org)
Arguments
org one of metaseqR supported organisms.
Value

A proper BSgenome package name.

Author(s)

Panagiotis Moulos
Examples

bs.name <- get.bs.organism("hg18")

get.dataset Annotation downloader helper

Description

Returns a dataset (gene or exon) identifier for each organism recognized by the Biomart service for
Ensembl. Internal use.

Usage

get.dataset(org)

Arguments

org the organism for which to return the identifier.

get.defaults 55

Value

A string with the dataset identifier.

Author(s)

Panagiotis Moulos

Examples

dm3.id <- get.dataset("dm3")

get.defaults Default parameters for several metaseqr functions

Description

This function returns a list with the default settings for each filtering, statistical and normalization
algorithm included in the metaseqR package. See the documentation of the main function and the
documentation of each statistical and normalization method for details.

Usage
get.defaults(what, method = NULL)
Arguments
what a keyword determining the procedure for which to fetch the default settings ac-
cording to method parameter. It can be one of "normalization”, "statistics”,
"gene.filter"”, "exon.filter"” or "biotype.filter”.
method the supported algorithm included in metaseqR for which to fetch the default set-
tings. When what is "normalization”, method is one of "edaseq”, "deseq”,
"edger"”, "noiseq"” or "nbpseq”. When what is "statistics”, method is
one of "deseq”, "edger"”, "noiseq”, "bayseq”, "limma" or "nbpseq”. When
methodis "biotype.filter”, what is the input organism (see the main metaseqr
help page for a list of supported organisms).
Value

A list with default setting that can be used directly in the call of metaseqr.

Author(s)

Panagiotis Moulos

56 get.ensembl.annotation

Examples
n n

norm.args.edaseq <- get.defaults(”normalization”,"edaseq")

non

stat.args.edger <- get.defaults(”"statistics"”,"edger")

get.ensembl.annotation
Ensembl annotation downloader

Description

This function connects to the EBI’s Biomart service using the package biomaRt and downloads
annotation elements (gene co-ordinates, exon co-ordinates, gene identifications, biotypes etc.) for
each of the supported organisms. See the help page of metaseqr for a list of supported organisms.
The function downloads annotation for an organism genes or exons.

Usage
get.ensembl.annotation(org, type)
Arguments
org the organism for which to download annotation.
type either "gene" or "exon".
Value

A data frame with the canonical (not isoforms!) genes or exons of the requested organism. When
type="genes", the data frame has the following columns: chromosome, start, end, gene_id, gc_content,
strand, gene_name, biotype. When type="exon" the data frame has the following columns: chro-
mosome, start, end, exon_id, gene_id, strand, gene_name, biotype. The gene_id and exon_id cor-
respond to Ensembl gene and exon accessions respectively. The gene_name corresponds to HUGO
nomenclature gene names.

Note

The data frame that is returned contains only "canonical”" chromosomes for each organism. It does
not contain haplotypes or random locations and does not contain chromosome M.

Author(s)

Panagiotis Moulos

Examples

hg19.genes <- get.ensembl.annotation("hgl19"”,"gene")
mm9.exons <- get.ensembl.annotation("mm9","exon")

get.exon.attributes 57

get.exon.attributes Annotation downloader helper

Description

Returns a vector of genomic annotation attributes which are used by the biomaRt package in order
to fetch the exon annotation for each organism. It has no parameters. Internal use.

Usage
get.exon.attributes(org)
Arguments
org one of the supported organisms.
Value

A character vector of Ensembl exon attributes.

Author(s)

Panagiotis Moulos

Examples

exon.attr <- get.exon.attributes(”"mm9")

get.gc.content Return a named vector of GC-content for each genomic region

Description

Returns a named numeric vector (names are the genomic region names, e.g. genes) given a data
frame which can be converted to a GRanges object (e.g. it has at least chromosome, start, end
fields). This function works best when the input annotation data frame has been retrieved using one
of the SQL queries generated from get.ucsc.query, used in get.ucsc.annotation.

Usage
get.gc.content(ann, org)
Arguments
ann a data frame which can be converted to a GRanges object, that means it has at

least the chromosome, start, end fields. Preferably, the output of 1ink{get.ucsc.annotation}.

org one of metaseqR supported organisms.

58 get.gene.attributes

Value

A named numeric vector.

Author(s)

Panagiotis Moulos

Examples

non

ann <- get.ucsc.annotation(”"mm9"”,"gene","ucsc")
gc <- get.gc.content(ann,"mm9")

get.gene.attributes Annotation downloader helper

Description

Returns a vector of genomic annotation attributes which are used by the biomaRt package in order
to fetch the gene annotation for each organism. It has no parameters. Internal use.

Usage
get.gene.attributes(org)
Arguments
org one of the supported organisms.
Value

A character vector of Ensembl gene attributes.

Author(s)

Panagiotis Moulos

Examples

gene.attr <- get.gene.attributes(”"mm9")

get.host 59

get.host Annotation downloader helper

Description

Returns the appropriate Ensembl host address to get different versions of annotation from. Internal

use.
Usage
get.host(org)
Arguments
org the organism for which to return the host address.
Value

A string with the host address.

Author(s)

Panagiotis Moulos

Examples

mm9.hist <- get.host("mm9")

get.preset.opts Return several analysis options given an analysis preset

Description

This is a helper function which returns a set of metaseqr pipeline options, grouped together accord-
ing to a preset keyword. It is intended mostly for internal use.

Usage
get.preset.opts(preset, org)
Arguments
preset preset can be one of "all.basic”, "all.normal”, "all.full"”, "medium.basic”,
"medium.normal”,
org one of the supported organisms. See metaseqr main help page. "medium. full”,

non

"strict.basic"”, "strict.normal” or "strict.full”, each of which control
the strictness of the analysis and the amount of data to be exported. For an ex-
planation of the presets, see the main metaseqr help page.

60 get.strict.biofilter

Value

A named list with names exon.filters, gene.filters, pcut, export.what, export.scale,
export.values and export.stats, each of which correspond to an element of the metaseqr
pipeline.

Author(s)

Panagiotis Moulos

Examples

strict.preset <- get.preset.opts(”"strict.basic”,”"mm9")

get.strict.biofilter Group together a more strict biotype filter

Description

Returns a list with TRUE/FALSE according to the biotypes that are going to be filtered in a more
strict way than the defaults. This is a helper function for the analysis presets of metaseqR. Internal
use only.

Usage

get.strict.biofilter(org)

Arguments

org one of the supported organisms.

Value

A list of booleans, one for each biotype.

Author(s)

Panagiotis Moulos

Examples

sf <- get.strict.biofilter("hg18")

get.ucsc.annotation 61

get.ucsc.annotation UCSC/RefSeq annotation downloader

Description

This function connects to the UCSC Genome Browser public database and downloads annotation
elements (gene co-ordinates, exon co-ordinates, gene identifications etc.) for each of the supported
organisms, but using UCSC instead of Ensembl. See the help page of metaseqr for a list of sup-
ported organisms. The function downloads annotation for an organism genes or exons.

Usage
get.ucsc.annotation(org, type, refdb="ucsc",
multic=FALSE)
Arguments
org the organism for which to download annotation.
type either "gene"” or "exon".
refdb either "ucsc” or "refseq".
multic a logical value indicating the presence of multiple cores. Defaults to FALSE. Do
not change it if you are not sure whether package parallel has been loaded or not.
It is used in the case of type="exon" to process the return value of the query to
the UCSC Genome Browser database.
Value

A data frame with the canonical (not isoforms!) genes or exons of the requested organism. When
type="genes", the data frame has the following columns: chromosome, start, end, gene_id, gc_content,
strand, gene_name, biotype. When type="exon" the data frame has the following columns: chro-
mosome, start, end, exon_id, gene_id, strand, gene_name, biotype. The gene_id and exon_id cor-
respond to UCSC or RefSeq gene and exon accessions respectively. The gene_name corresponds

to HUGO nomenclature gene names.

Note

The data frame that is returned contains only "canonical" chromosomes for each organism. It does
not contain haplotypes or random locations and does not contain chromosome M. Note also that as
the UCSC databases do not contain biotype classifications like Ensembl. These will be returned as
NA and as a result, some quality control plots will not be available.

Author(s)

Panagiotis Moulos

62 get.ucsc.dbl

Examples

non

hg19.genes <- get.ucsc.annotation("hg19"”,"gene", "ucsc")

non

mm9.exons <- get.ucsc.annotation("mm9”,"exon","refseq")

get.ucsc.credentials Return host, username and password for UCSC Genome Browser
database

Description

Returns a character vector with a hostname, username and password to connect to the UCSC
Genome Browser database to retrieve annotation. Internal use mostly.

Usage

get.ucsc.credentials()

Value

A named character vector.

Author(s)

Panagiotis Moulos

Examples

db.creds <- get.ucsc.credentials()

get.ucsc.dbl Download annotation from UCSC servers, according to organism and
source

Description

Directly downloads UCSC and RefSeq annotation files from UCSC servers to be used with metaseqR.
This functionality is used when the package RMySQL is not available for some reason, e.g. Win-
dows machines. It created an SQLite database where the same queries can be used.

Usage

get.ucsc.dbl(org, type, refdb="ucsc")

get.ucsc.organism 63

Arguments
org one of metaseqR supported organisms.
type either "gene"” or "exon".
refdb one of "ucsc” or "refseq” to use the UCSC or RefSeq annotation sources
respectively.
Value

An SQLite database.

Author(s)

Panagiotis Moulos

Examples

db.file <- get.ucsc.dbl("hg18","gene","ucsc")

get.ucsc.organism Return a proper formatted organism alias

Description

Returns the proper UCSC Genome Browser database organism alias based on what is given to
metaseqR. Internal use.

Usage
get.ucsc.organism(org)
Arguments
org one of the metaseqr supported organism.
Value

A proper organism alias.

Author(s)

Panagiotis Moulos

Examples

org <- get.ucsc.organism("danrer7")

64 get.ucsc.tabledef

get.ucsc.query Return queries for the UCSC Genome Browser database, according to
organism and source

Description

Returns an SQL query to be used with a connection to the UCSC Genome Browser database and
fetch metaseqR supported organism annotations. This query is constructed based on the data source
and data type to be returned.

Usage
get.ucsc.query(org, type, refdb="ucsc")
Arguments
org one of metaseqR supported organisms.
type either "gene"” or "exon".
refdb one of "ucsc” or "refseq” to use the UCSC or RefSeq annotation sources
respectively.
Value
A valid SQL query.
Author(s)

Panagiotis Moulos

Examples

non

db.query <- get.ucsc.query("hg18"”,"gene","ucsc")

get.ucsc.tabledef Get SQLite UCSC table defintions, according to organism and source

Description

Creates a list of UCSC Genome Browser database tables and their SQLite definitions with the
purpose of creating a temporary SQLite database to be used used with metaseqR. This functionality
is used when the package RMySQL is not available for some reason, e.g. Windows machines.

get.ucsc.tbl.tpl 65

Usage
get.ucsc.tabledef(org, type, refdb="ucsc"”, what="queries")
Arguments
org one of metaseqR supported organisms.
type either "gene"” or "exon".
refdb one of "ucsc” or "refseq” to use the UCSC or RefSeq annotation sources
respectively.
what either "queries” for SQLite table definitions or "fields"” for only a vector of
table field names.
Value

A list with SQLite table definitions.

Author(s)

Panagiotis Moulos

Examples

db.tabledefs <- get.ucsc.tabledef("hgl18","gene","ucsc")

get.ucsc.tbl.tpl Create SQLite UCSC table template defintions

Description

Returns an SQLIte table template defintion, according to UCSC Genome Browser database table
schemas. This functionality is used when the package RMySQL is not available for some reason,
e.g. Windows machines. Internal use only.

Usage
get.ucsc.tbl.tpl(tab, what="queries")
Arguments
tab name of UCSC database table.
what "queries” for SQLite table definitions or "fields" for table column names.
Value

An SQLite table definition.

66 get.valid.chrs

Author(s)

Panagiotis Moulos

Examples

db.table.tmpl <- get.ucsc.tbl.tpl("knownCanonical”)

get.valid.chrs Annotation downloader helper

Description

Returns a vector of chromosomes to maintain after annotation download. Internal use.

Usage
get.valid.chrs(org)
Arguments
org the organism for which to return the chromosomes.
Value

A character vector of chromosomes.

Author(s)

Panagiotis Moulos

Examples

hg18.chr <- get.valid.chrs("hg18")

get.weights 67

get.weights Get precalculated statistical test weights

Description

This function returns pre-calculated weights for human, chimpanzee, mouse, fruitfly and arabidop-
sis based on the performance of simulated datasets estimated from real data from the ReCount
database (http://bowtie-bio.sourceforge.net/recount/). Currently pre-calculated weights
are available only when all six statistical tests are used and for normalization with EDASeq. For
other combinations, use the estimate.aufc.weights function.

Usage
get.weights(org = c¢("human”, "chimpanzee"”, "mouse”,
"fruitfly”, "arabidopsis"”))
Arguments
org "human”, "chimpanzee”, "mouse”, "fruitfly"” or "arabidopsis”.
Value

A named vector of convex weights.

Author(s)

Panagiotis Moulos

Examples

wh <- get.weights("human")

graphics.close Close plotting device

Description

Wrapper function to close a plotting device. Internal use only.

Usage

graphics.close(o)

Arguments

) the plotting device, see main metaseqr function

http://bowtie-bio.sourceforge.net/recount/

68 graphics.open

Author(s)

Panagiotis Moulos

Examples

graphics.close("pdf")

graphics.open Open plotting device

Description

Wrapper function to open a plotting device. Internal use only.

Usage
graphics.open(o, f, ...)
Arguments
o) the plotting device, see main metaseqr function
f a filename, if the plotting device requires it (e.g. "pdf")
further arguments to be passed to plot devices, such as parameter from par.
Author(s)

Panagiotis Moulos

Examples

graphics.open("pdf”,"test.pdf"”,width=12,height=12)

hg19.exon.counts 69

hg19.exon.counts Human RNA-Seq data with three conditions, three samples

Description

This data set contains RNA-Seq exon read counts for 3 chromosomes. The data are from an exper-
iment studying the effect of a long non-coding RNA related to the ASCL2 gene in WNT signaling
and intestinal cancer. It has two conditions (CON, DOX) and four samples (CON_BR1, CON_BR2,
DOX_BRI1, DOX_BR2). It also contains a predefined sample.list and libsize.list named
sample.list.hgl8 and libsize.list.hgl8.

Format

a data.frame with exon read counts and some embedded annotation, one row per exon.

Author(s)

Panagiotis Moulos

Source

GEO (http://www.ncbi.nlm.nih.gov/geo/)

libsize.list.hg19 Human RNA-Seq data with three conditions, three samples

Description

The library size list for hg19.exon. counts. See the data set description.

Format

a named list with library sizes.

Author(s)

Panagiotis Moulos

Source

GEO (http://www.ncbi.nlm.nih.gov/geo/)

70 load.bs.genome

libsize.list.mm9 Mouse RNA-Seq data with two conditions, four samples

Description

The library size list for mm9. gene. counts. See the data set description.

Format

anamed list with library sizes.

Author(s)

Panagiotis Moulos

Source

ENCODE (http://genome.ucsc.edu/encode/)

load.bs.genome Loads (or downloads) the required BSGenome package

Description

Retrieves the required BSgenome package when the annotation source is "ucsc” or "refseq”.
These packages are required in order to estimate the GC-content of the retrieved genes from UCSC
or RefSeq.

Usage
load.bs.genome(org)
Arguments
org one of metaseqr supported organisms.
Value

A proper BSgenome package name.

Author(s)

Panagiotis Moulos

Examples

bs.obj <- load.bs.genome("mm9")

log2disp 71

log2disp Display value transformation

Description

Logarithmic transformation for display purposes. Internal use only.

Usage
log2disp(mat, base = 2)
Arguments
mat input data matrix
base logarithmic base, 2 or 10
Author(s)

Panagiotis Moulos

make.contrast.list Create contrast lists from contrast vectors

Description

Returns a list, properly structured to be used within the stat. * functions of the metaseqr package.
See the main documentation for the structure of this list and the example below. This function is
mostly for internal use, as the stat.* functions can be supplied directly with the contrasts vector
which is one of the main metaseqr arguments.

Usage
make.contrast.list(contrast, sample.list)
Arguments
contrast a vector of contrasts in the form "ConditionA_vs_ConditionB" or "ConditionA_
vs_ConditionB_vs_ConditionC_vs_...". In case of Control vs Treatment de-
signs, the Control condition should ALWAYS be the first.
sample.list the list of samples in the experiment. See also the main help page of metaseqr.
Value

A named list whose names are the contrasts and its members are named vectors, where the names
are the sample names and the actual vector members are the condition names. See the example.

72 make.fold.change

Author(s)

Panagiotis Moulos

Examples

sample.list <- list(Control=c("C1","C2"),TreatmentA=c("TA1","TA2"),TreatmentB=c("TB1","TB2"))
contrast <- c("Control_vs_TreatmentA"”,"Control_vs_TreatmentA_vs_TreatmentB")
cl <- make.contrast.list(contrast,sample.list)

make.export.list Intitialize output list

Description

Initializes metaseqr R output. Internal use only.

Usage
make.export.list(con)
Arguments
con The contrasts.
Value

An empty named list.

Author(s)

Panagiotis Moulos

make.fold. change Calculates fold changes

Description

Returns a matrix of fold changes based on the requested contrast, the list of all samples and the data
matrix which is produced by the metaseqr workflow. For details on the contrast, sample.list
and log.offset parameters, see the main usage page of metaseqr. This function is intended mostly
for internal use but can also be used independently.

Usage

make.fold.change(contrast, sample.list, data.matrix,
log.offset = 1)

make.grid 73

Arguments
contrast the vector of requested statistical comparison contrasts.
sample.list the list containing condition names and the samples under each condition.
data.matrix a matrix of gene expression data whose column names are the same as the sam-
ple names included in the sample list.
log.offset a number to be added to each element of data matrix in order to avoid Infinity
on log type data transformations.
Value

A matrix of fold change ratios, treatment to control, as these are parsed from contrast.

Author(s)

Panagiotis Moulos

Examples

data.matrix <- round(1000*matrix(runif(400),100,4))

rownames (data.matrix) <- paste("gene_",1:100,sep="")

colnames(data.matrix) <- c("C1","C2","T1","T2")

fc <- make.fold.change("Control_vs_Treatment”,list(Control=c("C1","C2"),
Treatment=c("T1","T2")),data.matrix)

make.grid Optimize rectangular grid plots

Description

Returns a vector for an optimized m x m plot grid to be used with e.g. par(mfrow). m x m is as
close as possible to the input n. Of course, there will be empty grid positions if n < m x m.

Usage
make.grid(n)
Arguments
n An integer, denoting the total number of plots to be created.
Value

A 2-element vector with the dimensions of the grid.

74 make.highcharts.points

Author(s)

Panagiotis Moulos

Examples

gl <- make.grid(16) # Returns c(4,4)
g2 <- make.grid(11) # Returns c(4,3)

make.highcharts.points
Interactive volcano plot helper

Description

Creates a list which contains the data series of a scatterplot, to be used for serialization with high-
charts JavaScript plotting. framework. Internal use only.

Usage
make.highcharts.points(x, y, a)
Arguments
X The x coordinates (should be a named vector!).
y The y coordinates.
a Alternative names for each point.
Value

A list that is later serialized to JSON.

Author(s)

Panagiotis Moulos

make.html.body 75

make.html.body HTML report helper

Description

Returns a character vector with an html formatted table. Essentially, it collapses the input rows to a
single character and puts a <tbody></tbody> tag set around. It is meant to be applied to the output
of make.html. rows. Internal use.

Usage
make.html.body(mat)
Arguments
mat the character vector produced by make.html. rows.
Value

A character vector with the body of mat formatted in html.

Author(s)

Panagiotis Moulos

Examples

data.matrix <- round(1000*matrix(runif(400),100,4))
rownames(data.matrix) <- paste(”gene_",1:100,sep="")
colnames(data.matrix) <- c("C1","C2","T1","T2")
the.cells <- make.html.cells(data.matrix)

the.header <- make.html.header(the.cells[1,1])
the.rows <- make.html.rows(the.cells)

the.body <- make.html.body(the.rows)

make.html.cells HTML report helper

Description

Returns a character matrix with html formatted table cells. Essentially, it converts the input data to
text and places them in a <td></td> tag set. Internal use.

76 make.html.header

Usage
make.html.cells(mat, type = "numeric”, digits = 3)

Arguments

mat the data matrix (numeric or character)

type the type of data in the matrix ("numeric” or "character”)

digits the number of digits on the right of the decimal points to pass to formatC. It has

meaning when type="numeric"”.

Value

A character matrix with html formatted cells.

Author(s)

Panagiotis Moulos

Examples

data.matrix <- round(1000*matrix(runif(400),100,4))
rownames(data.matrix) <- paste(”gene_",1:100,sep="")
colnames(data.matrix) <- c("C1","C2","T1","T2")
the.cells <- make.html.cells(data.matrix)

make.html.header HTML report helper

Description

Returns a character vector with an html formatted table head row. Essentially, it collapses the input
row to a single character and puts a <th></th> tag set around. It is meant to be applied to the output
of make.html.cells. Internal use.

Usage
make.html.header (h)
Arguments
h the colnames of a matrix or data frame, usually as output of make.html.cells
function.
Value

A character vector with html formatted header of a matrix.

make.html.rows 77

Author(s)

Panagiotis Moulos

Examples

data.matrix <- round(1000@*matrix(runif(400),100,4))
rownames(data.matrix) <- paste(”gene_",1:100,sep="")
colnames(data.matrix) <- c("C1","C2","T1","T2")
the.cells <- make.html.cells(data.matrix)

the.header <- make.html.header(the.cells[1,])

make.html. rows HTML report helper

Description

Returns a character vector with html formatted rows. Essentially, it collapses every row of a matrix
to a single character and puts a <tr></tr> tag set around. It is meant to be applied to the output of
make.html.cells. Internal use.

Usage
make.html.rows(mat)
Arguments
mat the data matrix, usually the output of make.html.cells function.
Value

A character vector with html formatted rows of a matrix.

Author(s)

Panagiotis Moulos

Examples

data.matrix <- round(1000*matrix(runif(400),100,4))
rownames(data.matrix) <- paste(”gene_",1:100,sep="")
colnames(data.matrix) <- c("C1","C2","T1","T2")
the.cells <- make.html.cells(data.matrix)

the.rows <- make.html.rows(the.cells)

78 make.html.table

make.html.table HTML report helper

Description

Returns a character vector with a fully html formatted table. Essentially, it binds the outputs of
make.html.cells, make.html.rows, make.html.header and make.html.body to the final table
and optionally assigns an id attribute. The above functions are meant to format a data table so as
it can be rendered by external tools such as DataTables.js during a report creation. It is meant for
internal use.

Usage
make.html.table(b, h = NULL, id = NULL)
Arguments
b the table body as produced by make.html.body.
h the table header as produced by make.html.header.
id the table id attribute.
Value

A fully formatted html table.

Author(s)

Panagiotis Moulos

Examples

data.matrix <- round(1000*matrix(runif(400),100,4))
rownames(data.matrix) <- paste(”gene_",1:100,sep="")
colnames(data.matrix) <- c("C1","C2","T1","T2")

the.cells <- make.html.cells(data.matrix)

the.header <- make.html.header(the.cells[1,])

the.rows <- make.html.rows(the.cells)

the.body <- make.html.body(the.rows)

the.table <- make.html.table(the.body, the.header,id="my_table")

make.matrix 79

make.matrix Results output build helper

Description

Returns a list of matrices based on the export scales that have been chosen from the main function
and a subset of samples based on the sample names provided in the sample.list argument of the
main metaseqr function. Internal use.

Usage
make.matrix(samples, data.list, export.scale = "natural")
Arguments
samples a set of samples from the dataset under processing. They should match sample
names from sample.list. See also the main help page of metaseqr.
data.list a list containing natural or transformed data, typically an output from make . transformation.

export.scale the output transformations used as input also to make. transformation.

Value

A named list whose names are the elements in export.scale. Each list member is the respective
sample subest data matrix.

Author(s)

Panagiotis Moulos

Examples

data.matrix <- round(100@*matrix(runif(400),100,4))
rownames(data.matrix) <- paste(”gene_",1:100,sep="")
colnames(data.matrix) <- c("C1","C2","T1","T2")

tr <- make.transformation(data.matrix,c("”log2","vst"))
mm <- make.matrix(c("C1","T1"),tr,"log2")

head(tr$vst)

80 make.permutation

make.path.struct Project path constructor helper

Description

Helper for make.project.path. Internal use only.

Usage
make.path.struct(main.path)
Arguments
main.path The desired project path.
Value

A named list whose names are the conditions of the experiments and its members are the samples
belonging to each condition.

Author(s)

Panagiotis Moulos

make.permutation Create counts matrix permutations

Description

This function creates a permuted read counts matrix based on the contrast argument (to define new
virtual contrasts of the same number) and on the sample.list to derive the number of samples for
each virtual condition.It is a helper for the meta. perm function.

Usage
make.permutation(counts, sample.list, contrast,
repl = FALSE)
Arguments
counts the gene read counts matrix.
sample.list the list containing condition names and the samples under each condition.
contrast the contrasts vector. See the main metaseqr help page.

repl the same as the replace argument in sample function.

make.project.path 81

Value
A list with three members: the matrix of permuted per sample read counts, the virtual sample list
and the virtual contrast to be used with the stat.* functions.

Author(s)

Panagiotis Moulos

Examples

data(”"mm9.gene.data"”,package="metaseqR")
per <- make.permutation(mm9.gene.counts,sample.list.mm9,
"e14.5_vs_adult_8_weeks")

make.project.path Project path constructor

Description

Create the main metaseqr project path. Internal use only.

Usage
make.project.path(path, f = NULL)
Arguments
path The desired project path. Can be NULL for auto-generation.
f The input counts table file.
Value

A list with project path elements.

Author(s)

Panagiotis Moulos

82 make.sample.list

make.report.messages Initializer of report messages

Description

Initializes metaseqR report tmeplate messages output. Internal use only.

Usage
make.report.messages(lang)
Arguments
lang The language of the report. For now, only english ("en") is supported.
Value

An named list with messages for each input option.

Author(s)

Panagiotis Moulos

make.sample.list Creates sample list from file

Description

Create the main sample list from an external file.

Usage
make.sample.list(input, type=c("simple”,"targets”))
Arguments
input a tab-delimited file structured as follows: the first line of the external tab de-
limited file should contain column names (names are not important). The first
column MUST contain UNIQUE sample names and the second column MUST
contain the biological condition where each of the samples in the first column
should belong to.
type one of "simple” or "targets” to indicate if the input is a simple two column

text file or the targets file used to launch the main analysis pipeline.

make.sim.data.sd 83

Value
A named list whose names are the conditions of the experiments and its members are the samples
belonging to each condition.

Author(s)

Panagiotis Moulos

Examples

targets <- data.frame(sample=c("C1","C2","T1","T2"),
condition=c("Control”,"Control”,"Treatment”,"Treatment"))

write.table(targets,file="targets.txt",sep="\t",row.names=FALSE,
quote="")

sample.list <- make.sample.list("targets.txt")

make.sim.data.sd Create simulated counts using the Soneson-Delorenzi method

Description

This function creates simulated RNA-Seq gene expression datasets using the method presented in
(Soneson and Delorenzi, BMC Bioinformatics, 2013). For the time being, it creates only simulated
datasets with two conditions.

Usage
make.sim.data.sd(N, param, samples = c(5, 5),
ndeg = rep(round(@.1xN), 2), fc.basis = 1.5,
libsize.range = c(0.7, 1.4), libsize.mag = le+t7,
model.org = NULL, sim.length.bias = FALSE,
seed = NULL)
Arguments
N the number of genes to produce.
param a named list with negative binomial parameter sets to sample from. The first
member is the mean parameter to sample from (mu.hat) and the second the
dispersion (phi.hat). This list can be created with the estimate.sim.params
function.
samples a vector with 2 integers, which are the number of samples for each condition
(two conditions currently supported).
ndeg a vector with 2 integers, which are the number of differentially expressed genes

to be produced. The first element is the number of up-regulated genes while the
second is the number of down-regulated genes.

84

fc.basis

libsize.range

libsize.mag

model.org

sim.length.bias

seed

Value

make.sim.data.tcc

the minimum fold-change for deregulation.

a vector with 2 numbers (generally small, see the default), as they are multiplied
with 1ibsize.mag. These numbers control the library sized of the synthetic data
to be produced.

a (big) number to multiply the 1ibsize.range to produce library sizes.

the organism from which the real data are derived from. It must be one of the
supported organisms (see the main metaseqr help page). It is used to sample
real values for GC content.

a boolean to instruct the simulator to create genes whose read counts is propor-
tional to their length. This is achieved by sorting in increasing order the mean
parameter of the negative binomial distribution (and the dispersion according to
the mean) which will cause an increasing gene count length with the sampling.
The sampled lengths are also sorted so that in the final gene list, shorter genes
have less counts as compared to the longer ones. The default is FALSE.

a seed to use with random number generation for reproducibility.

A named list with two members. The first member (simdata) contains the synthetic dataset

Author(s)

Panagiotis Moulos

Examples

File "bottomly_

read_counts.txt” from the ReCount database

download.file(paste("http://bowtie-bio.sourceforge.net/recount/",
"countTables/bottomly_count_table.txt"”, sep=""),
destfile="~/bottomly_count_table.txt")

N <- 10000

par.list <- estimate.sim.params("~/bottomly_read_counts.txt")
sim <- make.sim.data.sd(N,par.list)

synth.data <- sim$simdata

true.deg <- which(sim$truedeg!=0)

make.sim.data.tcc

Create simulated counts using TCC package

Description

This function creates simulated RNA-Seq gene expression datasets using the simulateReadCounts
function from the Bioconductor package TCC and it adds simulated annoation elements. For further
information please consult the TCC package documentation.

make.stat 85

Usage
make.sim.data.tcc(...)
Arguments
parameters to the simulateReadCounts function.
Value

A list with the following members: simdata holding the simulated dataset complying with metaseqr
requirements, and simparam holding the simulation parameters (see TCC documentation). Note
that the produced data are based in an Arabidopsis dataset.

Author(s)

Panagiotis Moulos

Examples

dd <- make.sim.data.tcc(Ngene=10000,PDEG=0.2,
DEG.assign=c(0.9,0.1),
DEG. foldchange=c(5,5),replicates=c(3,3))
head(dd$simdata)

make.stat Calculates several statistices on read counts

Description

Returns a matrix of statistics calculated for a set of given samples. Internal use.

Usage
make.stat(samples, data.list, stat, export.scale)
Arguments
samples a set of samples from the dataset under processing. They should match sample
names from sample.list. See also the main help page of metaseqr.
data.list a list containing natural or transformed data, typically an output from make . transformation.
stat the statistics to calculate. Can be one or more of "mean”, "median”, "sd"”,

non

"mad”, "cv", "rcv”. See also the main help page of metaseqr.

export.scale the output transformations used as input also to make. transformation.

86 make.transformation

Value
A matrix of statistics calculated based on the input sample names. The different data transformna-
tions are appended columnwise.

Author(s)

Panagiotis Moulos

Examples

data.matrix <- round(1000*matrix(runif(400),100,4))
rownames(data.matrix) <- paste(”gene_",1:100,sep="")
colnames(data.matrix) <- c("C1","C2","T1","T2")

tr <- make.transformation(data.matrix,c("”log2","vst"))

st <- make.stat(c("C1","C2"),tr,c("mean”,"sd"),c("log2","vst"))

make.transformation Calculates several transformation of counts

Description

Returns a list of transformed (normalized) counts, based on the input count matrix data.matrix. The
data transformations are passed from the export.scale parameter and the output list is named
accordingly. This function is intended mostly for internal use but can also be used independently.

Usage
make.transformation(data.matrix, export.scale,
scf = NULL, log.offset = 1)
Arguments
data.matrix the raw or normalized counts matrix. Each column represents one input sample.

export.scale a character vector containing one of the supported data transformations ("natural”,
"log2", "log1@","vst"). See also the main help page of metaseqr.

scf a scaling factor for the reads of each gene, for example the sum of exon lengths
or the gene length. Divided by each read count when export.scale="rpgm". It
provides an RPKM-like measure but not the actual RPKM as this normalization
is not supported.

log.offset a number to be added to each element of data.matrix in order to avoid Infinity
on log type data transformations.
Value

A named list whose names are the elements in export.scale. Each list member is the respective
transformed data matrix.

make.venn.areas 87

Author(s)

Panagiotis Moulos

Examples

data.matrix <- round(1000*matrix(runif(400),100,4))
rownames (data.matrix) <- paste("gene_",1:100,sep="")
colnames(data.matrix) <- c("C1","C2","T1","T2")

tr <- make.transformation(data.matrix,c(”log2","vst"))
head(tr$vst)

make.venn.areas Helper for Venn diagrams

Description

This function creates a list with names the arguments of the Venn diagram construction functions
of the R package VennDiagram and list members the internal encoding (uppercase letters A to E
and combinations among then) used to encode the pairwise comparisons to create the intersections
needed for the Venn diagrams. Internal use mostly.

Usage
make.venn.areas(n)
Arguments
n the number of the sets used for the Venn diagram.
Value

A named list, see descritpion.

Author(s)

Panagiotis Moulos

Examples

non

sets <- c("apple”,"pear”,"banana”)
pairs <- make.venn.pairs(sets)
areas <- make.venn.areas(length(sets))

88 make.venn.counts

make.venn.colorscheme Helper for Venn diagrams

Description

This function returns a list of colorschemes accroding to the number of sets. Internal use.

Usage
make.venn.colorscheme(n)
Arguments
n the number of the sets used for the Venn diagram.
Value

A list with colors for fill and font.

Author(s)

Panagiotis Moulos

Examples

non

sets <- c("apple”, "pear”,"banana")
cs <- make.venn.colorscheme(length(sets))

make.venn.counts Helper for Venn diagrams

Description

This function creates a list with names the arguments of the Venn diagram construction func-
tions of the R package VennDiagram and list members are initially NULL. They are filled by the
diagplot.venn function. Internal use mostly.

Usage

make.venn.counts(n)

Arguments

n the number of the sets used for the Venn diagram.

make.venn.pairs 89

Value

A named list, see descritpion.

Author(s)

Panagiotis Moulos

Examples

n on non

sets <- c("apple”,"pear”,"banana")
counts <- make.venn.counts(length(sets))

make.venn.pairs Helper for Venn diagrams

Description

This function creates a list of pairwise comparisons to be performed in order to create an up to
5-way Venn diagram using the R package VennDiagram. Internal use mostly.

Usage
make.venn.pairs(algs)
Arguments
algs a vector with the names of the sets (up to length 5, if larger, it will be truncated
with a warning).
Value

A list with as many pairs as the comparisons to be made for the construction of the Venn diagram.
The pairs are encoded with the uppercase letters A through E, each one corresponding to order of
the input sets.

Author(s)

Panagiotis Moulos

Examples

non

sets <- c("apple”,"pear”,"banana”)
pairs <- make.venn.pairs(sets)

90 meta.perm

meta.perm Permutation tests for meta-analysis

Description

This function performs permutation tests in order to derive a meta p-value by combining several of
the statistical algorithms of metaseqr. This is probably the most accurate way of combining multiple
statistical algorithms for RNA-Seq data, as this issue is different from the classic interpretation
of the term "meta-analysis" which implies the application of the same statistical test on different
datasets treating the same subject/experiment. For other methods, see also the main metaseqr help
page. You should keep in mind that the permutation procedure can take a long time, even when
executed in parallel.

Usage
meta.perm(contrast, counts, sample.list, statistics,
stat.args, libsize.list, nperm = 10000,
weight = rep(1/ncol(counts), ncol(counts)),
select = c("min", "max", "weight"), replace = "auto”,
reprod=TRUE, multic = FALSE)
Arguments
contrast the contrasts to be tested by each statistical algorithm. See the main metaseqr
help page.
counts a normalized read counts table, one row for each gene, one column for each
sample.
sample.list the list containing condition names and the samples under each condition. See
the main metaseqr help page.
statistics the statistical algorithms used in metaseqr. See the main metaseqr help page.
stat.args the parameters for each statistical algorithm. See the main metaseqr help page.

libsize.list alist with library sizes. See the main metaseqr and the stat.* help pages.

nperm the number of permutations (Monte Carlo simulations) to perform.
weight a numeric vector of weights for each statistical algorithm.
select how to select the initial vector of p-values. It can be "min” to select the mini-

mum p-value for each gene (more conservative), "max” to select the maximum
p-value for each gene (less conservative), "weight" to apply the weights to the
p-value vector for each gene and derive a weighted p-value.

replace same as the replace argument in the sample function. Implies bootstraping
or simple resampling without replacement. It can also be "auto”, to determine
bootstraping or not with the following rule: if ncol (counts)<=6 replace=FALSE else
replace=TRUE. This protects from the case of having zero variability across re-
sampled conditions. In such cases, most statistical tests would crash.

meta.test 91

reprod create reproducible permutations. Ideally one would want to create the same set
of indices for a given dataset so as to create reproducible p-values. If reprod=TRUE,
a fixed seed is used by meta.perm for all the datasets analyzed with metaseqr.
If reprod=FALSE, then the p-values will not be reproducible, although statistical
significance is not expected to change for a large number of resambling. Finally,
reprod can be a numeric vector of seeds with the same length as nperm so that
the user can supply his/her own seeds.

multic use multiple cores to execute the premutations. This is an external parameter
and implies the existence of multicore package in the execution environment.
See the main metaseqr help page.

Value

A vector of meta p-values

Author(s)

Panagiotis Moulos

Examples

Not yet available

meta. test Meta-analysis using several RNA-Seq statistics

Description

This function calculates the combined p-values when multiple statistical algorithms are applied to
the input dataset. It is a helper and it requires very specific arguments so it should not be used
individually

Usage
meta.test(cp.list,
meta.p = c("simes”, "bonferroni”, "fisher"”, "dperm.min”,
"dperm.max", "dperm.weight", "fperm”, "whitlock”,
"minp”, "maxp”, "weight", "pandora”, "none"), counts,

sample.list, statistics, stat.args, libsize.list,
nperm = 10000, weight = rep(1/length(statistics),
length(statistics)), reprod=TRUE, multic = FALSE)

92 meta.test

Arguments

cp.list anamed list whose names are the contrasts requested from metaseqr. Each mem-
ber is a p-value matrix whose colnames are the names of the statistical tests
applied to the data. See the main metaseqr help page.

meta.p the p-value combination method to use. See the main metaseqr help page.

counts the normalized and possibly filtered read counts matrix. See the main metaseqr
help page.

sample.list the list containing condition names and the samples under each condition. See
the main metaseqr help page.

statistics the statistical algorithms used in metaseqr. See the main metaseqr help page.

stat.args the parameters for each statistical argument. See the main metaseqr help page.

libsize.list a list with library sizes. See the main metaseqr and the stat. * help pages.

nperm the number of permutations (Monte Carlo simulations) to perform.
weight a numeric vector of weights for each statistical algorithm.
reprod create reproducible permutations when meta.p="dperm.min", meta.p="dperm.max"

or meta.p="dperm.weight". Ideally one would want to create the same set of
indices for a given dataset so as to create reproducible p-values. If reprod=TRUE,
a fixed seed is used by meta.perm for all the datasets analyzed with metaseqr.
If reprod=FALSE, then the p-values will not be reproducible, although statistical
significance is not expected to change for a large number of resambling. Finally,
reprod can be a numeric vector of seeds with the same length as nperm so that
the user can supply his/her own seeds.

multic use multiple cores to execute the premutations. This is an external parameter
and implies the existence of multicore package in the execution environment.
See the main metaseqr help page.

Value

A named list with combined p-values. The names are the contrasts and the list members are com-
bined p-value vectors, one for each contrast.

Author(s)

Panagiotis Moulos

Examples

Not yet available

meta.worker

meta.worker Permutation tests helper

Description

This function performs the statistical test for each permutation. Internal use only.

Usage
meta.worker(x,co,sl,cnt,s,r,sa,11,
el,w)

Arguments

X a virtual list with the random seed and the permutation index.

co the counts matrix.

sl the sample list.

cnt the contrast name.

S the statistical algorithms.

sa the parameters for each statistical algorithm.

11 a list with library sizes.

r same as the replace argument in the sample function.

el min, max or weight.

w a numeric vector of weights for each statistical algorithm
Value

A matrix of p-values.

Author(s)

Panagiotis Moulos

Examples

Not yet available

94

metaseqr

metaseqr The main metaseqr pipeline

Description

This function is the main metaseqr workhorse and implements the main metaseqr workflow which
performs data read, filtering, normalization and statistical selection, creates diagnostic plots and
exports the results and a report if requested. The metaseqr function is responsible for assembling all
the steps of the metaseqr pipeline which 1) reads the input gene or exon read count table ii) performs
prelimininary filtering of data by removing chrM and other non-essential information for a typical
differential gene expression analysis as well as a preliminary expression filtering based on the exon
counts, if an exon read count file is provided. iii) performs data normalization with one of currently
widely used algorithms, including EDASeq (Risso et al., 2011), DESeq (Anders and Huber, 2010),
edgeR (Robinson et al., 2010), NOISeq (Tarazona et al., 2012) or no normalization iv) performs a
second stage of filtering based on the normalized gene expression according to several gene filters v)
performs statistical testing with one or more of currently widely used algorithms, including DESeq
(Anders and Huber, 2010), edgeR (Robinson et al., 2010), NOISeq (Tarazona et al., 2012), limma
(Smyth et al., 2005) for RNA-Seq data, baySeq (Hardcastle et al., 2012) vi) in the case of multiple
statistical testing algorithms, performs meta-analysis using one of five available methods (see the
meta.p argument) vii) exports the resulting differentially expressed gene list in text tab-delimited
format viii) creates a set of diagnostic plots either available in the aforementioned packages or
metaseqr specific ones and ix) creates a comprehensive HTML report which summarizes the run
information, the results and the diagnostic plots. Certain diagnostic plots (e.g. the volcano plot)
can be interactive with the use of the external Highcharts (http://www.highcharts.com) JavaScript
library for interactive graphs. Although the inputs to the metaseqr workflow are many, in practice,
setting only very few of them and accepting the defaults as the rest can result in quite comprehensi-
ble results for mainstream organisms like mouse, human, fly and rat.

Usage

metaseqr(counts, sample.list, exclude.list = NULL,
file.type = c("auto”, "sam", "bam”, "bed"),
path = NULL, contrast = NULL, libsize.list = NULL,
id.col = 4, gc.col = NA, name.col = NA, bt.col = NA,

annotation = c("download”, "embedded"),

org = c("hg18", "hgl19"”, "hg38", "mm9", "mm1@", "rn5", "dm3",
"danrer7"”, "pantro4", "susscr3", "tair10", "custom"),

refdb = c("ensembl”, "ucsc”, "refseq"),

count.type = c("gene"”, "exon"),

exon.filters = list(min.active.exons = list(exons.per.gene = 5,
min.exons = 2, frac = 1/5)),
gene.filters = list(length = list(length = 500),
avg.reads = list(average.per.bp = 100, quantile = 0.25),
expression = list(median = TRUE, mean = FALSE, quantile = NA,
known = NA, custom = NA),
biotype = get.defaults("biotype.filter”, orgl[1])),
when.apply.filter = c("postnorm”, "prenorm”),

metaseqr

Arguments

counts

95

normalization = c("edaseq”, "deseq"”, "edger”, "noiseq"”, "nbpseq”,
"each”, "none"),

norm.args = NULL,

statistics = c("deseq”, "edger"”, "noiseq", "bayseq”, "limma",
"nbpseq”),

stat.args = NULL,
adjust.method = sort(c(p.adjust.methods, "qvalue")),

meta.p = if (length(statistics) > 1) c("simes”, "bonferroni”, "fisher”,
"dperm.min"”, "dperm.max", "dperm.weight"”, "fperm”, "whitlock"”,
"minp”, "maxp”, "weight", "pandora”, "none") else "none”,

weight = rep(1/length(statistics), length(statistics)),
nperm = 10000, reprod=TRUE, pcut = NA, log.offset =1,
preset = NULL,

gc.plots = c("mds”, "biodetection”, "countsbio”, "saturation”,
"readnoise”, "filtered”, "correl”, "pairwise"”, "boxplot”,
"gcbias"”, "lengthbias”, "meandiff"”, "meanvar”, "rnacomp”,
"deheatmap”, "volcano”, "biodist"),

fig'format = C("png"’ ”jpg”, ”tiff”, ”bmp”’ "pdfll, ”psﬂ),
out.list = FALSE, export.where = NA,

export.what = c("annotation”, "p.value”, "adj.p.value”,
"meta.p.value”, "adj.meta.p.value”, "fold.change",
"stats"”, "counts”,"flags"),

export.scale = c("natural”, "log2", "logl@", "vst", "rpgm"),

export.values = c("raw”, "normalized"),

export.stats = c("mean”, "median", "sd", "mad"”, "cv",
"rev"),

export.counts.table = FALSE,

restrict.cores = 0.6, report = TRUE, report.top = 0.1,
report.template = "default”, save.gene.model = TRUE,
verbose = TRUE, run.log = TRUE, ...)

a text tab-delimited file containing gene or exon counts in one of the following
formats: 1) the first column contains unique gene or exon identifiers and the rest
of the columns contain the read counts for each sample. Thus the first cell of
each row is a gene or exon accession and the rest are integers representing the
counts for that accession. In that case, the annotation parameter should strictly
be "download” or an external file in proper format. ii) The first n columns
should contain gene or exon annotation elements like chromosomal locations,
gene accessions, exon accessions, GC content etc. In that case, the annotation
parameter can also be "embedded”. The ideal embedded annotation contains 8
columns, chromosome, gene or exon start, gene or exon end, gene or exon ac-
cession, GC-content (fraction or percentage), strand, HUGO gene symbol and
gene biotype (e.g. "protein_coding" or "ncRNA"). When the annotation pa-
rameter is "embedded", certain of these features are mandatory (co-ordinates
and accessions). If they are not present, the pipeline will not run. If addi-
tional elements are not present (e.g. GC content or biotypes), certain features
of metaseqr will not be available. For example, EDASeq normalization will not

96

sample.list

exclude.list

path

file.type

contrast

metaseqr

be performed based on a GC content covariate but based on gene length which
is not what the authors of EDASeq suggest. If biotypes are not present, a lot of
diagnostic plots will not be available. If the HUGO gene symbols are missing,
the final annotation will contain only gene accessions and thus be less compre-
hensible. Generally, it’s best to set the annotation parameter to "download”
to ensure the most comprehensible results. Counts can be a data frame satis-
fying the above conditions. It is a data frame by default when read2count is
used. counts can also be an .RData file (output of save function which contains
static input elements (list containing the gene model (exon counts for each gene
constructed by the construct.gene.model function, gene and exon annotation
to avoid re-downloading and/or gene counts depending on count. type). This
kind of input facilitates the re-analysis of the same experiment, using differ-
ent filtering, normalization and statistical algorithms. Finally, counts can be a
list representing the gene model (exon counts for each gene) constructed by the
construct.gene.model function (provided for backwards compatibility). This
.RData file can be generated by setting save.gene.model=TRUE when perform-
ing data analysis for the first time.

a list containing condition names and the samples under each condition. It
should have the format sample.list <- list(ConditionA=c("Sample_A1",

"Sample_A2", "Sample_A3"), ConditionB=c("Sample_B1", "Sample_B2"),

ConditionC=c("Sample_C1", "Sample_C2")). The names of the samples
in list members MUST match the column names containing the read counts in
the counts file. If they do not match, the pipeline will either crash or at best,
ignore several of your samples. Alternative, sample.list can be a small tab-
delimited file structured as follows: the first line of the external tab delimited
file should contain column names (names are not important). The first column
MUST contain UNIQUE sample names and the second column MUST contain
the biological condition where each of the samples in the first column should
belong to. In this case, the function make.sample.list is used. If the counts
argument is missing, the sample.list argument MUST be a targets text tab-
delimited file which contains the sample names, the BAM/BED file names and
the biological conditions/groups for each sample/file. The file should be text tab-
delimited and structured as follows: the first line of the external tab delimited
file should contain column names (names are not important). The first column
MUST contain UNIQUE sample names. The second column MUST contain the
raw BAM/BED files WITH their full path. Alternatively, the path argument
should be provided (see below). The third column MUST contain the biological
condition where each of the samples in the first column should belong to.

a list of samples to exclude, in the same (list) format as sample.list above.

an optional path where all the BED/BAM files are placed, to be prepended to
the BAM/BED file names in the targets file. If not given and if the files in the
second column of the targets file do not contain a path to a directory, the current
directory is assumed to be the BAM/BED file container.

the type of raw input files. It can be "auto” for auto-guessing, "bed” for BED
files, "sam” for SAM files or "bam” for BAM files.

a character vector of contrasts to be tested in the statistical testing step(s) of the
metaseqr pipeline. Each element of contrast should STRICTLY have the format

metaseqr 97

"ConditionA_vs_ConditionB_vs_...". A valid example based on the sample.list

above is contrast <- c¢("ConditionA_vs_ConditionB"”, "ConditionA_vs_ConditionC",
"ConditionA_vs_ConditionB_vs_ConditionC"). The first element of pair-

wise contrasts (e.g. "ConditionA" above) MUST be the control condition or any

reference that ConditionB is checked against. metaseqr uses this convention to

properly calculate fold changes. If it’s NULL, a contrast between the first two

members of the sample.list will be auto-generated.

libsize.list an optional named list where names represent samples (MUST be the same as
the samples in sample.list) and members are the library sizes (the sequencing
depth) for each sample. For example libsize.list <- list(Sample_A1=32456913,
Sample_A2=4346818).

id.col an integer denoting the column number in the file (or data frame) provided with
the counts argument, where the unique gene or exon accessions are. Default to
4 which is the standard feature name column in a BED file.

gc.col an integer denoting the column number in the file (or data frame) provided with
the counts argument, where each gene’s GC content is given. If not provided,
GC content normalization provided by EDASeq will not be available.

name. col an integer denoting the column number in the file (or data frame) provided with
the counts argument, where the HUGO gene symbols are given. If not provided,
it will not be available when reporting results. In addition, the "known" gene
filter will not be available.

bt.col an integer denoting the column number in the file (or data frame) provided with
the counts argument, where the gene biotypes are given. If not provided, the
"biodetection”, "countsbio”, "saturation”, "filtered” and "biodist"”
plots will not be available.

annotation instructs metaseqr where to find the annotation for the given counts file. It can be
one of i) "download” (default) for automatic downloading of the annotation for
the organism specified by the org parameter (using biomaRt), ii) "embedded”
if the annotation elements are embedded in the read counts file or iv) a file
specified by the user which should be as similar as possible to the "download”
case, in terms of column structure.

org the supported organisms by metaseqr. These can be, for human genomes "hg18",
"hg19" or "hg38", for mouse genomes "mm9”, "mm10@", for rat genome "rn5",
for drosophila genome "dm3", for zebrafish genome "danrer7”, for chimpanzee
genome "pantro4”, for pig genome "susscr3” and for Arabidopsis thaliana
genome "tair10". Finally, "custom” will instruct metaseqR to completely ig-
nore the org argument and depend solely on annotation file provided by the
user.

refdb the reference annotation repository from which to retrieve annotation elements
to use with metaseqr. It can be one of "ensembl” (default), "ucsc” or "refseq”.

count. type the type of reads inside the counts file. It can be one of "gene"” or "exon”.
This is a very important and mandatory parameter as it defines the course of the
workflow.

exon.filters a named list whose names are the names of the supported exon filters and its
members the filter parameters. See section "Exon filters" below for details.

metaseqr

gene.filters a named list whose names are the names of the supported gene filters and its
members the filter parameters. See section "Gene filters" below for details.
when.apply.filter
a character string determining when to apply the exon and/or gene filters, rela-
tive to normalization. It can be "prenorm” to apply apply the filters and exclude
genes from further processing before normalization, or "postnorm” to apply the
filters after normalization (default). In the case of when.apply.filter="prenorm”,
a first normalization round is applied to a copy of the gene counts matrix in order
to derive the proper normalized values that will constitute the several expression-
based filtering cutoffs.

normalization the normalization algorithm to be applied on the count data. It can be one
of "edaseq"” (default) for EDASeq normalization, "deseq” for the normaliza-
tion algorithm (individual options specified by the norm.args argument) in the
DESq package, "edger” for the normalization algorithms present in the edgeR
package (specified by the norm.args argument), "noiseq"” for the normaliza-
tion algorithms present in the NOISeq package (specified by the norm.args
argument), "nbpseq” for the normalization algorithms present in the NBPSeq
package (specified by the norm.args argument) or "none” to not normalize
the data (highly unrecommended). It can also be "each” where in this case,
the normalization applied will be specific to each statistical test used (i.e. the
normalization method bundled with each package and used in its examples and
documentation). The last choice is for future use!

norm.args a named list whose names are the names of the normalization algorithm pa-
rameters and its members parameter values. See section "Normalization pa-
rameters" below for details. Leave NULL for the defaults of normalization.
If normalization="each", it must be a named list of lists, where each sub-list
contains normalization parameters specific to each statistical test to be used. The
last choice is for future use!

statistics one or more statistical analyses to be performed by the metaseqr pipeline.It can
be one or more of "deseq” (default) to conduct statistical test(s) implemented
in the DESeq package, "edger” to conduct statistical test(s) implemented in the
edgeR package, "1imma" to conduct the RNA-Seq version of statistical test(s)
implemented in the limma package, "noiseq” to conduct statistical test(s) im-
plemented in the NOISeq package, "bayseq” to conduct statistical test(s) im-
plemented in the baySeq package and "nbpseq” to conduct statistical test(s) im-
plemented in the NBPSeq package. In any case individual algorithm parameters
are controlled by the contents of the stat.args list.

stat.args a named list whose names are the names of the statistical algorithms used in the
pipeline. Each member is another named list whose names are the algorithm
parameters and its members are the parameter values. See section "Statistics
parameters” below for details. Leave NULL for the defaults of statistics.

adjust.method the multiple testing p-value adjustment method. It can be one of p.adjust.methods
or "qvalue” from the qvalue Bioconductor package. Defaults to "BH" for Benjamini-
Hochberg correction.

meta.p the meta-analysis method to combine p-values from multiple statistical tests
(experimental! see also the second note below, regarding meta-analysis).

snon n o n n o n

It can be one of "simes” (default), "bonferroni”, "minp”, "maxp”, "weight",

metaseqr 99

"pandora”, "dperm.min”, "dperm.max"”, "dperm.weight"”, "fisher", "fperm”,
"whitlock"” or "none". For the "fisher” and "fperm” methods, see the docu-
mentation of the archived CRAN package MADAM. For the "whitlock” method,
see the documentation of the survcomp Bioconductor package. With the "maxp”
option, the final p-value is the maximum p-value out of those returned by each
statistical test. This is equivalent to an "intersection" of the results derived from
each algorithm so as to have a final list with the common genes returned by all
statistical tests. Similarly, when meta.p="minp", is equivalent to a "union" of
the results derived from each algorithm so as to have a final list with all the genes
returned by all statistical tests. The latter can be used as a very lose statistical
threshold to aggregate results from all methods regardless of their False Positive
Rate. With the "simes"” option, the method proposed by Simes (Simes, R. J.,
1986) is used. With the "dperm.min”, "dperm.max”, "dperm.weight" options,
a permutation procedure is initialed, where nperm permutations are performed
across the samples of the normalized counts matrix, producing nperm permuted
instances of the initital dataset. Then, all the chosen statistical tests are re-
executed for each permutation. The final p-value is the number of times that
the p-value of the permuted datasets is smaller than the original dataset. The p-
value of the original dataset is created based on the choice of one of dperm.min,
dperm.max or dperm.weight options. In case of dperm.min, the intial p-value
vector is consists of the minimum p-value resulted from the applied statistical
tests for each gene. The maximum p-value is used with the dperm.max option.
With the dperm.weight option, the weight weighting vector for each statisti-
cal test is used to weight each p-value according to the power of statistical tests
(some might work better for a specific dataset). Be careful as the permutation
procedure usually requires a lot of time. However, it should be the most accu-
rate. This method will NOT work when there are no replicated samples across
biological conditions. In that case, use meta.p="simes" instead. Finally, there
are the "minp"”, "maxp"” and "weight"” options which correspond to the latter
three methods but without permutations. Generally, permutations would be ac-
curate to use when the experiment includes >5 samples per condition (or even
better 7-10) which is rather rare in RNA-Seq experiments. Finally, "pandora”
is the same as "weight” and is added to be in accordance with the metaseqR
paper.

weight a vector of weights with the same length as the statistics vector containing a
weight for each statistical test. It should sum to 1. Use with caution with the
dperm.weight parameter! Theoretical background is not yet solid and only
experience shows improved results!

nperm the number of permutations performed to derive the meta p-value when meta. p="fperm”
or meta.p="dperm”. It defaults to 10000.

reprod create reproducible permutations when meta.p="dperm.min", meta.p="dperm.max"

or meta.p="dperm.weight". Ideally one would want to create the same set of
indices for a given dataset so as to create reproducible p-values. If reprod=TRUE,
a fixed seed is used by meta.perm for all the datasets analyzed with metaseqr.
If reprod=FALSE, then the p-values will not be reproducible, although statistical
significance is not expected to change for a large number of resambling. Finally,
reprod can be a numeric vector of seeds with the same length as nperm so that
the user can supply his/her own seeds.

100 metaseqr

pcut a p-value cutoff for exporting differentially genes, default is to export all the
non-filtered genes.

log.offset an offset to be added to values during logarithmic transformations in order to
avoid Infinity (default is 1).

preset an analysis strictness preset. preset can be one of "all.basic”, "all.normal”,

n on

"all.full”, "medium.basic”, "medium.normal”, "medium.full”, "strict.basic”,
"strict.normal” or "strict.full”, each of which control the strictness of

the analysis and the amount of data to be exported. For an explanation of the
presets, see the section "Presets" below.

gc.plots a set of diagnostic plots to show/create. It can be one or more of "mds”, "biodetection”,

non non non

"rnacomp”, "countsbio”, "saturation”, "readnoise”, "filtered”, "boxplot”,
"gcbias”, "lengthbias”, "meandiff"”, "meanvar”, "deheatmap”, "volcano",
"biodist"”, "venn". The "mds" stands for Mutlti-Dimensional Scaling and it
creates a PCA-like plot but using the MDS dimensionality reduction instead.
It has been succesfully used for NGS data (e.g. see the package htSeqTools)
and it shows how well samples from the same condition cluster together. For
"biodetection”, "countsbhio”, "saturation”, "rnacomp”, "readnoise”, "biodist"”
see the vignette of NOISeq package. The "saturation” case has been rewrit-
ten in order to display more samples in a more simple way. See the help page
of diagplot.noiseq.saturation. In addition, the "readnoise” plots repre-
sent an older version or the RNA composition plot included in older versions
of NOISeq. For "gcbias”, "lengthbias”, "meandiff"”, "meanvar” see the
vignette of EDASeq package. "lenghtbias” is similar to "gcbias” but using
the gene length instead of the GC content as covariate. The "boxplot” op-
tion draws boxplots of log2 transformed gene counts. The "filtered"” option
draws a 4-panel figure with the filtered genes per chromosome and per biotype,
as absolute numbers and as fractions of the genome. See also the help page
of diagplot.filtered. The "deheatmap” option performs hierarchical clus-
tering and draws a heatmap of differentially expressed genes. In the context
of diagnostic plots, it’s useful to see if samples from the same groups cluster
together after statistical testing. The "volcano” option draws a volcano plot
for each contrast and if a report is requested, an interactive volcano plot is pre-
sented in the HTML report. The "venn" option will draw an up to 5-way Venn
diagram depicting the common and specific to each statistical algorithm genes
and for each contrast, when meta-analysis is performed. The "correl” option
creates two correlation graphs: the first one is a correlation heatmap (a corre-
lation matrix which depicts all the pairwise correlations between each pair of
samples in the counts matrix is drawn as a clustered heatmap) and the second
one is a correlogram plot, which summarizes the correlation matrix in the form
of ellipses (for an explanation please see the vignette/documentation of the R
package corrplot. Set gc.plots=NULL if you don’t want any diagnostic plots
created.

n o n

fig.format the format of the output diagnostic plots. It can be one or more of "png”, "jpg",
"tiff", "bmp”, "pdf"”, "ps". The native format "x11" (for direct display) is not
provided as an option as it may not render the proper display of some diagnostic
plots in some devices.

out.list a logical controlling whether to export a list with the results in the running envi-
ronment.

metaseqr 101

export.where an output directory for the project results (report, lists, diagnostic plots etc.)

export.what the content of the final lists. It can be one or more of "annotation”, to bind
the annoation elements for each gene, "p.value”, to bind the p-values of each
method, "adj.p.value”, to bind the multiple testing adjusted p-values, "meta.p.value”,
to bind the combined p-value from the meta-analysis, "adj.meta.p.value”, to
bind the corrected combined p-value from the meta-analysis, "fold.change”,
to bind the fold changes of each requested contrast, "stats”, to bind several
statistics calclulated on raw and normalized counts (see the export.stats ar-
gument), "counts”, to bind the raw and normalized counts for each sample.

export.scale export values from one or more transformations applied to the data. It can be one
or more of "natural”, "log2", "log10", "vst” (Variance Stabilizing Transor-
mation, see the documentation of DESeq package) and "rpgm” which is ratio
of mapped reads per gene model (either the gene length or the sum of exon
lengths, depending on count.type argument). Note that this is not RPKM as
reads are already normalized for library size using one of the supported normal-
ization methods. Also, "rpgm” might be misleading when normalization is
other than "deseq".

export.values Itcanbe one or more of "raw"” to export raw values (counts etc.) and "normalized”
to export normalized counts.

export.stats calculate and export several statistics on raw and normalized counts, condition-
wise. It can be one or more of "mean”, "median”, "sd"”, "mad", "cv" for the
Coefficient of Variation, "rcv” for a robust version of CV where the median and
the MAD are used instead of the mean and the standard deviation.
export.counts.table
exports also the calculated read counts table when input is read from bam files
and exports also the normalized count table in all cases. Defaults to FALSE.

restrict.cores in case of parallel execution of several subfunctions, the fraction of the available
cores to use. In some cases if all available cores are used (restrict.cores=1
and the system does not have sufficient RAM, the pipeline running machine
might significantly slow down.

report a logical value controlling whether to produce a summary report or not. Defaults
to TRUE.
report.top a fraction of top statistically significant genes to append to the HTML report.

This helps in keeping the size of the report as small as possible, as appending
the total gene list might create a huge HTML file. Users can always retrieve the
whole gene lists from the report links. Defaults to 0.1 (top 10 genes). Set to NA
or NULL to append all the statistically significant genes to the HTML report.
report.template
an HTML template to use for the report. Do not change this unless you know
what you are doing.
save.gene.model
in case of exon analysis, a list with exon counts for each gene will be saved to the
file export.where/data/gene_model.RData. This file can be used as input to
metaseqR for exon count based analysis, in order to avoid the time consuming
step of assembling the counts for each gene from its exons

verbose print informative messages during execution? Defaults to TRUE.

102 metaseqr

run.log write a log file of the metaseqr run using package log4r. Defaults to TRUE. The
filename will be auto-generated.

further arguments that may be passed to plotting functions, related to par.

Value

If out.list is TRUE, a named list whose length is the same as the number of requested contrasts.
Each list member is named according to the corresponding contrast and contains a data frame of
differentially expressed genes for that contrast. The contents of the data frame are defined by the
export.what, export.scale, export.stats, export.values parameters. If report is
TRUE, the output list contains two main elements. The first is described above (the analysis results)
and the second contains the same results but in HTML formatted tables.

Exon filters

The exon filters are a set of filters which are applied after the gene models are assembled from
the read counts of individual exons and before the gene expression is summarized from the exons
belonging to each gene. These filters can be applied when the input read counts file contains exon
reads. It is not applicable when the input file already contains gene counts. Such filters can be
for example "accept genes where all the exons contain more than x reads" or "accept genes where
there is read presence in at least m/n exons, n being the total exons of the gene". Such filters
are NOT meant for detecting differential splicing as also the whole metaseqr pipeline, thus they
should not be used in that context. The exon.filters argument is a named list of filters, where the
names are the filter names and the members are the filter parameters (named lists with parameter
name, parameter value). See the usage of the metaseqr function for an example of how these lists
are structured. The supported exon filters in the current version are: i) min.active.exons which
implements a filter for demanding m out of n exons of a gene to have a certain read presence with
parameters exons.per.gene, min.exons and frac. The filter is described as follows: if a gene has
up to exons.per.gene exons, then read presence is required in at least min.exons of them, else
read presence is required in a frac fraction of the total exons. With the default values, the filter
instructs that if a gene has up to 5 exons, read presence is required in at least 2, else in at least 20
exons, in order to be accepted. More filters will be implemented in future versions and users are
encouraged to propose exon filter ideas to the author by mail. See metaseqr usage for the defaults.
Set exon.filters=NULL to not apply any exon filtering.

Gene filters

The gene filters are a set of filters applied to gene expression as this is manifested through the read
presence on each gene and are preferably applied after normalization. These filters can be applied
both when the input file or data frame contains exon read counts and gene read counts. Such filter
can be for example "accept all genes above a certain count threshold" or "accept all genes with ex-
pression above the median of the normalized counts distribution" or "accept all with length above a
certain threshold in kb" or "exclude the *pseudogene’ biotype from further analysis". The supported
gene filters in the current version, which have the same structure as the exon filters (named list of
lists with filter names, parameter names and parameter arguments) are: i) length which implements
a length filter where genes are accepted for further analysis if they are above length (its parame-
ter) kb. ii) avg.reads which implements a filter where a gene is accepted for further analysis if it
has more average reads than the quantile of the average count distribution per average.per.bp
base pairs. In summary, the reads of each gene are averaged per average.per.bp based on each

metaseqr 103

gene’s length (in case of exons, input the "gene’s length" is the sum of the lengths of exons) and the
quantile quantile of the average counts distribution is calculated for each sample. Genes passing
the filter should have an average read count larger than the maximum of the vector of the quantiles
calculated above. iii) expression which implements a filter based on the overall expression of a
gene. The parameters of this filter are: median, where genes below the median of the overall count
distribution are not accepted for further analysis (this filter has been used to distinguish between
"expressed" and "not expressed" genes in several cases, e.g. (Mokry et al., NAR, 2011) with a log-
ical as value, mean which is the same as median but using the mean, quantile which is the same
as the previous two but using a specific quantile of the total counts distribution, known, where in
this case, a set of known not-expressed genes in the system under investigation are used to estimate
an expression cutoff. This can be quite useful, as the genes are filtered based on a "true biological"
cutoff instead of a statistical cutoff. The value of this filter is a character vector of HUGO gene
symbols (MUST be contained in the annotation, thus it’s better to use annotation="download")
whose counts are used to build a "null" expression distribution. The 90th quantile of this distribu-
tion is then the expression cutoff. This filter can be combined with any other filter. Be careful with
gene names as they are case sensitive and must match exactly ("Pten" is different from "PTEN"!).
iv) biotype where in this case, genes with a certain biotype (MUST be contained in the annota-
tion, thus it’s better to use annotation="download") are excluded from the analysis. This filter
is a named list of logical, where names are the biotypes in each genome and values are TRUE or
FALSE. If the biotype should be excluded, the value should be TRUE else FALSE. See the result of
get.defaults("biotype.filter"”,"hg19") for an example. Finally, in future versions there will
be support for user-defined filters in the form of a function.

Normalization parameters

The normalization parameters are passed again as a named list where the names of the members
are the normalization parameter names and the values are the normalization parameter values. You
should check the documentation of the packages EDASeq, DESeq, edgeR, NOISeq and NBPSeq for
the parameter names and parameter values. There are a few exceptions in parameter names: in case
of normalization="edaseq" the only parameter names are within.which and between.which,
controlling the withing lane/sample and between lanes/samples normalization algorithm. In the case
of normalization="nbpseq", there is one additional parameter called main.method which can
take the calues "nbpseq” or "nbsmyth"”. These values correspond to the two different workflows
available in the NBPSeq package. Please, consult the NBPSeq package documentation for further
details. For the rest of the algorithms, the parameter names are the same as the names used in the
respective packages. For examples, please use the get.defaults function.

Statistics parameters

The statistics parameters as passed to statistical algorithms in metaseqr, exactly with the same
way as the normalization parametes above. In this case, there is one more layer in list nest-
ing. Thus, stat.args is a named list whose names are the names the algorithms used (see the
statistics parameter). Each member is another named list,with parameters to be used for each
statistical algorithm. Again, the names of the member lists are parameter names and the val-
ues of the member lists are parameter values. You should check the documentations of DESeq,
edgeR, NOISeq, baySeq, limma and NBPSeq for these parameters. There are a few exceptions
in parameter names: In case of statistics="edger", apart from the rest of the edgeR statistical
testing arguments, there is the argument main.method which can be either "classic” or "glm",
again defining whether the binomial test or GLMs will be used for statistical testing. For exam-

104 metaseqr

ples, please use the get.defaults function. When statistics="nbpseq”, apart from the rest
arguments of the NBPSeq functions estimate.disp and estimate.dispersion, there is the ar-
gument main.method which can be "nbpseq” or "nbsmyth”. This argument determines the pa-
rameters to be used by the estimate.dispersion function or by the estimate.disp function to
estimate RNA-Seq count dispersions. The difference between the two is that they constitute dif-
ferent starting points for the two workflows in the package NBPSeq. The first worklfow (with
main.method="nbpseq"” and the estimate.dispersion function is NBPSeq package specific,
while the second (with main.method="nbsmyth” and the estimate.disp function is similar to
the workflow of the edgeR package. For additional information regarding the statistical testing
in NBPSeq, please consult the documentation of the NBPSeq package. Additinally, please note
that there is currently a problem with the NBPSeq package and the workflow that is spe-
cific to the NBPSeq package. The problem has to do with function exporting as there are
certain functions which are not recognized from the package internally. For this reason and
until it is fixed, only the Smyth workflow will be available with the NBPSeq package (thus
stat.args$main.method="nbpseq” will not be available)!

Presets

The analysis presets are a set of keywords (only one can be used) that predefine some of the pa-
rameters of the metaseqr pipeline. For the time being they are quite simple and they control 1) the

non

strictness of filtering and statistical thresholding with three basic levels ("all", "medium", "strict")
and ii) the data columns that are exported, again in three basic ways ("basic”, "normal", "full")
controlling the amount of data to be exported. These keywords can be combined with a dot in
the middle (e.g. "all.basic” to define an analysis preset. When using analysis presets, the fol-
lowing argumentsof metaseqr are overriden: exon.filters, gene.filters, pcut, export.what,
export.scale, export.values, exon.stats. If you want to explicitly control the above argu-
ments, the preset argument should be set to NULL (default). Following is a synopsis of the different

presets and the values of the arguments they moderate:

e "all.basic": use all genes (do not filter) and export all genes and basic annotation and
statistics elements. In this case, the above described arguments become:
— exon.filters=NULL
— gene.filters=NULL
— pcut=1
— export.what=c("annotation”,"p.value”,"adj.p.value”, "meta.p.value”, "adj.meta.p.value", "fold.
— export.scale=c("natural”,”log2")
— export.values=c("normalized")
— export.stats=c("mean")
e "all.normal”: use all genes (do not filter) and export all genes and normal annotation and
statistics elements. In this case, the above described arguments become:
— exon.filters=NULL
— gene.filters=NULL
— pcut=1
— export.what=c("annotation”,"p.value”,"adj.p.value”, "meta.p.value”, "adj.meta.p.value”, "fold.
— export.scale=c("natural”,"log2")

— export.values=c("normalized")

metaseqr

105

export.stats=c("mean”, "sd","cv")

In this case, the above described arguments become:

exon.filters=NULL
gene.filters=NULL
pcut=1

n o n n on n o n

export.what=c("annotation”,"p.value”,"adj.p.value”, "meta.p.value”, "adj.meta.p.value”, "fold.
export.scale=c("natural”, "log2","logl10@","vst")

non

export.values=c("raw"”,"normalized")

n o n non

export.stats=c(”"mean”,"median”,"sd","mad","cv","rcv")

* "medium.basic"”: apply a medium set of filters and and export statistically significant genes
and basic annotation and statistics elements. In this case, the above described arguments
become:

exon.filters=list(min.active.exons=list(exons.per.gene=5,min.exons=2,frac=1/5))
gene.filters=list(length=1ist(length=500), avg.reads=1ist(average.per.bp=100,quantile=0.25),
expression=list(median=TRUE,mean=FALSE,quantile=NA, known=NA, custom=NA),
biotype=get.defaults("biotype.filter”,org[1]))

pcut=0.05
export.what=c("annotation”,"p.value”,"adj.p.value”, "meta.p.value”, "adj.meta.p.value”, "fold.
export.scale=c("natural”,”log2")

export.values=c("normalized")

export.stats=c("mean”)

* "medium.normal”: apply a medium set of filters and and export statistically significant genes
and normal annotation and statistics elements. In this case, the above described arguments
become:

exon.filters=list(min.active.exons=list(exons.per.gene=5,min.exons=2,frac=1/5))
gene.filters=list(length=1list(length=500), avg.reads=1ist(average.per.bp=100,quantile=0.25),
expression=list(median=TRUE,mean=FALSE,quantile=NA,known=NA, custom=NA),
biotype=get.defaults("biotype.filter”,org[1]))

pcut=0.05
export.what=c("annotation”,"p.value”,"adj.p.value"”, "meta.p.value”, "adj.meta.p.value”, "fold.
export.scale=c("natural”,”log2")

export.values=c("normalized")

export.stats=c("mean”,"sd"”,"cv")

and statistics elements. In this case, the above described arguments become:

exon.filters=list(min.active.exons=list(exons.per.gene=5,min.exons=2,frac=1/5))
gene.filters=list(length=1list(length=500), avg.reads=1list(average.per.bp=100,quantile=0.25),
expression=list(median=TRUE,mean=FALSE,quantile=NA, known=NA, custom=NA),
biotype=get.defaults("biotype.filter”,org[1]))

pcut=0.05
export.what=c("annotation”,"p.value”,"adj.p.value”, "meta.p.value”, "adj.meta.p.value"”, "fold.
export.scale=c("natural”,”log2","logl1@","vst")

n o n

export.values=c("raw"”,"normalized")

106 metaseqr

n o n non

— export.stats=c("mean"”,"median”, "sd","mad"”,"cv","rcv")

e "strict.basic": apply a strict set of filters and and export statistically significant genes and
basic annotation and statistics elements. In this case, the above described arguments become:

— exon.filters=list(min.active.exons=list(exons.per.gene=4,min.exons=2,frac=1/4))

— gene.filters=list(length=1list(length=750), avg.reads=1list(average.per.bp=100,quantile=0.5),

expression=list(median=TRUE,mean=FALSE,quantile=NA, known=NA, custom=NA),
biotype=get.defaults("biotype.filter”,org[1]))
— pcut=0.01

non non

— export.what=c("annotation"”,"p.value”,"adj.p.value"”, "meta.p.value”, "adj.meta.p.value","fold.

— export.scale=c("natural”, "log2")
— export.values=c("normalized")
— export.stats=c("mean")
* "strict.normal”: apply a strict set of filters and and export statistically significant genes

and normal annotation and statistics elements. In this case, the above described arguments
become:

— exon.filters=list(min.active.exons=list(exons.per.gene=4,min.exons=2,frac=1/4))

— gene.filters=list(length=1list(length=750), avg.reads=1list(average.per.bp=100,quantile=0.5),

expression=list(median=TRUE,mean=FALSE,quantile=NA, known=NA, custom=NA),
biotype=get.defaults("biotype.filter”,orgl11))
— pcut=0.01

n on n o n non

— export.what=c("annotation"”,"p.value”,"adj.p.value"”, "meta.p.value”, "adj.meta.p.value","fold.

— export.scale=c("natural”, "log2")
— export.values=c("normalized”)
— export.stats=c("mean”,"sd","cv"

and statistics elements. In this case, the above described arguments become:

— exon.filters=list(min.active.exons=list(exons.per.gene=4,min.exons=2,frac=1/4))

— gene.filters=list(length=list(length=750), avg.reads=1list(average.per.bp=100,quantile=0.5),

expression=list(median=TRUE,mean=FALSE,quantile=NA, known=NA, custom=NA),
biotype=get.defaults("biotype.filter”,org[1]))
— pcut=0.01

n on n on n o n

— export.what=c("annotation”,"p.value”,"adj.p.value”, "meta.p.value”, "adj.meta.p.value"”,"fold.

— export.scale=c("natural”,"log2","logl10","vst")

non

— export.values=c("raw"”, "normalized")

n o n non

— export.stats=c("mean"”,"median”, "sd","mad","cv","rcv")

Note

Please note that currently only gene and exon annotation from Ensembl (http://www.ensembl.org)
are supported. Thus, the unique gene or exon ids in the counts files should correspond to valid
Ensembl gene or exon accessions for the organism of interest. If you are not sure about the source
of your counts file or do not know how to produce it, it’s better to start from the original BAM/BED
files (metaseqr will use the read2count function to create a counts file). Keep in mind that in the
case of BED files, the performance will be significantly lower and the overall running time signif-
icanlty higher as the R functions which are used to read BED files to proper structures (Genomi-
cRanges) and calculate the counts are quite slow. An alternative way is maybe the easyRNASeq

metaseqr 107

package (Delhomme et al, 2012). The read2count function does not use this package but rather
makes use of standard Bioconductor functions to handle NGS data. If you wish to work outside
R, you can work with other popular read counters such as the HTSeq read counter (http://www-
huber.embl.de/users/anders/HTSeq/doc/overview.html). Please also note that in the current version,
the members of the gene.filters and exon. filters lists are not checked for validity so be care-
ful to supply with correct names otherwise the pipeline will crash or at the best case scenario, will
ignore the filters. Also note that when you are supplying metaseqr wtih an exon counts table, gene
annotation is always downloaded so please be sure to have a working internet connection. In ad-
dition to the above, if you have a multiple core system, be very careful on how you are using the
restrict.cores argument and generally how many cores you are using with scripts purely written
in R. The analysis with exon read data can very easily cause memory problems, so unless you have
more than 64Gb of RAM available, consider setting restrict.cores to something like 0.2 when work-
ing with exon data. Finally, if you do not wish to download the same annotation again and again
when performing multiple analyses, it is best to use the get.annotation function to download and
store the resulting data frames in local files and then use these files with the annotation option.

Please note that the meta-analysis feature provided by metaseqr is currently experimental and does
not satisfy the strict definition of "meta-analysis", which is the combination of multiple similar
datasets under the same statistical methodology. Instead it is the use of mulitple statistical tests
applied to the same data so the results at this point are not guaranteed and should be interpreted
appropriately. We are working on a more solid methodology for combining multiple statistical
tests based on multiple testing correction and Monte Carlo methods. For the Simes method, please
consult also "Simes, R. J. (1986). "An improved Bonferroni procedure for multiple tests of signifi-
cance". Biometrika 73 (3): 751-754."

Author(s)

Panagiotis Moulos

Examples

An example pipeline with exon counts
data("hg19.exon.data",package="metaseqR")
metaseqr(
counts=hg19.exon.counts,
sample.list=list(normal="normal”,paracancerous="paracancerous”, cancerous="cancerous"),
contrast=c("normal_vs_paracancerous”,"normal_vs_cancerous”,
"normal_vs_paracancerous_vs_cancerous”),
libsize.list=libsize.list.hg19,
id.col=4,
annotation="download",
org="hg19",
count.type="exon",
normalization="edaseq",
statistics="deseq",

pcut=0.05,

qc.plots=c("mds”, "biodetection”, "countsbio”, "saturation"”, "rnacomp”,
"boxplot"”, "gcbias”, "lengthbias”, "meandiff”, "readnoise”,"meanvar”,
"readnoise”, "deheatmap”, "volcano”, "biodist"”, "filtered"),

fig.format=c("png”,"pdf"),

108

non non

export.what=c("annotation”,"p.value"”,"adj.p.value”,"fold.change

"counts”),
export.scale=c("natural”,"log2","log10","vst"),

non

export.values=c("raw"”,"normalized"”),
export.stats=c("mean”, "median”,"sd"”,"mad","cv","rcv"),
restrict.cores=0.8,
gene.filters=list(
length=1ist(
length=500
),
avg.reads=list(
average.per.bp=100,
quantile=0.25
),
expression=list(
median=TRUE,
mean=FALSE
),
biotype=get.defaults("biotype.filter”,"hgl18")

An example pipeline with gene counts
data("mm9.gene.data"”,package="metaseqR")
result <- metaseqr(
counts=mm9.gene.counts,

non
’

stats”,

metaseqr

sample.list=list(e14.5=c("e14.5_1","e14.5_2"), adult_8_weeks=c("a8w_1","a8w_2")),

contrast=c("el14.5_vs_adult_8_weeks"),
libsize.list=1libsize.list.mm9,
annotation="download”,

org="mm9",

count.type="gene",
normalization="edger",
statistics=c("deseq"”,"edger"”, "noiseq"),
meta.p="fisher"”,

pcut=0.05,

fig.format=c("png"”,"pdf"),

non non non

export.what=c("annotation”,"p.value”, "meta.p.value"”,"adj.meta.p.value"”,

"fold.change"),
export.scale=c("natural”,"log2"),
export.values="normalized"”,
export.stats=c("mean”,"sd","cv"),
export.where=getwd(),
restrict.cores=0.8,
gene.filters=list(

length=1list(
length=500
),
avg.reads=list(
average.per.bp=100,
quantile=0.25
),

expression=list(

mlifo 109

median=TRUE,

mean=FALSE,
quantile=NA,
known=NA,
custom=NA
)?
biotype=get.defaults("biotype.filter”,"mm9")
)!
out.list=TRUE

)
head(result$datal["e14.5_vs_adult_8_weeks"]])

mlfo MLE dispersion estimate

Description

MLE function used to estimate negative binomial dispersions from real RNA-Seq data, as in (Sone-
son and Delorenzi, BMC Bioinformatics, 2013) and (Robles et al., BMC Genomics, 2012). Internal

use.
Usage
mlfo(phi, y)
Arguments
phi the parameter to be optimized.
y count samples used to perform the optimization.
Value

The objective function value.

Author(s)

Panagiotis Moulos

Examples

Not yet available

110 nat?log

mm9. gene.counts mouse RNA-Seq data with two conditions, four samples

Description

This data set contains RNA-Seq gene read counts for 3 chromosomes. The data were downloaded
from the ENCODE public repository and are derived from the study of Mortazavi et al., 2008 (Mor-
tazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian
transcriptomes by RNA-Seq. Nat Methods. 2008 Jul;5(7):621-8). In their experiment, the au-
thors studied among others genes expression at two developmental stages of mouse liver cells.
It has two conditions-developmental stages (el4.5, adult_8_weeks) and four samples (el14.5_1,
el4.5_2, a8w_1, a8w_2). It also contains a predefined sample.list and libsize.list named
sample.list.mm9 and libsize.list.mm9.

Format

a data.frame with gene read counts and some embedded annotation, one row per gene.

Author(s)

Panagiotis Moulos

Source

ENCODE (http://genome.ucsc.edu/encode/)

nat2log General value transformation

Description

Logarithmic transformation. Internal use only.

Usage
nat2log(x, base = 2, off = 1)
Arguments
X input data matrix
base logarithmic base, 2 or 10
of f offset to avoid Infinity
Author(s)

Panagiotis Moulos

normalize.deseq

111

normalize.deseq

Normalization based on the DESeq package

Description

This function is a wrapper over DESeq normalization. It accepts a matrix of gene counts (e.g.
produced by importing an externally generated table of counts to the main metaseqr pipeline).

Usage

normalize.deseq(gene.counts, sample.list,
norm.args = NULL, output = c("matrix"”, "native"))

Arguments

gene.counts

sample.list

norm.args

output

Value

a table where each row represents a gene and each column a sample. Each cell
contains the read counts for each gene and sample. Such a table can be produced
outside metaseqr and is imported during the basic metaseqr workflow.

the list containing condition names and the samples under each condition.

alist of DESeq normalization parameters. See the result of get.defaults("normalization”,
"deseq") for an example and how you can modify it.

the class of the output object. It can be "matrix” (default) for versatility with
other tools or "native” for the DESeq native S4 object (CountDataSet). In the
latter case it should be handled with suitable DESeq methods.

A matrix or a CountDataSet with normalized counts.

Author(s)

Panagiotis Moulos

Examples

require(DESeq)

data.matrix <- counts(makeExampleCountDataSet())
sample.list <- list(A=c("A1","A2"),B=c("B1","B2","B3"))
diagplot.boxplot(data.matrix,sample.list)

norm.data.matrix <- normalize.deseq(data.matrix,sample.list)
diagplot.boxplot(norm.data.matrix,sample.list)

112 normalize.edaseq

normalize.edaseq Normalization based on the EDASeq package

Description

This function is a wrapper over EDASeq normalization. It accepts a matrix of gene counts (e.g.
produced by importing an externally generated table of counts to the main metaseqr pipeline).

Usage
normalize.edaseq(gene.counts, sample.list,
norm.args = NULL, gene.data = NULL,
output = c("matrix", "native"))
Arguments
gene.counts a table where each row represents a gene and each column a sample. Each cell
contains the read counts for each gene and sample. Such a table can be produced
outside metaseqr and is imported during the basic metaseqr workflow.
sample.list the list containing condition names and the samples under each condition.
norm.args alist of EDASeq normalization parameters. See the result of get.defaults("normalization”,
"edaseq") for an example and how you can modify it.
gene.data an optional annotation data frame (such the ones produced by get.annotation)
which contains the GC content for each gene and from which the gene lengths
can be inferred by chromosome coordinates.
output the class of the output object. It can be "matrix” (default) for versatility with
other tools or "native"” for the EDASeq native S4 object (SeqExpressionSet).
In the latter case it should be handled with suitable EDASeq methods.
Value

A matrix or a SeqExpressionSet with normalized counts.

Author(s)

Panagiotis Moulos

Examples

require(DESeq)

data.matrix <- counts(makeExampleCountDataSet())
sample.list <- list(A=c(”A1","A2"),B=c("B1","B2","B3"))
diagplot.boxplot(data.matrix,sample.list)

lengths <- round(1000*runif(nrow(data.matrix)))
starts <- round(1000*runif(nrow(data.matrix)))

normalize.edger 113

ends <- starts + lengths
gc=runif(nrow(data.matrix))
gene.data <- data.frame(
chromosome=c(rep(”chr1”,nrow(data.matrix)/2),
rep("chr2” nrow(data.matrix)/2)),
start=starts,end=ends, gene_id=rownames(data.matrix),gc_content=gc
)
norm.data.matrix <- normalize.edaseq(data.matrix,sample.list,
gene.data=gene.data)
diagplot.boxplot(norm.data.matrix,sample.list)

normalize.edger Normalization based on the edgeR package

Description

This function is a wrapper over edgeR normalization. It accepts a matrix of gene counts (e.g.
produced by importing an externally generated table of counts to the main metaseqr pipeline).

Usage
normalize.edger(gene.counts, sample.list,
norm.args = NULL, output = c("matrix"”, "native"))
Arguments
gene.counts a table where each row represents a gene and each column a sample. Each cell
contains the read counts for each gene and sample. Such a table can be produced
outside metaseqr and is imported during the basic metaseqr workflow.
sample.list the list containing condition names and the samples under each condition.
norm.args a list of edgeR normalization parameters. See the result of get.defaults("normalization”,
"edger") for an example and how you can modify it.
output the class of the output object. It can be "matrix” (default) for versatility with
other tools or "native” for the edgeR native S4 object (DGEList). In the latter
case it should be handled with suitable edgeR methods.
Value

A matrix or a DGELIist with normalized counts.

Author(s)

Panagiotis Moulos

114 normalize.nbpseq

Examples

require(DESeq)

data.matrix <- counts(makeExampleCountDataSet())
sample.list <- list(A=c("A1","A2"),B=c("B1","B2","B3"))
diagplot.boxplot(data.matrix,sample.list)

norm.data.matrix <- normalize.edger(data.matrix,sample.list)
diagplot.boxplot(norm.data.matrix,sample.list)

normalize.nbpseq Normalization based on the NBPSeq package

Description

This function is a wrapper over DESeq normalization. It accepts a matrix of gene counts (e.g.
produced by importing an externally generated table of counts to the main metaseqr pipeline).

Usage
normalize.nbpseq(gene.counts, sample.list,
norm.args = NULL, libsize.list = NULL,
output = c("matrix”, "native"))
Arguments
gene.counts a table where each row represents a gene and each column a sample. Each cell
contains the read counts for each gene and sample. Such a table can be produced
outside metaseqr and is imported during the basic metaseqr workflow.
sample.list the list containing condition names and the samples under each condition.
norm.args alist of NBPSeq normalization parameters. See the result of get.defaults(”"normalization”,

"nbpseq”) for an example and how you can modify it.

libsize.list an optional named list where names represent samples (MUST be the same as
the samples in sample.list) and members are the library sizes (the sequencing
depth) for each sample. If not provided, the default is the column sums of the
gene.counts matrix.

output the class of the output object. It can be "matrix” (default) for versatility with
other tools or "native” for the NBPSeq native S4 object (a specific list). In the
latter case it should be handled with suitable NBPSeq methods.

Value

A matrix with normalized counts or a list with the normalized counts and other NBPSeq specific
parameters.

normalize.noiseq

Author(s)

Panagiotis Moulos

Examples

require(DESeq)

115

data.matrix <- counts(makeExampleCountDataSet())
sample.list <- list(A=c("A1","A2"),B=c("B1","B2","B3"))
diagplot.boxplot(data.matrix,sample.list)

norm.data.matrix <- normalize.nbpseq(data.matrix,sample.list)
diagplot.boxplot(norm.data.matrix,sample.list)

normalize.noiseq

Normalization based on the NOISeq package

Description

This function is a wrapper over NOISeq normalization. It accepts a matrix of gene counts (e.g.
produced by importing an externally generated table of counts to the main metaseqr pipeline).

Usage

normalize.noiseq(gene.counts, sample.list,
norm.args = NULL, gene.data = NULL, log.offset = 1,
output = c("matrix”, "native"))

Arguments

gene.counts

sample.list

norm.args

gene.data

log.offset
output

a table where each row represents a gene and each column a sample. Each cell
contains the read counts for each gene and sample. Such a table can be produced
outside metaseqr and is imported during the basic metaseqr workflow.

the list containing condition names and the samples under each condition.

alist of NOISeq normalization parameters. See the result of get.defaults("normalization”,
"noiseq") for an example and how you can modify it.

an optional annotation data frame (such the ones produced by get.annotation
which contains the GC content for each gene and from which the gene lengths
can be inferred by chromosome coordinates.

an offset to use to avoid infinity in logarithmic data transformations.

the class of the output object. It can be "matrix” (default) for versatility with
other tools or "native” for the NOISeq native S4 object (SeqExpressionSet).
In the latter case it should be handled with suitable NOISeq methods.

116

Value

read.targets

A matrix with normalized counts.

Author(s)

Panagiotis Moulos

Examples

require(DESeq)

data.matrix <- counts(makeExampleCountDataSet())
sample.list <- list(A=c("A1","A2"),B=c("B1","B2","B3"))
diagplot.boxplot(data.matrix,sample.list)

lengths <- round(1000*runif(nrow(data.matrix)))

starts <- round(1000*runif(nrow(data.matrix)))

ends <- starts + lengths

gc=runif(nrow(data.matrix))

gene.data <- data.frame(
chromosome=c(rep(”chr1”,nrow(data.matrix)/2),

rep(”"chr2” ,nrow(data.matrix)/2)),

start=starts,end=ends, gene_id=rownames(data.matrix),gc_content=gc

)

norm.data.matrix <- normalize.noiseq(data.matrix,sample.list,gene.data)
diagplot.boxplot(norm.data.matrix,sample.list)

read.targets

Creates sample list and BAM/BED file list from file

Description

Create the main sample list and determine the BAM/BED files for each sample from an external

file.

Usage

read. targets(input, path = NULL)

Arguments

input

a tab-delimited file structured as follows: the first line of the external tab de-
limited file should contain column names (names are not important). The first
column MUST contain UNIQUE sample names. The second column MUST
contain the raw BAM/BED files WITH their full path. Alternatively, the path
argument should be provided (see below). The third column MUST contain the
biological condition where each of the samples in the first column should be-
long to. There is an optional fourth column which should contain the keywords

read2count 117

"single” for single-end reads, "paired” for paired-end reads or "mixed” for
BAM files that contain both single- and paired-end reads (e.g. after a mapping
procedure with two round of alignment). If this column is not provided, single-
end reads will be assumed. There is an optional fifth column which stranded read
assignment. It should contain the keywords "forward"” for a forward (5°->3’)
strand library construction protocol, "reverse” for a reverse (3’->5’) strand li-
brary construction protocol, or "no"” for unstranded/unknown protocol. If this
column is not provided, unstranded reads will be assumed.

path an optional path where all the BED/BAM files are placed, to be prepended to
the BAM/BED file names in the targets file.

Value

A named list with four members. The first member is a named list whose names are the conditions of
the experiments and its members are the samples belonging to each condition. The second member
is like the first, but this time the members are named vectors whose names are the sample names
and the vector elements are full path to BAM/BED files. The third member is like the second,
but instead of filenames it contains information about single- or paired-end reads (if available).
The fourth member is like the second, but instead of filenames it contains information about the
strandedness of the reads (if available). The fifth member is the guessed type of the input files
(SAM/BAM or BED). It will be used if not given in the main read2count function.

Author(s)

Panagiotis Moulos
Examples

targets <- data.frame(sample=c(”C1","C2","T1","T2"),
filename=c("C1_raw.bam”,"C2_raw.bam”,"T1_raw.bam"”,"T2_raw.bam"),
condition=c("Control”,"Control”,"Treatment”,"Treatment"))

path <- "/home/chakotay/bam"”

write.table(targets,file="~/targets.txt",sep="\t",row.names=FALSE,
quote=FALSE)

the.list <- read.targets(”"~/targets.txt",path=path)

sample.list <- the.list$samples

bamfile.list <- the.list$files

read2count SAM/BAM/BED file reader helper for the metaseqr pipeline

Description

This function is a helper for the metaseqr pipeline, for reading SAM/BAM or BED files when a
read counts file is not available.

118

Usage

read2count

read2count(targets, annotation, file.type = targets$type,
has.all.fields = FALSE, multic = FALSE)

Arguments

targets

annotation

file.type

has.all.fields

multic

Value

a named list, the output of read. targets.

see the annotation argument in the main metaseqr function. The "annotation”
parameter here is the result of the same parameter in the main function. See also
get.annotation.

the type of raw input files. It can be "bed"” for BED files or "sam", "bam" for
SAM/BAM files. See the same argument in the main metaseqr function for the
case of auto-guessing.

a logical variable indicating if all annotation fields used by metaseqr are avail-
able (that is apart from the main chromosome, start, end, unique id and strand
columns, if also present are the gene name and biotype columns). The default is
FALSE.

a logical value indicating the presence of multiple cores. Defaults to FALSE. Do
not change it if you are not sure whether package parallel has been loaded or
not.

A data frame with counts for each sample, ready to be passed to the main metaseqr pipeline.

Author(s)

Panagiotis Moulos

Examples

Not run:

my.targets <- read.targets("my_mm9_study_bam_files.txt")

gene.data <- get.annotation("mm9","gene")

r2c <- read2count(targets=my.targets,
file.type=my.targets$type,annotation=gene.data)

gene.counts <- r2c$counts

libsize.list <- r2s$libsize

End(Not run)

reduce.exons 119

reduce.exons Merges exons to create a unique set of exons for each gene

Description

This function uses the "reduce” function of IRanges to construct virtual unique exons for each
gene, so as to avoid inflating the read counts for each gene because of multiple possible transcripts.
If the user wants transcripts instead of genes, they should be supplied to the original annotation
table.

Usage

reduce.exons(gr, multic = FALSE)

Arguments
gr a GRanges object created from the supplied annotation (see also the read2count
and get.annotation functions.
multic a logical value indicating the presence of multiple cores. Defaults to FALSE. Do
not change it if you are not sure whether package parallel has been loaded or
not.
Value

A GRanges object with virtual merged exons for each gene/transcript.

Author(s)

Panagiotis Moulos

Examples

require(GenomicRanges)

multic <- check.parallel(0.8)

ann <- get.annotation(”"mm9”,"exon")

gr <- makeGRangesFromDataFrame(
df=ann,
keep.extra.columns=TRUE,
segnames. field="chromosome"

)

re <- reduce.exons(gr,multic=multic)

120 reduce.gene.data

reduce.gene.data Reduce the gene annotation in case of not all chromosomes present in
counts

Description

This function reduces the gene annotation in case of exon reads and when the data to be analyzed
do not contain all the standard chromosomes of the genome under investigation. This can greatly
reduce processing time in these cases.

Usage
reduce.gene.data(exon.data, gene.data)
Arguments
exon.data the exon annotation already reduced to the size of the input exon counts table.
gene.data an annotation data frame from the same organism as exon.counts (such the
ones produced by get.annotation).
Value

The gene. data annotation, reduced to have the same chromosomes as in exon.data, or the original
gene.data if exon.data do contain the standard chromosomes.

Author(s)

Panagiotis Moulos

Examples

data("hg19.exon.data",package="metaseqR")
gene.data <- get.annotation("hg19”,"gene", "ensembl")
reduced. gene.data <- reduce.gene.data(hgl19.exon.counts,

gene.data)

sample.list.hg19 121

sample.list.hg19 Human RNA-Seq data with three conditions, three samples

Description

The sample list for hg19.exon.counts. See the data set description.

Format

anamed 1ist with condition and sample names.

Author(s)

Panagiotis Moulos

Source

GEO (http://www.ncbi.nlm.nih.gov/geo/)

sample.list.mm9 Mouse RNA-Seq data with two conditions, four samples

Description

The sample list for mm9. gene. counts. See the data set description.

Format

anamed list with condition and sample names.

Author(s)

Panagiotis Moulos

Source

ENCODE (http://genome.ucsc.edu/encode/)

122 stat.bayseq

set.arg Argument setter

Description

Set argument(s) to a list of arguments, e.g. normalization arguments.

Usage
set.arg(arg.list, arg.name, arg.value = NULL)
Arguments
arg.list the initial list of a method’s (e.g. normalization) arguments. Can be created with
the get.defaults function.
arg.name a named list with names the new arguments to be set, and mebers the values to
be set or a vector of argument names. In this case, arg.value must be supplied.
arg.value when arg. name is a vector of argument names, the values corresponding to these
arguments.
Value

the arg.list with the changed arg.value for arg.name.

Author(s)

Panagiotis Moulos

Examples

non

norm.list <- get.defaults(”normalization”,"egder")
set.arg(norm.list,list(main.method="glm", logratioTrim=0.4))

stat.bayseq Statistical testing with baySeq

Description

This function is a wrapper over baySeq statistical testing. It accepts a matrix of normalized gene
counts or an S4 object specific to each normalization algorithm supported by metaseqR.

Usage

stat.bayseq(object, sample.list, contrast.list = NULL,
stat.args = NULL, libsize.list = NULL)

stat.deseq 123

Arguments
object a matrix or an object specific to each normalization algorithm supported by
metaseqR, containing normalized counts. Apart from matrix (also for NOISeq),
the object can be a SeqExpressionSet (EDASeq), CountDataSet (DESeq) or
DGEList (edgeR).
sample.list the list containing condition names and the samples under each condition.

contrast.list anamed structured list of contrasts as returned by make.contrast.list or just
the vector of contrasts as defined in the main help page of metaseqr.

stat.args alist of edgeR statistical algorithm parameters. See the result of get.defaults("statistics”,
"bayseq") for an example and how you can modify it.

libsize.list an optional named list where names represent samples (MUST be the same as
the samples in sample.list) and members are the library sizes (the sequencing
depth) for each sample. If not provided, they will be estimated from baySeq.

Value
A named list of the value 1-likelihood that a gene is differentially expressed, whose names are the
names of the contrasts.

Author(s)

Panagiotis Moulos

Examples

require(DESeq)

data.matrix <- counts(makeExampleCountDataSet())

sample.list <- list(A=c("A1","A2"),B=c("B1","B2","B3"))

contrast <- "A_vs_B"

norm.data.matrix <- normalize.edaseq(data.matrix,sample.list,gene.data)
p <- stat.bayseq(norm.data.matrix,sample.list,contrast)

stat.deseq Statistical testing with DESeq

Description

This function is a wrapper over DESeq statistical testing. It accepts a matrix of normalized gene
counts or an S4 object specific to each normalization algorithm supported by metaseqR.

Usage

stat.deseq(object, sample.list, contrast.list = NULL,
stat.args = NULL)

124 stat.edger
Arguments
object a matrix or an object specific to each normalization algorithm supported by
metaseqR, containing normalized counts. Apart from matrix (also for NOISeq),
the object can be a SeqExpressionSet (EDASeq), CountDataSet (DESeq) or
DGEList (edgeR).
sample.list the list containing condition names and the samples under each condition.
contrast.list anamed structured list of contrasts as returned by make.contrast.list or just
the vector of contrasts as defined in the main help page of metaseqr.
stat.args alist of DESeq statistical algorithm parameters. See the result of get.defaults("statistics”,
"deseq") for an example and how you can modify it. It is not required when
the input object is already a CountDataSet from DESeq normalization as the
dispersions are already estimated.
Value
A named list of p-values, whose names are the names of the contrasts.
Author(s)
Panagiotis Moulos
Examples
require(DESeq)
data.matrix <- counts(makeExampleCountDataSet())
sample.list <- list(A=c("A1","A2"),B=c("B1","B2","B3"))
contrast <- "A_vs_B"
norm.data.matrix <- normalize.deseq(data.matrix,sample.list)
p <- stat.deseq(norm.data.matrix,sample.list,contrast)
stat.edger Statistical testing with edgeR
Description
This function is a wrapper over edgeR statistical testing. It accepts a matrix of normalized gene
counts or an S4 object specific to each normalization algorithm supported by metaseqR.
Usage

stat.edger(object, sample.list, contrast.list = NULL,
stat.args = NULL)

stat.limma 125

Arguments
object a matrix or an object specific to each normalization algorithm supported by
metaseqR, containing normalized counts. Apart from matrix (also for NOISeq),
the object can be a SeqExpressionSet (EDASeq), CountDataSet (DESeq) or
DGEList (edgeR).
sample.list the list containing condition names and the samples under each condition.

contrast.list anamed structured list of contrasts as returned by make.contrast.list or just
the vector of contrasts as defined in the main help page of metaseqr.

stat.args alist of edgeR statistical algorithm parameters. See the result of get.defaults("statistics”,
"edger") for an example and how you can modify it.

Value

A named list of p-values, whose names are the names of the contrasts.

Author(s)

Panagiotis Moulos

Examples

require(DESeq)

data.matrix <- counts(makeExampleCountDataSet())

sample.list <- list(A=c("A1","A2"),B=c("B1","B2","B3"))
contrast <- "A_vs_B"

norm.data.matrix <- normalize.edger(data.matrix,sample.list)
p <- stat.edger(norm.data.matrix,sample.list,contrast)

stat.limma Statistical testing with limma

Description

This function is a wrapper over limma statistical testing. It accepts a matrix of normalized gene
counts or an S4 object specific to each normalization algorithm supported by metaseqR.

Usage

stat.limma(object, sample.list, contrast.list = NULL,
stat.args = NULL)

126 stat.nbpseq

Arguments
object a matrix or an object specific to each normalization algorithm supported by
metaseqR, containing normalized counts. Apart from matrix (also for NOISeq),
the object can be a SeqExpressionSet (EDASeq), CountDataSet (DESeq) or
DGEList (edgeR).
sample.list the list containing condition names and the samples under each condition.

contrast.list anamed structured list of contrasts as returned by make.contrast.list or just
the vector of contrasts as defined in the main help page of metaseqr.

stat.args alist of edgeR statistical algorithm parameters. See the result of get.defaults("statistics”,
"limma") for an example and how you can modify it.

Value

A named list of p-values, whose names are the names of the contrasts.

Author(s)

Panagiotis Moulos

Examples

require(DESeq)

data.matrix <- counts(makeExampleCountDataSet())

sample.list <- list(A=c("A1","A2"),B=c("B1","B2","B3"))
contrast <- "A_vs_B"

norm.data.matrix <- normalize.edger(data.matrix,sample.list)
p <- stat.limma(norm.data.matrix,sample.list,contrast)

stat.nbpseq Statistical testing with NBPSeq

Description

This function is a wrapper over NBPSeq statistical testing. It accepts a matrix of normalized gene
counts or an S4 object specific to each normalization algorithm supported by metaseqR.

Usage

stat.nbpseq(object, sample.list, contrast.list = NULL,
stat.args = NULL, libsize.list = NULL)

stat.nbpseq 127

Arguments
object a matrix or an object specific to each normalization algorithm supported by
metaseqR, containing normalized counts. Apart from matrix (also for NOISeq),
the object can be a SeqExpressionSet (EDASeq), CountDataSet (DESeq), DGE-
List (edgeR) or list (NBPSeq).
sample.list the list containing condition names and the samples under each condition.

contrast.list anamed structured list of contrasts as returned by make.contrast.list or just
the vector of contrasts as defined in the main help page of metaseqr.

stat.args a list of NBPSeq statistical algorithm parameters. See the result of get.defaults("statistics”,
"nbpseq”) for an example and how you can modify it. It is not required when
the input object is already a list from NBPSeq normalization as the dispersions
are already estimated.

libsize.list an optional named list where names represent samples (MUST be the same as
the samples in sample.list)and members are the library sizes (the sequencing
depth) for each sample. If not provided, the default is the column sums of the
gene. counts matrix.

Value

A named list of p-values, whose names are the names of the contrasts.

Note

There is currently a problem with the NBPSeq package and the workflow that is specific to the
NBPSeq package. The problem has to do with function exporting as there are certain functions
which are not recognized from the package internally. For this reason and until it is fixed, only the
Smyth workflow will be available with the NBPSeq package.

Author(s)

Panagiotis Moulos

Examples

require(DESeq)

data.matrix <- counts(makeExampleCountDataSet())

sample.list <- list(A=c("A1","A2"),B=c("B1","B2","B3"))
contrast <- "A_vs_B"

norm.data.matrix <- normalize.nbpseq(data.matrix,sample.list)
p <- stat.nbpseq(norm.data.matrix,sample.list,contrast)

128 stat.noiseq

stat.noiseq Statistical testing with NOISeq

Description

This function is a wrapper over NOISeq statistical testing. It accepts a matrix of normalized gene
counts or an S4 object specific to each normalization algorithm supported by metaseqR.

Usage
stat.noiseq(object, sample.list, contrast.list = NULL,
stat.args = NULL, gene.data = NULL, log.offset = 1)
Arguments
object a matrix or an object specific to each normalization algorithm supported by
metaseqR, containing normalized counts. Apart from matrix (also for NOISeq),
the object can be a SeqExpressionSet (EDASeq), CountDataSet (DESeq) or
DGEList (edgeR).
sample.list the list containing condition names and the samples under each condition.

contrast.list anamed structured list of contrasts as returned by make.contrast.list or just
the vector of contrasts as defined in the main help page of metaseqr.

stat.args alist of edgeR statistical algorithm parameters. See the result of get.defaults("statistics”,
"noiseq") for an example and how you can modify it.

gene.data an optional annotation data frame (such the ones produced by get.annotation
which contains the GC content for each gene and from which the gene lengths
can be inferred by chromosome coordinates.

log.offset a number to be added to each element of data matrix in order to avoid Infinity
on log type data transformations.
Value

A named list of NOISeq g-values, whose names are the names of the contrasts.

Author(s)

Panagiotis Moulos

Examples

require(DESeq)

data.matrix <- counts(makeExampleCountDataSet())
sample.list <- list(A=c("A1","A2"),B=c("B1","B2","B3"))
contrast <- "A_vs_B"

lengths <- round(1000*xrunif(nrow(data.matrix)))

starts <- round(1000*runif(nrow(data.matrix)))

validate.alg.args 129

ends <- starts + lengths
gc=runif(nrow(data.matrix))
gene.data <- data.frame(
chromosome=c(rep(”chr1”,nrow(data.matrix)/2),
rep("chr2” nrow(data.matrix)/2)),
start=starts,end=ends, gene_id=rownames(data.matrix),gc_content=gc
)
norm.data.matrix <- normalize.noiseq(data.matrix,sample.list,gene.data)
p <- stat.noiseq(norm.data.matrix,sample.list,contrast,
gene.data=gene.data)

validate.alg.args Validate normalization and statistical algorithm arguments

Description

This function checks and validates the arguments passed by the user to the normalization and statis-
tics algorithms supported by metaseqR. As these are given into lists and passed to the algorithms,
the list members must be checked for NULL, valid names etc. This function performs these checks
and ignores any invalid arguments.

Usage
validate.alg.args(normalization, statistics,
norm.args, stat.args)

Arguments

normalization akeyword determining the normalization strategy to be performed by metaseqR.
See metaseqr main help page for details.

statistics the statistical tests to be performed by metaseqR. See metaseqr main help page
for details.
norm.args the user input list of normalization arguments. See metaseqr main help page
for details.
stat.args the user input list of statistical test arguments. See metaseqr main help page for
details.
Value

A list with two members (norm.args, stat.args) with valid arguments to be used as user input
for the algorithms supported by metaseqR.

Author(s)

Panagiotis Moulos

130 validate.list.args
Examples

normalization <- "edaseq”

statistics <- "edger”

norm.args <- get.defaults("normalization”,"edaseq")

stat.args <- get.defaults("statistics”,"deseq")

Will return as is

val <- validate.alg.args(normalization,statistics,norm.args,stat.args)
val$norm.args

val$stat.args

but...

stat.args <- c(stat.args,my.irrelevant.arg=999)

val <- validate.alg.args(normalization,statistics,norm.args,stat.args)
irrelevant argument will be removed

val$norm.args

val$stat.args

validate.list.args Validate list parameters for several metaseqR functions

Description

This function validates the arguments passed by the user to the normalization, statistics and filtering
algorithms supported by metaseqR. As these are given into lists and passed to the algorithms, the
list member names must be valid algorithm arguments for the pipeline not to crash. This function
performs these checks and ignores any invalid arguments.

Usage
validate.list.args(what, method = NULL, arg.list)
Arguments
what what a keyword determining the procedure for which to validate arguments. It
can be one of "normalization”, "statistics”, "gene.filter”, "exon.filter"
or "biotype.filter”.
method the normalization/statistics/filtering algorithm included in metaseqR for which
to validate user input. When what is "normalization”, method is one of
"edaseq"”, "deseq"”, "edger", "noiseq"” or "nbpseq”. Whenwhatis "statistics”,
method is one of "deseq”, "edger”, "noiseq”, "bayseq”, "1limma" or "nbpseq".
When method is "biotype.filter”, what is the input organism (see the main
metaseqr help page for a list of supported organisms).
arg.list the user input list of arguments.
Value

A list with valid arguments to be used as user input in the algorithms supported by metaseqR.

wapply 131

Author(s)

Panagiotis Moulos

Examples

norm.args.edger <- list(method="TMM" 6 refColumn=NULL,
logratioTrim=0.3,sumTrim=0.05, doWeighting=TRUE,
Bcutoff=-1e10,p=0.75)

Bcutoff does not exist, will throw a warning and ignore it.

norm.args.edger <- validate.list.args("normalization”,
"edger”,norm.args.edger)

wapply List apply helper

Description

A wrapper around normal and parallel apply (mclapply or multicore package) to avoid excessive
coding for control of single or parallel code execution. Internal use.

Usage
wapply(m, ...)
Arguments
m a logical indicating whether to execute in parallel or not.
the rest arguments to lapply (or mclapply)
Author(s)

Panagiotis Moulos

Examples

multic <- check.parallel(0.8)
Test meaningful only in machines where parallel computation
supported
if (multic) {
system. time(r<-wapply(TRUE,1:10,function(x) runif(1e+6)))
system. time(r<-wapply(FALSE,1:10, function(x) runif(le+6)))

132 wp.adjust

wp.adjust Multiple testing correction helper

Description

A wrapper around the p.adjust function to include also the qvalue adjustment procedure from the
qvalue package. Internal use.

Usage
wp.adjust(p, m)
Arguments
p a vector of p-values.
m the adjustment method. See the help of p.adjust.
Author(s)

Panagiotis Moulos

Index

+Topic datasets diagplot.edaseq, 26
hg19.exon.counts, 69 diagplot.filtered, 27, 100
libsize.list.hg19, 69 diagplot.ftd, 217, 22, 28
libsize.list.mm9, 70 diagplot.mds, 29
mm9.gene.counts, 110 diagplot.metaseqr, 26, 30, 32, 34
sample.list.hgl9, 121 diagplot.noiseq, 32, 34
sample.list.mm9, 121 diagplot.noiseq.saturation, 33, 34, 100

xTopic package diagplot.pairs, 35
metaseqR-package, 5 diagplot.roc, 36

diagplot.venn, 37, 88

as.class.vector, 5 diagplot.volcano, 38

disp, 40

build.export, 6 downsample. counts, 40

calc.f1score, 7 estimate.aufc.weights, 41, 67

calc.otr, 8 estimate.sim.params, 42, 42, 83

cddat, 9, 10

cdplot, 10 filter.exons, 44

check.contrast.format, 11 filter.genes, 45

check.file.args, 11 filter.high, 46

check.graphics.file, 12 filter.low, 46

check.graphics. type, 12 fisher.method, 47, 50, 51

check.libsize, 13 fisher.method.perm, 48, 48

check.main.args, 13 fisher.sum, 50, 50

check.num.args, 14 formatC, 76

check.packages, 15

check.parallel, 16 get.annotation, 6, 20, 27, 30, 32, 44, 45, 51,

check.text.args, 16 53,107,118, 119

combine.bonferroni, 17 get.arg, 52

combine.maxp, 18 get.biotypes, 53

combine.minp, 18 get.bs.organism, 54

combine.simes, 19 get.dataset, 54

combine.weight, 20 get.defaults, 52, 55, 103, 104, 122

construct.gene.model, 20, 44, 96 get.ensembl.annotation, 56

cor, 29 get.exon.attributes, 57

get.gc.content, 57

diagplot.avg.ftd, 21 get.gene.attributes, 58

diagplot.boxplot, 23 get.host, 59

diagplot.cor, 24 get.preset.opts, 59

diagplot.de.heatmap, 25 get.strict.biofilter, 60

133

134 INDEX

get.ucsc.annotation, 57, 61 meta.worker, 93
get.ucsc.credentials, 62 metasegR (metasegR-package), 5
get.ucsc.dbl, 62 metaseqr, 6, 7, 13,17, 19, 28, 31, 36,41, 42,
get.ucsc.organism, 63 44, 45, 51, 55, 56, 59, 61, 63, 70, 71,
get.ucsc.query, 57, 64 79, 80, 84, 85, 90-92,94, 118,
get.ucsc. tabledef, 64 123—130
get.ucsc.tbl.tpl, 65 metasegR-package, 5
get.valid.chrs, 66 mlfo, 109
get.weights, 67 mm9.gene.counts, 110
graphics.close, 67
graphics.open, 68 nat2log, 110
normalize.deseq, 111
hg19.exon.counts, 69 normalize.edaseq, 112
normalize.edger, 113
lapply, 131 normalize.nbpseq, 114
libsize.list.hg19, 69 normalize.noiseq, 115
libsize.list.mm9, 70
load.bs.genome, 70 optimize, 43

log2disp, 71
g P p.adjust, 132

make.contrast.list, 37,71, 123—128 p.adjust.methods, 9§

make.export.list, 72 par, 10, 22-29, 31, 33, 35, 36, 38, 39, 68, 102
make.fold.change, 72

make.grid, 73
make.highcharts.points, 74
make.html.body, 75, 78
make.html.cells, 75, 76-78
make.html.header, 76, 78
make.html.rows, 75,77, 78
make.html. table, 78
make.matrix, 79
make.path.struct, 80
make.permutation, 80
make.project.path, 81
make.report.messages, 82
make.sample.list, 82, 96
make.sim.data.sd, 8, 9, 28, 36, 41, 83
make.sim.data.tcc, 84
make.stat, 85

read.targets, 116, 118
read2count, 106, 107,117,117, 119
reduce.exons, 119
reduce.gene.data, 120

sample, 80, 90, 93
sample.list.hg19, 121
sample.list.mm9, 121
save, 96
set.arg, 122
stat.bayseq, 122
stat.deseq, 123
stat.edger, 124
stat.limma, 125
stat.nbpseq, 126
stat.noiseq, 128

make. transformation, 7, 79, 85, 86 validate.alg.args, 129
make.venn.areas, 87 validate.list.args, 130
make.venn.colorscheme, 88

make.venn.counts, 88 wapply, 131
make.venn.pairs, 89 wp.adjust, 132

match.arg, 16
match.call, /14
mclapply, 131
meta.perm, 80, 90
meta.test, 91

	metaseqR-package
	as.class.vector
	build.export
	calc.f1score
	calc.otr
	cddat
	cdplot
	check.contrast.format
	check.file.args
	check.graphics.file
	check.graphics.type
	check.libsize
	check.main.args
	check.num.args
	check.packages
	check.parallel
	check.text.args
	combine.bonferroni
	combine.maxp
	combine.minp
	combine.simes
	combine.weight
	construct.gene.model
	diagplot.avg.ftd
	diagplot.boxplot
	diagplot.cor
	diagplot.de.heatmap
	diagplot.edaseq
	diagplot.filtered
	diagplot.ftd
	diagplot.mds
	diagplot.metaseqr
	diagplot.noiseq
	diagplot.noiseq.saturation
	diagplot.pairs
	diagplot.roc
	diagplot.venn
	diagplot.volcano
	disp
	downsample.counts
	estimate.aufc.weights
	estimate.sim.params
	filter.exons
	filter.genes
	filter.high
	filter.low
	fisher.method
	fisher.method.perm
	fisher.sum
	get.annotation
	get.arg
	get.biotypes
	get.bs.organism
	get.dataset
	get.defaults
	get.ensembl.annotation
	get.exon.attributes
	get.gc.content
	get.gene.attributes
	get.host
	get.preset.opts
	get.strict.biofilter
	get.ucsc.annotation
	get.ucsc.credentials
	get.ucsc.dbl
	get.ucsc.organism
	get.ucsc.query
	get.ucsc.tabledef
	get.ucsc.tbl.tpl
	get.valid.chrs
	get.weights
	graphics.close
	graphics.open
	hg19.exon.counts
	libsize.list.hg19
	libsize.list.mm9
	load.bs.genome
	log2disp
	make.contrast.list
	make.export.list
	make.fold.change
	make.grid
	make.highcharts.points
	make.html.body
	make.html.cells
	make.html.header
	make.html.rows
	make.html.table
	make.matrix
	make.path.struct
	make.permutation
	make.project.path
	make.report.messages
	make.sample.list
	make.sim.data.sd
	make.sim.data.tcc
	make.stat
	make.transformation
	make.venn.areas
	make.venn.colorscheme
	make.venn.counts
	make.venn.pairs
	meta.perm
	meta.test
	meta.worker
	metaseqr
	mlfo
	mm9.gene.counts
	nat2log
	normalize.deseq
	normalize.edaseq
	normalize.edger
	normalize.nbpseq
	normalize.noiseq
	read.targets
	read2count
	reduce.exons
	reduce.gene.data
	sample.list.hg19
	sample.list.mm9
	set.arg
	stat.bayseq
	stat.deseq
	stat.edger
	stat.limma
	stat.nbpseq
	stat.noiseq
	validate.alg.args
	validate.list.args
	wapply
	wp.adjust
	Index

