Package 'immunoClust'

October 9, 2015

Type Package
Title immunoClust - Automated Pipeline for Population Detection in Flow Cytometry
Version 1.0.0
Date 2015-03-10
Author Till Soerensen <till-antoni.soerensen@charite.de></till-antoni.soerensen@charite.de>
Maintainer Till Soerensen <till-antoni.soerensen@charite.de></till-antoni.soerensen@charite.de>
Depends R(>= 2.13.0), methods, stats, graphics, grid, lattice, flowCore
Suggests BiocStyle
Description Model based clustering and meta-clustering of Flow Cytometry Data
Collate class.immunoClust.R plot.immunoClust.R splom.immunoClust.R data.R process.R cell.clustering.R meta.clustering.R meta.gating.R meta.export.R clust.util.R transform.R
biocViews Clustering, FlowCytometry
License Artistic-2.0
NeedsCompilation yes

R topics documented:

immunoClust-package																							2
cell.ClustData																							3
cell.EM																							4
cell.FitModel																							6
cell.hclust																							7
cell.ME																							
cell.process																							9
cell.SubClustering																							
dat.exp					•	•				•	•	•	•	•	•	•				•	•		15
dat.fcs																							16
immunoClust-object .																							17

meta.clustering	 			 				 •		•	•			•		•	18
meta.export	 			 													20
meta.exprs	 			 													21
meta.hclust	 			 													23
meta.ME	 			 													24
meta.process	 			 													25
meta.SubClustering	 			 													27
plot.immunoClust	 			 													29
splom.immunoClust .	 			 													31
trans.ApplyToData	 			 													32
trans.FitToData	 			 													33
																	35

Index

immunoClust-package *immunoClust - Automated Pipeline for Population Detection in Flow Cytometry*

Description

Model based clustering and meta-custering routines for Flow Cytometry (FC) data.

The immunoClust-pipeline consits of two major procedures:

cell.process	Clustering of cell-events
meta.process	Meta-clustering of cell-clusters

Cell-events clustering is performed for each FC data sample separately. After this all cell-clustering results are collected in a vector and meta-clustering is performed to obtain the across samples popluations.

Details

Package:	immunoClust
Type:	Package
Version:	1.0.0
Depends:	R(>= 2.13.0), methods, stats, graphics, grid, lattice, flowCore
Date:	2015-01-28
License:	Artistic-2.0

Author(s)

Till Sörensen <till-antoni.soerensen@charited.de>

cell.ClustData

References

Sörensen, T., Baumgart, S., Durek, P., Grützkau, A. and Häupl, T. immunoClust - an automated analysis pipeline for the identification of immunophenotypic signatures in high-dimensional cytometric datasets. *Cytometry A* (accepted).

cell.ClustData Model Based Clustering of Data for a pre-defined Number of Clusters

Description

Performs EM-iteration on cell events, where an initial event cluster membership is obtained by hierarchical clustering on a sample subset given a number of clusters.

Usage

Arguments

data	A numeric matrix, data frame of observations, or object of class flowFrame. Rows correspond to observations and columns correspond to measured parame- ters.
К	Given number of clusters for the final model.
parameters	A character vector specifying the parameters (columns) to be included in clus- tering. When it is left unspecified, all the parameters will be used.
expName	The name of the clustering experiment.
sample.seed	The seed integer for the random number generator.
sample.number	The maximum number of samples used for initial hierarchical clustering.
sample.standar	dize
	A numeric indicating whether the samples for hierarchical clustering are stan- dardized (mean=0, SD=1).
В	The maximum number of EM-iterations.
tol	The tolerance used to assess the convergence of the EM-algorithm.
modelName	Used mixture model; either "mvt" for a t-mixture model or "mvn" for a Gaussian Mixture model.

Details

Although this function provides the possibility to cluster an abitrary set of observed data into a fixed number of clusters, this function is used in the immunoClust-pipeline only for the calculation of the initial model with one cluster.

Value

The fitted model cluster information in an object of class immunoClust.

Author(s)

Till Sörensen <till-antoni.soerensen@charite.de>

References

Sörensen, T., Baumgart, S., Durek, P., Grützkau, A. and Häupl, T. immunoClust - an automated analysis pipeline for the identification of immunophenotypic signatures in high-dimensional cytometric datasets. *Cytometry A* (accepted).

See Also

immunoClust-object, cell.hclust

Examples

```
data(dat.fcs)
res <- cell.ClustData(dat.fcs, parameters=c("FSC-A", "SSC-A"), 5)
summary(res)</pre>
```

cell.EM	immunoClust EMt-iteration on Cell-events given initial Model Param-
	eters

Description

Performs EMt-iteration on cell event observations giving initial model parameters and returns the fitted clusters information in an object of class immunoClust.

Usage

```
cell.EM(data, parameters=NULL, expName="immunoClust Experiment",
    history=NULL, state=NULL,
    K, w, m, s, B=50, tol=1e-5, bias=0.5, modelName="mvt")
cell.Estimation(data, parameters=NULL, expName="immunoClust Experiment",
    history=NULL, state=NULL,
    K, w, m, s, modelName="mvt")
```

cell.EM

Arguments

data	A numeric matrix, data frame of observations, or object of class flowFrame.
parameters	A character vector specifying the parameters (columns) to be included in clus- tering. When it is left unspecified, all the parameters will be used.
expName	The name of the clustering experiment.
history	experimental; unused so far.
state	experimental: unused so far.
К	The number of clusters.
w	The K-dimensional vector of the mixture proportions.
m	The KxP -dimensional matrix of the K estimated cluster means.
S	The $KxPxP$ -dimensional matrix of the K estimated cluster covariance matrices.
В	The maximum number of EMt-iterations.
tol	The tolerance used to assess the convergence of the EMt-algorithms.
bias	The ICL-bias used in the EMt-algorithm.
modelName	Used mixture model; either "mvt" or "mvn" for a <i>t</i> - or Gaussian mixture model respectively.

Details

Whereas cell.EM performs a complete EMt-iteration, cell.Estimate only calculates the posterior probabilities and the Maximum-A-Posterior estimators of cluster membership for all events.

Value

The fitted clusters information in an object of class immunoClust.

Author(s)

Till Sörensen <till-antoni.soerensen@charite.de>

References

Sörensen, T., Baumgart, S., Durek, P., Grützkau, A. and Häupl, T. immunoClust - an automated analysis pipeline for the identification of immunophenotypic signatures in high-dimensional cytometric datasets. *Cytometry A* (accepted).

See Also

cell.ME, cell.FitModel

Examples

```
data(dat.fcs)
data(dat.exp)
## cell.clustering result for dat.fcs
r <- dat.exp[[1]]
summary(r)
## apply model parameter to all (unfiltered) events
dat.trans <- trans.ApplyToData(r, dat.fcs)
r2 <- cell.EM(dat.trans, parameters=r@parameters, K=r@K, w=r@w,m=r@mu,s=r@sigma)
summary(r2)</pre>
```

cell.FitModel	immunoClust EMt-iteration on Cell-events given initial Model Param-
	eters

Description

The function fits initial model parameters to specific observed cell event data. The function returns the cluster information of the fitted model in an object of class immunoClust.

Usage

cell.FitModel(x, data, B=50, tol=1e-5, bias=0.5, modelName="mvt")

cell.Classify(x, data, modelName="mvt")

Arguments

х	An immunoClust object with the initial model parameter ($parameters$, K , w , mu , $sigma$).
data	A numeric matrix, data frame of observations, or object of class flowFrame.
В	The maximum number of EMt-iterations.
tol	The tolerance used to assess the convergence of the EMt-algorithms.
bias	The ICL-bias used in the EMt-algorithm.
modelName	Used mixture model; either "mvt" or "mvn" for a <i>t</i> - or Gaussian mixture model respectively.

Details

These functions are wrapper of the functions cell.EM and cell.Estimation, when model cluster parameters are combined in an object of class immunoClust and are used in the iterative cell event clustering process cell.process of *immuno*Clust and are not intended to be called directly.

Value

The fitted model cluster information in an object of class immunoClust.

cell.hclust

Author(s)

Till Sörensen <till-antoni.soerensen@charite.de>

References

Sörensen, T., Baumgart, S., Durek, P., Grützkau, A. and Häupl, T. immunoClust - an automated analysis pipeline for the identification of immunophenotypic signatures in high-dimensional cytometric datasets. *Cytometry A* (accepted).

See Also

cell.process, cell.EM, cell.Estimation

Examples

```
data(dat.fcs)
data(dat.exp)
r1 <- dat.exp[[1]]
dat.trans <- trans.ApplyToData(r1, dat.fcs)
r2 <- cell.FitModel(r1, dat.trans)</pre>
```

cell.hclust	Hierarchical	Model	Based	Clustering	of	Cell-events	in	the
	immunoClust-	pipeline						

Description

Performs model based agglomerative clustering on cell event observations with weights. It is used in the interative cell event clustering approach of *immuno*Clust to obtain an initial cluster membership for the EM(t)-iteration.

Usage

```
cell.hclust(data, weights=NULL)
```

Arguments

data	The numeric $N \times P$ -dimensional data matrix to cluster. Each row contains a P -dimensional overservation vector.
weights	The N -dimensional vector of optional weights to be applied for the overservations.

Details

This function is used internally in cell. TestSubCluster procedure of immunoClust.

Value

A numeric $(N - 1) \times 2$ -dimensional matrix which gives the minimum index for observations in each of the two clusters merged at the *i*th step in each row.

Author(s)

Till Sörensen <till-antoni.soerensen@charite.de>

References

Sörensen, T., Baumgart, S., Durek, P., Grützkau, A. and Häupl, T. immunoClust - an automated analysis pipeline for the identification of immunophenotypic signatures in high-dimensional cytometric datasets. *Cytometry A* (accepted).

See Also

cell.TestSubCluster, cell.process

Examples

```
data(dat.fcs)
inc <- sample(1:nrow(dat.fcs), 50)
result <- cell.hclust(exprs(dat.fcs)[inc,])</pre>
```

cell.ME

immunoClust EM-iteration on Cell-events given initial Cluster Membership Assignment

Description

Performs an EM-iteration on cell event observations given an initial cluster membership for the cell events and returns the fitted cluster information in an object of class immunoClust.

Usage

Arguments

data	A numeric matrix, data frame of observations, or object of class flowFrame.
parameters	A character vector specifying the parameters (columns) to be included in clus- tering. When it is left unspecified, all the parameters will be used.
expName	The name of the clustering experiment.
history	experimental; unused so far.
state	experimental: unused so far.

cell.process

label	The <i>N</i> -dimensional vector containing the initial cluster membership. A label- number of 0 for an event indicates that this event is not initially assigned to a cluster.
В	The maximum number of EMt-iterations.
tol	The tolerance used to assess the convergence of the EMt-algorithms.
modelName	Used mixture model; either "mvt" or "mvn" for a <i>t</i> - or Gaussian mixture model respectively.

Value

The fitted clusters information in an object of class immunoClust.

Author(s)

Till Sörensen <till-antoni.soerensen@charite.de>

References

Sörensen, T., Baumgart, S., Durek, P., Grützkau, A. and Häupl, T. immunoClust - an automated analysis pipeline for the identification of immunophenotypic signatures in high-dimensional cytometric datasets. *Cytometry A* (accepted).

See Also

cell.EM

Examples

```
data(dat.fcs)
data(dat.exp)
## cell.clustering result for dat.fcs
r1 <- dat.exp[[1]]
summary(r1)
## apply model parameter to all (unfiltered) events
dat.trans <- trans.ApplyToData(r1, dat.fcs)
r2 <- cell.ME(dat.trans, parameters=r1@parameters, label=r1@label)
summary(r2)</pre>
```

cell.process

Clustering of Cell-events in the immunoClust-pipeline

Description

This function performs iterative model based clustering on cell-event data. It takes the observed cell-event data as major input and returns an object of class immunoClust, which contains the fitted mixture model parameter and cluster membership information. The additional arguments control the routines for data preprocessing, major loop and EMt-iteration, the model refinement routine and transformation.

Usage

```
cell.process(fcs, parameters=NULL,
   apply.compensation=FALSE, classify.all=FALSE,
   N=NULL, min.count=10, max.count=10, min=NULL, max=NULL,
   I.buildup=6, I.final=4, I.trans=I.buildup,
   modelName="mvt", tol=1e-5, bias=0.3,
   sub.tol= 1e-4, sub.bias=bias, sub.thres=bias, sub.samples=1500,
   sub.extract=0.8, sub.weights=1, sub.standardize=TRUE,
    trans.estimate=TRUE, trans.minclust=5,
    trans.a=0.01, trans.b=0.0, trans.parameters=NULL)
cell.MajorIterationLoop(dat, x=NULL, parameters=NULL,
   I.buildup=6, I.final=4,
   modelName="mvt", tol=1e-5, bias=0.3,
    sub.bias=bias, sub.thres=0.0, sub.tol=1e-4, sub.samples=1500,
    sub.extract=0.8, sub.weights=1, sub.EM="MEt", sub.standardize=TRUE, seed=1)
cell.MajorIterationTrans(fcs, x=NULL, parameters=NULL,
   I.buildup=6, I.final=4, I.trans=I.buildup,
   modelName="mvt", tol=1e-5, bias=0.3,
    sub.bias=bias, sub.thres=0.0, sub.tol=1e-4, sub.samples=1500,
    sub.extract=0.8, sub.weights=1, sub.EM="MEt", sub.standardize=TRUE, seed=1,
    trans.minclust=5, trans.a=0.01, trans.decade=-1, trans.scale=1.0,
    trans.proc="vsHtransAw")
cell.InitialModel(dat, parameters=NULL, trans.a = 0.01, trans.b = 0.0,
    trans.decade=-1, trans.scale=1.0)
```

cell.classifyAll(fcs, x, apply.compensation=FALSE)

Arguments

fcs	An object of class flowFrame. Rows correspond to observations and columns correspond to measured parameters.
dat	A numeric matrix, data frame of observations, or object of class flowFrame. Rows correspond to observations and columns correspond to measured parame- ters.
x	An object of class immunoClust. Used as initial model int the major iteration loop. When left unspecified the simplest model containing 1 cluster is used as initial model.
	Arguments for data pre and post processing:
parameters	A character vector specifying the parameters (columns) to be included in clus- tering. When it is left unspecified, all the parameters will be used.
apply.compensation	
	A numeric indicator whether the compensation matrix in the flowFrame should be applied.

classify.all	A numeric indicator whether the removed over- and underexposed observations should also be classified after the clustering process.
Ν	Maximum number of observations used for clustering. When unspecified or higher than the number of observations (i.e. rows) in dat, all observations are used for clustering, otherwise only the first N observations.
min.count	An integer specifying the threshold count for filtering data points from below. The default is 10, meaning that if 10 or more data points are smaller than or equal to min, they will be excluded from the analysis. If min is NULL, then the minimum value of each parameter will be used. To suppress filtering, it is set to -1.
max.count	An integer specifying the threshold count for filtering data points from above. Interpretation is similar to that of min.count.
min	The lower limit set for data filtering. Note that it is a vector of length equal to the number of parameters (columns), implying that a different value can be set for each parameter.
max	The upper limit set for data filtering. Interpretation is similar to that of min.
	Arguments for the major loop and EMt-iteration:
I.buildup	The number of major iterations, where the number of used observations is doubled successively.
I.final	The number of major iterations with all observations.
I.trans	The number of iterations where transformation estimation is applied.
modelName	Used mixture model; either " mvt " for a <i>t</i> -mixture model or " mvn " for a Gaussian Mixture model.
tol	The tolerance used to assess the convergence of the major EM(t)-algorithms of all observations.
bias	The ICL-bias used in the major EMt-algorithms of all observations.
	Arguments for model refinement (sub-clustering):
sub.tol	The tolerance used to assess the convergence of the EM-algorithms in the sub- clustering.
sub.bias	The ICL-bias used in the sub-clustering EMt-algorithms, in general the same as the ICL-bias.
sub.thres	Defines the threshold, below which an ICL-increase is meaningless. The thresh- old is given as the multiple (or fraction) of the costs for a single cluster.
sub.samples	The number of samples used for initial hierarchical clustering.
sub.extract	The threshold used for cluster data extraction.
sub.weights	Power of weights applied to hierarchical clustering, where the used weights are the probabilities of cluster membership.
sub.EM	Used EM-algorithm; either "MEt" for EMt-iteration or "ME" for EM-iteration without test step.
sub.standardize	
	A numeric indicating whether the samples for hierarchical clustering are stan- dardized (mean=0, SD=1).

seed	The seed integer for the random number generator. Arguments for transformation optimization:
trans.estimate	A numeric indicator whether transformation estimation should be applied.
trans.minclust	The minimum number of clusters required to start transformation estimation.
trans.a	A numeric vector, giving the (initial) scaling a for the asinh-transformation $h(y) = asin(a \cdot y + b)$. A scaling factor of $a = 0$ indicates that a parameter is not transformed.
trans.b	A numeric vector, giving the (initial) translation b for the asinh-transformation.
trans.parameter	^S
	A character vector, specifying the parameters (columns) to be applied for trans- formation. When it is left unspecified, the parameters to be transformed are obtained by the PxDISPLAY information of the flowFrame description parame- ters. All parameters with LOG display values are transformed.
trans.decade	A numeric scale value for the theorectical maximum of transformed observation value. If below 0, no scaling of the transformed values is applied, which is the default in the <i>immuno</i> Clust-pipeline.
trans.scale	A numeric scaling factor for the linear (i.e. not transformed) parameters. By default the linear parameters (normally the scatter parameters) are not scaled.
trans.proc	An experimental switch for alternative procedures; should be "vsHtransAw".

Details

The cell.process function does data preprocessing and calls the major iteration loop either with or without integrated transformation optimization. When transformation optimization is applied the transformation parameters give the initial transformation otherwise they define the fixed transformation.

The major iteration loop with included transformation optimization relies on flowFrames structure from the flowCore-package for the storage of the observed data.

The cell.InitialModel builds up an initial immunoClust-object with one cluster and the given transformation parameters.

The cell.classifyAll calculates the cluster membership for the removed cell events. The assigment of the cluster membership is critical for over- and underexposed obsevervations and the interpretaion is problematic.

Value

The fitted model information in an object of class immunoClust.

Note

a) The data preprocessing arguments (min.count, max.count, min and max) for removing overand underexposed observations are adopted from flowCust-package with the same meaning.

b) The sub. thres value is given in here in relation to the single cluster costs $\frac{1}{2} \cdot P \cdot (P+1) \cdot log(N)$. An absolute increase of the log-likelihood above is reported as reasonable from the literature. From our experience a higher value is required for this increase in FC data. For the ICL-bias and the sub.thres identical values were chosen. For the CyTOF dataset this value had been adjusted to 0.05 since the absolute increase of the log-likelihood became to high due to the high number of parameters.

c) The sub.extract value controls the smooth data extraction for a cluster. A higher value includes more events for a cluster in the sub-clustering routine.

d) The default value of trans.a=0.01 for the initial transformation is optimized for Fluorescence Cytometry. For CyTOF data the initial scaling value was trans.a=1.0.

Author(s)

Till Sörensen <till-antoni.soerensen@charite.de>

References

Sörensen, T., Baumgart, S., Durek, P., Grützkau, A. and Häupl, T. immunoClust - an automated analysis pipeline for the identification of immunophenotypic signatures in high-dimensional cytometric datasets. *Cytometry A* (accepted).

See Also

immunoClust-object, plot, splom, cell.FitModel, cell.SubClustering, trans.FitToData

Examples

data(dat.fcs)
res <- cell.process(dat.fcs)
summary(res)</pre>

cell.SubClustering immunoClust Model Refinement Step in iterative Cell-events Clustering

Description

These function tests each cell-cluster of a model for refining it into more sub-clusters and returns the refined model parameter in an object of class immunoClust.

Usage

Arguments

х	An immunoClust object with the initial model parameter $(K, w, mu, sigma)$.
dat	A numeric matrix, data frame of observations, or object of class flowFrame.
В	The maximum number of EM(t)-iterations in Sub-Clustering.
tol	The tolerance used to assess the convergence of the EM(t)-algorithms in Sub-Clustering.
thres	Defines the threshold, below which an ICL-increase is meaningless. The thresh- old is given as the multiple (or fraction) of the costs for a single cluster.
bias	The ICL-bias used in the EMt-algorithm.
sample.weights	Power of weights applied to hierarchical clustering, where the used weights are the probabilities of cluster membership.
sample.EM	Used EM-algorithm; either "MEt" for EMt-iteration or "ME" for EM-iteration without test step.
<pre>sample.number sample.standard</pre>	The number of samples used for initial hierarchical clustering. dize
	A numeric indicating whether the samples for hierarchical clustering are stan- dardized (mean=0, SD=1).
extract.thres	The threshold used for cluster data extraction.
modelName	Used mixture model; either mvt for a t -mixture model or mvn for a Gaussian Mixture model.
У	A numeric matrix of the observations beloning to the particular cluster.
t	A numeric vector with the probability weights for the observations belonining to the particular cluster.
cluster	An integer index of the particular cluster
J	The number of sub-models to be builded and tested for a particular cluster.
sample.df	Degree of freedom for the t-distibutions in a t-mixture model. Has to be 5 in immunoClust.

Details

These function are used internally by the cell-clustering procedures of cell.process in *immuno*Clust and are not intended to be used directly.

Value

The cluster parameters of the refined model in an object of class immunoClust.

Author(s)

Till Sörensen <till-antoni.soerensen@charite.de>

References

Sörensen, T., Baumgart, S., Durek, P., Grützkau, A. and Häupl, T. immunoClust - an automated analysis pipeline for the identification of immunophenotypic signatures in high-dimensional cytometric datasets. *Cytometry A* (accepted).

dat.exp

See Also

cell.process, cell.hclust

Examples

```
data(dat.fcs)
data(dat.exp)
dat.trans <- trans.ApplyToData(dat.exp[[1]], dat.fcs)
#need to re-calculate the cluster membership probabilities
# not stored in dat.exp
r1 <- cell.Classify(dat.exp[[1]], dat.trans)
summary(r1)
r2 <- cell.SubClustering(r1, dat.trans)
summary(r2)</pre>
```

dat.exp

immunoClust Meta-clustering Sample

Description

A vector of immunoClust-objects with cell.process clustering results of five samples.

Usage

data("dat.exp")

Details

Cell-event clustering was performed on reduced (10.000 events) sample data of the dataset of *im-muno*Clust, MACS-depleted populations datasets 2010. URL http://flowrepository.org/id/FR-FCM-ZZWB.

Value

A vector of 5 immnoClust-objects for the cell clustering results of 5 FC samples.

- [[1]] CD19 MACS-depleted cells
- [[2]] CD15 MACS-depleted cells
- [[3]] CD14 MACS-depleted cells
- [[4]] CD4 MACS-depleted cells
- [[4]] CD3 MACS-depleted cells

Source

http://flowrepository.org/id/FR-FCM-ZZWB

dat.fcs

Examples

```
data(dat.exp)
## process meta clustering
meta <- meta.process(dat.exp, meta.bias=0.6)
## extract event counts in the 5 samples for all meta clusters
res <- meta.numEvents(meta)</pre>
```

dat.fcs

immunoClust Cell-clustering Sample

Description

flowFrame data sample with 10.000 events in 7 parameters.

Usage

data(dat.fcs)

Details

This FCS sample is a reduced (10.000 events) dataset in flowFrame format of the first sample in the dataset of immunoClust, MACS-depleted populations datasets 2010. URL http://flowrepository.org/id/FR-FCM-ZZWB.

Value

A flowCore flowFrame with 10.000 observations on the following 7 parameters.

FCS-A Forward scatter

SSC-A Sideward scatter

FITC-A CD14 PE-A CD19

APC-A CD15

APC-Cy7-A CD4

Pacific Blue-A CD3

Source

http://flowrepository.org/id/FR-FCM-ZZWB

immunoClust-object

Examples

```
data(dat.fcs)
## process cell clustering
dat.res <- cell.process(dat.fcs)
## apply asinh-transformation
dat.fcs.transformed <- trans.ApplyToData(dat.res, dat.fcs)
## plot results
splom(dat.res, dat.fcs.transformed)</pre>
```

immunoClust-object immunoClust-Object

Description

The immunoClust object contains the clustering results in the *immuno*Clust-pipeline as obtained by cell.process or meta.process.

Usage

```
## S4 method for signature 'immunoClust'
summary(object)
## S4 method for signature 'immunoClust'
show(object)
```

Arguments

object	An object of class immunoClust as returned by the cell.process or meta.process
	functions of the <i>immuno</i> Clust-pipeline.

Value

An object of class immunoClust has the following slots:

expName	The name of the clustering experiment.
fcsName	The path of the clustered FCS-file.
parameters	The parameters used for clustering.
removed.below	Number of observations removed from below.
removed.above	Number of observations removed from above.
trans.a	The P-dimensional vector of the scaling factors for the asinh-transformation of each used parameter. A sca
trans.b	The <i>P</i> -dimensional vector of the translations for the asinh-transformation of each used parameter.
trans.decade	experimental; should be -1.
trans.scale	experimental; should be 1.0.
К	The number of clusters.
Ν	The number of observations.
Р	The number of used parameters.

meta.clustering

W	The K-dimensional vector of the mixture proportions.
mu	The KxP -dimensional matrix of the K estimated cluster means.
sigma	The $KxPxP$ -dimensional matrix of the K estimated cluster covariance matrices.
Z	The KxN -dimensional matrix containing the posterior probabilities of cluster membership.
label	The N-dimensional vector containing the maximum a posteriori estimator for cluster membership.
logLike	A vector of length 3 containing the BIC, ICL and the classification likelihood without penalty of the fitted r
BIC	The Bayesian Information Criterion for the fitted mixture model.
ICL	The Integrate Classification Likelihood for the fitted model.
history	experimental; unused so far.
state	experimental; unused so far.

Author(s)

Till Sörensen <till-antoni.soerensen@charite.de>

References

Sörensen, T., Baumgart, S., Durek, P., Grützkau, A. and Häupl, T. immunoClust - an automated analysis pipeline for the identification of immunophenotypic signatures in high-dimensional cytometric datasets. *Cytometry A* (accepted).

See Also

cell.process, meta.process

Examples

data(dat.exp)
summary(dat.exp[[1]])

meta.clustering Clustering of Cell-clusters in the immunoClust-pipeline

Description

This function provides a direct access to the meta-clustering procedure. The method described and discussed in this manuscript is the EMt-classification (EM-method=20) with the number of events for each cluster as weights. It returns the fitted mixture model parameter in an object of class immunoClust.

Usage

meta.clustering

Arguments

Р	The number of observed parameters for the cell event clusters.
Ν	The number of cell-clustering experiments.
К	The <i>N</i> -dimensional vector with the numbers of cell event clusters in each experiment. The total number of clusters is $tot K = sum_{i=1}^{K} K_i$.
W	The $totK$ -dimensional vector with weights of all clusters.
М	The $totKxP$ -dimensional matrix of all cluster means.
S	The $totKxPxP$ -dimensional matrix of all cluster covariance matrices.
I.iter	The maximum number of major iteration steps.
В	The $totKxPxP$ -dimensional matrix of all cluster covariance matrices.
tol	The tolerance used to assess the convergence of the EM(t)-algorithms.
bias	The ICL-bias used in the EMt-iteration of the meta-clustering.
alpha	A value between 0 and 1 used to balance the bhattacharrya probabilities cal- culated with either the full covariance matrices or using only the diagonal ele- ments of it. When working with uncompensated FC data very high correlations between parameters may be observed due to spill over. This leads to a very low bhattacharrya probability for two clusters even if they are located nearby. Using a mixture of the probabilities calculated with the complete covariance matrices and the variance information of each parameter avoids this problem. With a value of alpha=1, only the probabilities with complete covariance matrices are applied. A reasonable value for alpha is 0.5.
EM.method	0 = KL-minimization not weighted 1 = BC-maximization not weighted 10 = BC-maximization weighted 2 = EMt-classification not weighted 20 = EMt-classification weighted

Details

This function is used internally by the meta-clustering procedure meta.process in immunoClust.

Value

The fitted model information in an object of class immunoClust.

Author(s)

Till Sörensen <till-antoni.soerensen@charite.de>

References

Sörensen, T., Baumgart, S., Durek, P., Grützkau, A. and Häupl, T. immunoClust - an automated analysis pipeline for the identification of immunophenotypic signatures in high-dimensional cytometric datasets. *Cytometry A* (accepted).

See Also

immunoClust-object, meta.SubClustering, meta.process

Examples

```
data(dat.exp)
d <- meta.exprs(dat.exp)
res <- meta.Clustering(d$P, d$N, d$K, d$clsEvents, d$M, d$S)</pre>
```

meta.export immunoClust Meta-clustering Results Export

Description

These functions collect the output of the meta.process and extracts the event numbers, relative frequencies or mean fluorescence intensities for each meta-cluster and cell-clustering experiment in a numeric table.

Usage

```
meta.numEvents(meta, out.all=TRUE)
meta.relEvents(meta, out.all=TRUE)
meta.parMFI(meta, par, out.all=TRUE)
meta.numClusters(meta, out.all=TRUE)
meta.freqTable(meta)
meta.relEvents2(meta, major=1:5, out.all=TRUE)
```

Arguments

meta	The list-object returned by the function meta.process.
par	An integer index to the specific parameter.
out.all	A numeric indicator whether the event numbers of all hierarchical gating levels are obtained or only the meta-clusters themselves.
major	A numeric array indication the major scatter regions which were used as total events.

Value

A numberic matrix with

numEvents the number of cell events

relEvents relative frequencies, i.e. the number of cell events per total meeasured events

meta.exprs

parMFI mean fluorecence intensities in one parameter, i.e. the meta-cluster centers in asinh-tranformed scale

numClusters the number of cell clusters

- freqTable relative frequencies with respect to all gating hierarchie levels
- **relEvents2** prelimary function; as relEvents but is restricted to the events in the given major scatter regions.

in each meta-cluster (and gating hierarchy level) for each cell-clustering experiment.

Author(s)

Till Sörensen <till-antoni.soerensen@charite.de>

References

Sörensen, T., Baumgart, S., Durek, P., Grützkau, A. and Häupl, T. immunoClust - an automated analysis pipeline for the identification of immunophenotypic signatures in high-dimensional cytometric datasets. *Cytometry A* (submitted).

See Also

meta.process

Examples

```
data(dat.exp)
meta <- meta.process(dat.exp)
tbl <- meta.numEvents(meta)</pre>
```

meta.exprs

Collecting Data of an immunoClust vector

Description

The function takes a vector of immunoClust-object obtained by the cell.process function and extracts the information into a list object.

Usage

meta.exprs(exp, sub=c())

Arguments

exp	The vector of immunoClust object with the cell clustering results.
sub	A integer array indicating the parameter subset to be collected.

A list object with the following slots:

Р	The number of observed parameters for the cell event clusters.
Ν	The number of cell-clustering samples.
К	The N-dimensional vector with the numbers of cell event clusters in each experiment. The total number of clusters is $tot K = sum_{i=1}^{N} K_i$.
W	The $totK$ -dimensional vector with weights of all clusters.
М	The $totKxP$ -dimensional matrix of all cluster means.
S	The $totKxPxP$ -dimensional matrix of all cluster covariance matrices.
expNames	The N -dimensional vector with the experiment names of the cell clustering samples.
expEvents	The <i>N</i> -dimensional vector for the total number of events of the cell clustering samples.
clsEvents	The $totK$ -dimensional vector for the event number of all clusters.
desc	The <i>P</i> -dimensional vector for the parameter description.

Author(s)

Till Sörensen <till-antoni.soerensen@charite.de>

References

Sörensen, T., Baumgart, S., Durek, P., Grützkau, A. and Häupl, T. immunoClust - an automated analysis pipeline for the identification of immunophenotypic signatures in high-dimensional cytometric datasets. *Cytometry A* (accepted).

See Also

immunoClust.

Examples

```
data(dat.exp)
d <- meta.exprs(dat.exp, sub=c(1,2))</pre>
```

meta.hclust

Description

Performs agglomerative clustering on cell-clusters. It is used in the interative meta-clustering approach of *immuno*Clust to obtain an initial meta-cluster membership for the EM(t)-iteration.

Usage

meta.hclust(P, N, W, M, S)

Arguments

Р	The number of parameters.
Ν	The number of clusters.
W	The N -dimensional vector with cluster weights, i.e. numbers of events in a cluster.
М	The $N \times P$ -dimensional vector with cluster means.
S	The $N \times P \times P$ -dimensional vector with cluster covariance matrices.

Details

This function is used internally in meta. TestSubCluster of immunoClust.

Value

A numeric $(N - 1) \times 2$ -dimensional matrix which gives the minimum index for observations in each of the two clusters merged at the *i*th step in each row.

Note

The merging distances need not to be monotonic increasing.

Author(s)

Till Sörensen <till-antoni.soerensen@charite.de>

References

Sörensen, T., Baumgart, S., Durek, P., Grützkau, A. and Häupl, T. immunoClust - an automated analysis pipeline for the identification of immunophenotypic signatures in high-dimensional cytometric datasets. *Cytometry A* (accepted).

See Also

meta.TestSubCluster,meta.process

Examples

```
data(dat.exp)
r <- dat.exp[[1]]
hcPairs <- meta.hclust(r@P, r@K, r@w, r@mu, t(apply(r@sigma,1,c)))</pre>
```

meta.ME

immunoClust EM(t)-iteration on Cell-clusters

Description

Performs an EM(t)-iteration on cell-clusters given an initial meta-cluster membership for the cellclusters and returns the fitted meta-clusters information in an object of class immunoClust.

Usage

Arguments

Р	The number of observed parameters for the cell event clusters.
Ν	The number of cell-clustering experiments.
К	The N-dimensional vector with the numbers of cell event clusters in each experiment. The total number of clusters is $totK = sum_{i=1}^{K}K_i$.
W	The $totK$ -dimensional vector with weights, i.e. number of events, of all clusters.
М	The $totKxP$ -dimensional matrix of all cluster means.
S	The $totKxPxP$ -dimensional matrix of all cluster covariance matrices.
label	The $totK$ -dimension integer vector with the initial cell-cluster to meta-cluster membership.
В	The $totKxPxP$ -dimensional matrix of all cluster covariance matrices.
tol	The tolerance used to assess the convergence of the EM(t)-algorithms.
method	0 = KL-minimization not weighted
	1 = BC-maximization not weighted
	10 = BC-maximization weighted
	2 = EMt-classification not weighted
	20 = EMt-classification weighted
bias	The ICL-bias used in the EMt-iteration of the meta-clustering.
alpha	A value between 0 and 1 used to balance the bhattacharrya probabilities calcu- lated with either the full covariance matrices or using only the diagonal elements of it.
min.class	The minimum number of clusters for the final model.

meta.process

Details

This function is used internally by the meta-clustering procedures meta.process and meta.Clustering in *immuno*Clust.

Value

The fitted meta-clusters information in an object of class immunoClust.

Author(s)

Till Sörensen <till-antoni.soerensen@charite.de>

References

Sörensen, T., Baumgart, S., Durek, P., Grützkau, A. and Häupl, T. immunoClust - an automated analysis pipeline for the identification of immunophenotypic signatures in high-dimensional cytometric datasets. *Cytometry A* (accepted).

See Also

meta.process, meta.Clustering

Examples

```
data(dat.exp)
d <- meta.exprs(dat.exp)
r <- meta.ME(d$P, d$N, d$K, d$clsEvents, d$M, d$S, label=rep(1,sum(d$K)))</pre>
```

meta.process

Meta-clustering of Cell-clusters in the immunoClust-pipeline

Description

This function performs iterative model based clustering on the clusters obtained by cell.process of several samples. Its input is a vector of the immunoClust-objects of the samples.

The function also performs in a secondary step an ordering of the meta-clusters according to their distribution in the scatter parameter and an automated gating process. These procedures are preliminary and not part of the presented algorithms of the reference.

Usage

```
meta.process(exp, dat.subset=c(), meta.iter=10, meta.bias=0.2,
    meta.alpha=.5, meta.normalize=FALSE,
    scatter.subset=c(1,2), scatter.bias=0.25,
    scatter.prior=6)
```

Arguments

- C		
	exp	A vector of list objects, each list contains the cell-clustering result of a sam- ple in the res field. Addition fields are name and fsc containing the cell-sample name and fcs-filename, which are used for data output and plot routines.
	dat.subset	A numeric vector defining the used observed parameters for the meta-clustering. If unset, all parameters in the cell-clustering results are used.
	meta.iter	The number of major iterations.
	meta.bias	The ICL-bias used in the EMt-iteration of the meta-clustering.
	meta.alpha	A value between 0 and 1 used to balance the bhattacharrya probabilities calcu- lated with either the full covariance matrices or using only the diagonal elements of it. When working with uncompensated FC data, very high correlations be- tween parameters may be observed due to spill over. This leads to a very low bhattacharrya probability for two clusters even if they are located nearby. Using a mixture of the probabilities calculated with the complete covariance matrices and the variance information of each parameter avoids this problem. With a value of alpha=1, only the probabilities with complete covariance matrices are applied. A reasonable value for alpha is 0.5.
	meta.normalize	A numeric indicator whether a normalization step should be performed during the major iteration. This is a preliminary approach in an experimental stage performing an orthogonal procrustes analysis step in each iteration step of the major loop.
	scatter.subset	A numeric vector, giving the indices for the scatter parameter. If the scat- ter.subset is empty, scatter clustering was not performed.
	scatter.bias	The ICL-bias used in EMt-iteration of scatter-clustering.
	scatter.prior	experimental; gives the number of initial scatter regions for scatter clustering.

Value

The function returns a list-object with the following components:

dat.clusters	A dat list-object of the cell event clusters used for meta-clustering.
res.clusters	The immunoClust-object of the fitted meta-clustering mixture model.
dat.scatter	A dat list-object of the scatter parameters for the cell event clusters used for scatter clustering.
res.scatter	The immunoClust-object of the fitted scatter-clustering mixture model.
gating	A list-object containing the hierarchical gating-tree.

The components of the dat list-objects are:

Р	The number of parameters for the cell event clusters.
Ν	The number of cell-clustering experiments.
К	The N-dimensional vector with the numbers of cell event clusters in each experiment. The total number of clust
W	The $totK$ -dimensional vector with the mixture proportions of all clusters.
Μ	The $totKxP$ -dimensional matrix of all cluster means.
S	The $totKxPxP$ -dimensional matrix of all cluster covariance matrices.
expNames	The N -dimensional character vector with the cell-clustering experiment names.

expEvents	The <i>N</i> -dimensional vector with the numbers of events in each cell-clustering experiment.
clsEvents	The $totK$ -dimensional vector with the number of events in each cluster.
desc	The <i>P</i> -dimensional character vector with the parameter description.

Author(s)

Till Sörensen <till-antoni.soerensen@charite.de>

References

Sörensen, T., Baumgart, S., Durek, P., Grützkau, A. and Häupl, T. immunoClust - an automated analysis pipeline for the identification of immunophenotypic signatures in high-dimensional cytometric datasets. *Cytometry A* (accepted).

See Also

immunoClust-object, meta.Clustering, meta.export, cell.process

Examples

```
data(dat.exp)
meta <- meta.process(dat.exp)
summary(meta$res.clusters)
tbl <- meta.numEvents(meta)</pre>
```

meta.SubClustering immunoClust Model Refinement Step in iterative Meta-clustering

Description

These function tests each meta-cluster of a model for refining it into more sub-clusters and returns the refined cluster memberships in an integer array.s

Usage

```
meta.SubClustering(P, N, W, M, S, label, tol=1e-5, bias=0.25, alpha=1.0,
EM.method=20)
```

meta.TestSubCluster(P, N, W, M, S, J=8, B=500, tol=1e-5, bias=0.5, alpha=1.0, EM.method=2, HC.samples=2000)

Arguments

Р	The number of parameters.
Ν	The number of clusters.
W	The N -dimensional vector with cluster weights, i.e. numbers of events in a cluster.
М	The NxP -dimensional vector with cluster means.
S	The $NxPxP$ -dimensional vector with the cluster covariance matrices.
label	The N -dimension integer vector with the cell-cluster to meta-cluster membership.
tol	The tolerance used to assess the convergence of the EM(t)-algorithms in Sub-Clustering.
bias	he ICL-bias used in the EMt-algorithm.
alpha	A value between 0 and 1 used to balance the bhattacharrya probabilities calcu- lated with either the full covariance matrices or using only the diagonal elements of it.
J	The number of sub-models to be builded and tested for a particular cluster.
В	The maximum number of EM(t)-iterations in Sub-Clustering.
EM.method	0 = KL-minimization not weighted
	1 = BC-maximization not weighted
	10 = BC-maximization weighted
	2 = EMt-classification not weighted
	20 = EMt-classification weighted
HC.samples	The number of samples used for initial hierarchical clustering.

Details

These function are used internally by the meta-clustering procedures meta.process and meta.Clustering in *immuno*Clust and are not intended to be used directly.

Value

An integer array of length N containing the cell-clusters meta-cluster memberships of the refined model.

Author(s)

Till Sörensen <till-antoni.soerensen@charite.de>

References

Sörensen, T., Baumgart, S., Durek, P., Grützkau, A. and Häupl, T. immunoClust - an automated analysis pipeline for the identification of immunophenotypic signatures in high-dimensional cytometric datasets. *Cytometry A* (accepted).

plot.immunoClust

See Also

meta.process, meta.Clustering, meta.hclust

Examples

```
data(dat.exp)
d <- meta.exprs(dat.exp)
label <- rep(1,sum(d$K))
label <- meta.SubClustering(d$P, sum(d$K), d$clsEvents, d$M, d$S, label=label)
## Not run:
r1 <- meta.ME(d$P, d$N, d$K, d$clsEvents, d
## End(Not run)</pre>
```

plot.immunoClust Scatterplot of immunoClust Clustering Results

Description

This method generates scatterplot revealing the cluster assignment.

Usage

```
## S4 method for signature 'immunoClust'
plot(x, data, subset=c(1,2), ellipse=T,
show.rm=F, include=1:(x@K), main=NULL,
col=include+1, pch=".", cex=0.6,
col.rm=1, pch.rm=1, cex.rm=0.6, ecol=col, elty=1,
npoints=501, add=F, ...)
```

Arguments

х	An object of class immunoClust as return by cell.process.
data	A matrix, data frame of observations, or object of class flowFrame. This is the object of observations on which cell.process was performed or the matrix of cell-cluster centers for the meta.process.
subset	A numeric vector of length two indicating which two parameters are selected for the scatterplot. Alternatively, a character vector containing the names of the two parameters is allowed if x@parameters is not NULL.
ellipse	A logical value indicating whether the cluster 90% percentil boundary is to be drawn or not.
show.rm	A logical value indicating whether filtered observations will be shown or not.
include	A numeric vector specifying which clusters will be shown on the plot. By de- fault, all clusters are included.
main	Title of the plot.

col	Color(s) of the plotting points. May specify a different color for each cluster.
pch	Plotting character(s) of the plotting points. May specify a different character for each cluster.
cex	Size of the plotting characters. May specify a different size for each cluster.
col.rm	Color of the plotting characters denoting filtered observations.
pch.rm	Plotting character used to denote filtered observations.
cex.rm	Size of the plotting character used to denote filtered observations.
ecol	Color(s) of the lines representing the cluster boundaries. May specify a different color for each cluster.
elty	Line type(s) drawing the cluster boundaries. May specify a different line type for each cluster.
npoints	The number of points used to draw each cluster boundary.
add	A logical value. If TRUE, add to the current plot.
	Further graphical parameters passed to the generic function plot.

Value

Plots the clustering assignment on an appropriate plotting device.

Author(s)

Till Sörensen <till-antoni.soerensen@charite.de>

References

Sörensen, T., Baumgart, S., Durek, P., Grützkau, A. and Häupl, T. immunoClust - an automated analysis pipeline for the identification of immunophenotypic signatures in high-dimensional cytometric datasets. *Cytometry A* (accepted).

See Also

immunoClust-object

Examples

```
data(dat.fcs)
data(dat.exp)
dat.res <- dat.exp[[1]]
dat.trans <- trans.ApplyToData(dat.res, dat.fcs)
plot(dat.res, dat=dat.trans)</pre>
```

splom. immunoClust Scatterplot Matrix of immunoClust Clustering Results

Description

This method generates scatterplot matrix revealing the cluster assignment.

Usage

```
## S4 method for signature 'immunoClust,missing'
splom(x, data, include=1:(x@K), ...)
## S4 method for signature 'immunoClust,flowFrame'
splom(x, data, include=1:(x@K),
subset=1:length(attributes(x)$param), N=NULL,label=NULL, desc=NULL, ...)
## S4 method for signature 'immunoClust,matrix'
splom(x, data, include=1:(x@K),
subset=1:length(attributes(x)$param), N=NULL,label=NULL, desc=NULL, ...)
```

datSplom(label, data, subset=1:ncol(data), include=1:nrow(data), ...)

Arguments

х	An object of class immunoClust as return by cell.process or meta.process.
data	Missing, a matrix, or object of class flowFrame. This is the object of observa- tions on which cell.process was performed.
include	A numeric vector specifying which clusters will be shown on the plot. By de- fault, all clusters are included.
subset	A numeric vector indicating which parameters are selected for the scatterplot matrix.
Ν	An integer for the maximum number of observations to be plotted. By default all observations are plotted.
label	A integer vector for the cluster mebership of the observations. By default this is x@label.
desc	A character vector for the parameter description.
	Further graphical parameters passed to the generic function splom.

Value

An object of class trellis as returned by the generic splom function of the lattice-package. The print method (called by default) will plot it on an appropriate plotting device.

Author(s)

Till Sörensen <till-antoni.soerensen@charite.de>

References

Sörensen, T., Baumgart, S., Durek, P., Grützkau, A. and Häupl, T. immunoClust - an automated analysis pipeline for the identification of immunophenotypic signatures in high-dimensional cytometric datasets. *Cytometry A* (accepted).

See Also

immunoClust-object

Examples

```
data(dat.fcs)
data(dat.exp)
# cell clustering results of dat.fcs
dat.res <- dat.exp[[1]]
dat.trans <- trans.ApplyToData(dat.res, dat.fcs)
splom(dat.res, data=dat.trans, N=1000)</pre>
```

trans.ApplyToData immunoClust asinh-Transformation

Description

Applies the transformation information of the immunoClust object to the raw observed FC dataset.

Usage

Arguments

x	The immunoClust object containing the estimators for the transformation trans.a and trans.b.
data	The numeric matrix, data frame of observations, or object of class flowFrame.
max.decade	A numeric scale for the maximum transformed observation value; if missing or below 0, no scaling of the transformed values is apllied, which is the default in <i>immuno</i> Clust.
lin.scale	A numeric scaling factor for the linear, i.e. not transformed, parameters; if missing no scaling, i.e. $lin.scale = 1$, is applied, which is the default in <i>immuno</i> Clust.

Details

In *immuno*Clust an *asinh*-transformation $h(y) = asinh(a \cdot y + b)$ is applied to the fluorescence parameter in the observed data. The scatter parameter are assumed to be linear.

trans.FitToData

Value

A matrix or flowFrame with replaced transformed oberservation values.

Author(s)

Till Sörensen <till-antoni.soerensen@charite.de>

References

Sörensen, T., Baumgart, S., Durek, P., Grützkau, A. and Häupl, T. immunoClust - an automated analysis pipeline for the identification of immunophenotypic signatures in high-dimensional cytometric datasets. *Cytometry A* (accepted).

See Also

immunoClust, trans.FitToData, cell.process

Examples

```
data(dat.fcs)
data(dat.exp)
dat.trans <- trans.ApplyToData(dat.exp[[1]], dat.fcs)
## Not run:
plot(dat.exp[[1]], data=dat.trans)</pre>
```

End(Not run)

trans.FitToData immunoClust asinh-Transformation Optimization

Description

Performs variance stabilization transformation estimation on the fluorescense parameters of the observed cell events. It is integrated in the interative cell event clustering approach of *immuno*Clust when transformation estimation should be applied.

Usage

```
trans.FitToData(x, data, B=10, tol=1e-5, certainty=0.3, proc="vsHtransAw")
```

Arguments

х	The immunoClust object of the fitted mixture model and initial estimators for the transformation.
data	The numeric matrix, data frame of observations, or object of class flowFrame.
В	The maximum number of BFG2 minimizer iterations.
tol	The tolerance used to assess the convergence for the BFG2 minimizer.

certainty	Minimum probability for cluster membership of an observation to be taken into account.
proc	An experimental switch for alternative procedures; should be "vsHtransAw".
p. 00	

Details

In *immuno*Clust an *asinh*-transformation $h(y) = asinh(a \cdot y + b)$ is applied for all fluorescence parameter in the observed data.

The transformation optimization trans.FitToData requires a fitted model of cluster information together with suitable initial transformation estimation in an immunoClust object. It fits the transformation based on the initial scaling values trans.a and translation values trans.b to the observed data. It returns the optimized transformation parameter in a $2 \times P$ -dimensional matrix, first row for the scaling and second row for the translation values. A scaling value of a = 0 on input and output indicates, that a parameter should not be transformed.

The presented transformation optimization ("vsHtransAw") fits only the scaling value. An alternative procedure ("vsHtrans_w") fits both, the scaling and the translation value, but turns out to be less robust.

Value

Optimized transformation scaling and translation values in a $2 \times P$ -dimensional matrix, first row for the scaling and second row for the translation values.

Author(s)

Till Sörensen <till-antoni.soerensen@charite.de>

References

Sörensen, T., Baumgart, S., Durek, P., Grützkau, A. and Häupl, T. immunoClust - an automated analysis pipeline for the identification of immunophenotypic signatures in high-dimensional cytometric datasets. *Cytometry A* (accepted).

See Also

trans.ApplyToData, cell.process

Examples

```
data(dat.fcs)
data(dat.exp)
## in dat.exp the z-matrices of the immunoClust-object are removed
## so we have to re-calculate it first ...
dat.trans <- trans.ApplyToData(dat.exp[[1]], dat.fcs)
res <- cell.Classify(dat.exp[[1]], dat.trans)
## ... now the transformation parameter can be optimzed
trans.FitToData(res, dat.fcs)</pre>
```

Index

*Topic **cluster** cell.ClustData, 3 cell.EM.4 cell.hclust,7 cell.ME, 8 cell.process, 9 cell.SubClustering, 13 meta.clustering, 18 meta.hclust, 23 meta.ME.24 meta.process, 25 meta.SubClustering, 27 *Topic **datasets** dat.exp, 15 dat.fcs, 16 *Topic graphs plot.immunoClust, 29 splom.immunoClust, 31 *Topic package immunoClust-package, 2 *Topic **print** immunoClust-object, 17 cell.Classify(cell.FitModel), 6 cell.classifyAll(cell.process), 9 cell.ClustData, 3 cell.EM, 4, 7, 9 cell.Estimation, 7 cell.Estimation (cell.EM), 4 cell.FitModel, 5, 6, 13 cell.hclust, 4, 7, 15 cell.InitialModel (cell.process), 9 cell.MajorIterationLoop (cell.process), 0 cell.MajorIterationTrans (cell.process), 9 cell.ME, 5, 8 cell.process, 2, 6-8, 9, 14, 15, 17, 18, 25, 27, 29, 31, 33, 34 cell.SubClustering, 13, 13

cell.TestSubCluster, 7, 8 cell.TestSubCluster (cell.SubClustering), 13 dat.exp, 15 dat.fcs, 16 datSplom(splom.immunoClust), 31 immunoClust, 4-6, 8, 9, 12-14, 19, 22, 24, 25, 29, 31, 33, 34 immunoClust(immunoClust-package), 2 immunoClust-class (immunoClust-object), 17 immunoClust-object, 17, 26 immunoClust-package, 2 immunoClust.object (immunoClust-object), 17 immunoClust.package (immunoClust-package), 2 meta.Clustering, 25, 27-29 meta.Clustering (meta.clustering), 18 meta.clustering, 18 meta.export, 20, 27 meta.exprs, 21 meta.freqTable (meta.export), 20 meta.hclust, 23, 29 meta.ME, 24 meta.numClusters (meta.export), 20 meta.numEvents (meta.export), 20 meta.parMFI (meta.export), 20 meta.process, 2, 17-21, 24, 25, 25, 28, 29, 31 meta.relEvents (meta.export), 20 meta.relEvents2 (meta.export), 20 meta.SubClustering, 20, 27 meta.TestSubCluster, 23, 24 meta.TestSubCluster (meta.SubClustering), 27

plot, *13*

INDEX

plot(plot.immunoClust), 29 plot,immunoClust,missing-method (plot.immunoClust), 29 plot,immunoClust-method (plot.immunoClust), 29 plot.immunoClust, 29 show(immunoClust-object), 17 show,immunoClust-method (immunoClust-object), 17 show.immunoClust(immunoClust-object), 17 splom, *13* splom(splom.immunoClust), 31 splom,immunoClust,flowFrame-method (splom.immunoClust), 31 splom,immunoClust,matrix-method (splom.immunoClust), 31 splom,immunoClust,missing-method (splom.immunoClust), 31 splom.immunoClust, 31 summary(immunoClust-object), 17 summary,immunoClust-method (immunoClust-object), 17 summary.immunoClust (immunoClust-object), 17

trans.ApplyToData, 32, 34 trans.FitToData, 13, 33, 33