
Package ‘exomeCopy’
October 9, 2015

Type Package

Title Copy number variant detection from exome sequencing read depth

Version 1.14.0

Date 2013-01-25

Author Michael Love

Maintainer Michael Love <michaelisaiahlove@gmail.com>

Description Detection of copy number variants (CNV) from exome
sequencing samples, including unpaired samples. The package
implements a hidden Markov model which uses positional
covariates, such as background read depth and GC-content, to
simultaneously normalize and segment the samples into regions
of constant copy count.

License GPL (>= 2)

LazyLoad yes

Imports stats4, methods, GenomeInfoDb

Depends IRanges, GenomicRanges, Rsamtools

Suggests Biostrings

biocViews CopyNumberVariation, Sequencing, Genetics

NeedsCompilation yes

R topics documented:
exomeCopy-package . 2
compileCopyCountSegments . 3
copyCountSegments . 3
countBamInGRanges . 4
exomeCopy . 6
ExomeCopy-class . 9
exomecounts . 10
generateBackground . 11
getGCcontent . 12

1

2 exomeCopy-package

negLogLike . 13
plot.ExomeCopy . 14
plotCompiledCNV . 15
subdivideGRanges . 16

Index 18

exomeCopy-package Copy number variant detection from exome sequencing read depth

Description

Detection of copy number variants (CNV) from exome sequencing samples, including unpaired
samples. The package implements a hidden Markov model which uses positional covariates, such
as background read depth and GC-content, to simultaneously normalize and segment the samples
into regions of constant copy count.

Details

exomeCopy fits a hidden Markov model to observed read counts using covariates. It returns the
Viterbi path, the most likely path of hidden states, which is the predicted copy count at each window.

exomeCopy is designed to run on read counts from consecutive genomic ranges on a single chromo-
some, as it tries to identify higher or lower read depth relative to a baseline. Please see the vignette
for an example of how to prepare input data for exomeCopy, how to loop the function over multiple
chromosomes and samples, and how to extract the resulting predicted CNVs.

References

Love, Michael I.; Mysickova, Alena; Sun, Ruping; Kalscheuer, Vera; Vingron, Martin; and Haas,
Stefan A. (2011) "Modeling Read Counts for CNV Detection in Exome Sequencing Data," Sta-
tistical Applications in Genetics and Molecular Biology: Vol. 10 : Iss. 1, Article 52. DOI:
10.2202/1544-6115.1732 http://cmb.molgen.mpg.de/publications/Love_2011_exomeCopy.
pdf.

See Also

exomeCopy

http://cmb.molgen.mpg.de/publications/Love_2011_exomeCopy.pdf
http://cmb.molgen.mpg.de/publications/Love_2011_exomeCopy.pdf

compileCopyCountSegments 3

compileCopyCountSegments

Compile segments across samples

Description

A short function which extracts the segments of constant copy count using the copyCountSegments
function on a named list of named lists containing fitted ExomeCopy objects. See vignette for a full
example of multiple samples and chromosomes.

Usage

compileCopyCountSegments(fit.list)

Arguments

fit.list A named list of named lists. The outer list indexes patients, while the inner list
indexes sequences/chromosomes.

Value

A RangedData object of all segments across samples and chromosomes.

Examples

example(exomeCopy)

this function requires a named list of named lists
as constructed in the vignette
fit.list <- list(sample1 = list(chr1 = fit))
CNV.segments <- compileCopyCountSegments(fit.list)

copyCountSegments Segments of identical copy count from exomeCopy

Description

Unpacks an ExomeCopy object and returns a RangedData object with segments of identical pre-
dicted copy count in genomic coordinates.

Usage

copyCountSegments(object)

Arguments

object ExomeCopy object

4 countBamInGRanges

Details

The log odds column is calculated by summing the log ratios over the contained ranges. The log
ratios at each range is the log of the emission probability for the given read count for the predicted
state divided by the emission probability for the normal state. The higher the value, the more likely
that the read counts in this range could not have been generated from the normal state.

Value

Returns a RangedData object with the predicted copy count, the log odds of predicted copy count
over normal copy count, a combined p-value, the number of genomic ranges spanned by the seg-
ment, the number of targeted basepairs in the segment, and the sample name.

See Also

exomeCopy ExomeCopy-class

Examples

example(exomeCopy)
copyCountSegments(fit)

countBamInGRanges Count reads from BAM file in genomic ranges

Description

Counts the number of reads with a specified minimum mapping quality from BAM files in genomic
ranges specified by a GRanges object. This is a convenience function for counting the reads in
ranges covering the targeted regions, such as the exons in exome enrichment experiments, from
each sample. These read counts are used by exomeCopy in predicting CNVs in samples.

With the default setting (read.width=1), only the read starts are used for counting purposes (the
leftmost position regardless of the strandedness of the read).

With the accurate read width, or with get.width = TRUE, then the function returns the number of
overlapping reads, as returned by countOverlaps in the GenomicRanges package.

The function subdivideGRanges can be used first to subdivide ranges of different size into ranges
of nearly equal width.

The BAM file requires a associated index file (see the man page for indexBam in the Rsamtools
package).

Usage

countBamInGRanges(bam.file,granges,min.mapq=1,read.width=1,stranded.start=FALSE,get.width=FALSE,remove.dup=FALSE)

countBamInGRanges 5

Arguments

bam.file The path of the BAM file for the sample to be counted.

granges An object of type GRanges with the ranges in which to count reads.

min.mapq The minimum mapping quality to count a read. Defaults to 1. Set to 0 for
counting all reads.

read.width The width of a read, used in counting overlaps of mapped reads with the ge-
nomic ranges. The default is 1, resulting in the counting of only read starts in
genomic ranges. If the length of fixed width reads is used, e.g. 100 for 100bp
reads, then the function will return the count of all overlapping reads with the ge-
nomic ranges. However, counting all overlapping reads introduces dependency
between the counts in adjacent windows.

stranded.start If true, the function will create reads of length read.width using the strand to
determine the read location. A read with + or * strand will start at the given start
position, and a read with - strand will end at (start position + CIGAR width - 1).

get.width If true, the function should retrieve the read width from the CIGAR encoding
rather than assign the value from read.width.

remove.dup If true, the function will count only one read for each unique combination of
position, strand and read width.

Value

An integer vector giving the number of reads over the input GRanges

See Also

Rsamtools GRanges subdivideGRanges

Examples

get subdivided genomic ranges covering targeted region
using subdivideGRanges()
example(subdivideGRanges)

BAM file included in Rsamtools package
bam.file <- system.file("extdata", "mapping.bam", package="exomeCopy")

create RangedData object to store read counts
rdata <- RangedData(space=seqnames(target.sub),ranges=ranges(target.sub))

extract read counts from the BAM file in these genomic ranges
rdata[["sample"]] <- countBamInGRanges(bam.file,target.sub)

6 exomeCopy

exomeCopy Fit the exomeCopy or exomeCopyVar model to the observed counts.

Description

Fits a hidden Markov model to observed read counts using positional covariates. It returns an object
containing the fitted parameters and the Viterbi path, the most likely path of hidden states, which is
the predicted copy count at each window.

exomeCopy is designed to run on read counts from consecutive genomic ranges on a single chromo-
some, as it tries to identify higher or lower read depth relative to a baseline. Please see the vignette
for an example of how to prepare input data for exomeCopy, how to loop the function over multiple
chromosomes and samples, and how to extract the resulting predicted CNVs.

exomeCopy requires as input a RangedData object containing read counts in genomic ranges along
with the covariates. Some convenience functions are provided for preparing input for exomeCopy:

1. subdivideGRanges, to subdivide a GRanges object containing the genomic ranges of the tar-
geted region into genomic ranges of nearly equal width,

2. countBamInGRanges, to count the number of read starts from a BAM read mapping file in a
GRanges object,

3. getGCcontent, to get the GC-content in the ranges given a FASTA file of the reference se-
quence,

4. generateBackground, to calculate median normalized read depth over a set of control sam-
ples, and also any statistic over normalized read depth.

Usage

exomeCopy(rdata, sample.name, X.names, Y.names, fit.var=FALSE, reltol
= 0.0001, S = 0:4, d = 2, goto.cnv = 1e-4, goto.normal = 1/20,

init.phi="norm")

Arguments

rdata A RangedData object with the sample counts and positional covariates over the
genomic ranges.

sample.name The name of the value column of rdata with the sample read counts.

X.names The names of the value columns of rdata with covariates for estimating mu.

Y.names (optional) the names of the value columns of rdata with covariates for estimating
phi, only required if fit.var = TRUE.

fit.var A logical, whether the model should fit the overdispersion parameter phi with
a linear combination of covariates (exomeCopyVar) or with a scalar (exome-
Copy). Defaults to FALSE (exomeCopy).

reltol The relative tolerance for convergence used in the optim function for optimizing
the parameter settings. From testing, the default value was sufficient for fitting
parameters, but lower relative tolerances can be used.

exomeCopy 7

S A vector of possible copy numbers for the different states.

d The expected copy number for the normal state. This should be set to 2 for
autosomes and 1 for haploid data.

goto.cnv The initial setting for probability to transfer to a CNV state.

goto.normal The initial setting for probability to transfer to a normal state.

init.phi Either "norm" or "counts": initialize phi with the moment estimate using resid-
uals from a linear model of read counts on covariates or with the raw counts.

Details

exomeCopy fits transitional and emission parameters of an HMM to best explain the observed counts
of a sample from exome or targeted sequencing. The set of underlying copy number states, S, in the
sample must be provided before running the algorithm.

The emission probabilities are given as a negative binomial distribution using positional covariates,
such as log background read depth, quadratic terms for GC-content, and range width, which are
stored in a matrix X . Optionally, for fitting the variance of the distribution, the standard deviation
and/or variance of the background set can be included in a matrix Y . All covariates are normalized
within exomeCopy for improved optimization.

For the observed count at range t, Ot, the emission probability is given by:

Ot ∼ NB(µti, φ)

The mean parameter µti is given by:

µti =
Si
d
e(xt∗~β)

Here Si is the i-th possible copy number state, d is the expected background copy number (d = 2
for diploid sequence), and ~β is a vector of coefficients fitted by the model. xt∗ is the t-th row of the
matrix X .

µ must be positive, so it is replaced with a small positive number if the value is less than zero.

For exomeCopyVar, which also fits the variance, the emission probability includes a location-
dependent dispersion parameter.

where

log(φt) = yt∗~γ

or a small positive number if this is less than zero.

Two transition probabilities are fitted in the model: the probabilities of transitioning to a normal
state and to a CNV state.

exomeCopy calls negLogLike to evaluate the likelihood of the HMM. The parameters are fit using
Nelder-Mead optimization with the optim function on the negative likelihood. The Viterbi path is
calculated by calling viterbiPath.

8 exomeCopy

Value

Returns an ExomeCopy-class object. See this page for the slot descriptions. Also see the vignette
and copyCountSegments on how to extract segments.

Author(s)

Michael Love

References

Love, Michael I.; Mysickova, Alena; Sun, Ruping; Kalscheuer, Vera; Vingron, Martin; and Haas,
Stefan A. (2011) "Modeling Read Counts for CNV Detection in Exome Sequencing Data," Sta-
tistical Applications in Genetics and Molecular Biology: Vol. 10 : Iss. 1, Article 52. DOI:
10.2202/1544-6115.1732 http://cmb.molgen.mpg.de/publications/Love_2011_exomeCopy.
pdf.

References for HMM algorithms and use of HMM for segmentation of genomic data by copy num-
ber:

Rabiner, L. R. (1989): "A tutorial on hidden Markov models and selected applications in speech
recognition," Proceedings of the IEEE, 77, 257, 286, http://dx.doi.org/10.1109/5.18626.

Fridlyand, J., A. M. Snijders, D. Pinkel, D. G. Albertson, and Jain (2004): "Hidden Markov models
approach to the analysis of array CGH data," Journal of Multivariate Analysis, 90, 132, 153, http:
//dx.doi.org/10.1016/j.jmva.2004.02.008.

Marioni, J. C., N. P. Thorne, and S. Tavare (2006):"BioHMM: a heterogeneous hidden Markov
model for segmenting array CGH data." Bioinformatics, 22, 1144, 1146, http://view.ncbi.nlm.
nih.gov/pubmed/16533818.

See Also

ExomeCopy-class subdivideGRanges countBamInGRanges copyCountSegments plot.ExomeCopy
negLogLike IRanges RangedData

Examples

The following is an example of running exomeCopy on simulated
read counts using the model parameters defined above. For an example
using real exome sequencing read counts (with simulated CNV) please
see the vignette.

create RangedData for storing genomic ranges and covariate data
(background, background stdev, GC-content)

m <- 5000
rdata <- RangedData(IRanges(start=0:(m-1)*100+1,width=100),
space=rep("chr1",m), universe="hg19", log.bg=rnorm(m), log.bg.var=rnorm(m),
gc=runif(m,30,50))

create read depth distributional parameters mu and phi
rdata$gc.sq <- rdata$gc^2

http://cmb.molgen.mpg.de/publications/Love_2011_exomeCopy.pdf
http://cmb.molgen.mpg.de/publications/Love_2011_exomeCopy.pdf
http://dx.doi.org/10.1109/5.18626
http://dx.doi.org/10.1016/j.jmva.2004.02.008
http://dx.doi.org/10.1016/j.jmva.2004.02.008
http://view.ncbi.nlm.nih.gov/pubmed/16533818
http://view.ncbi.nlm.nih.gov/pubmed/16533818

ExomeCopy-class 9

X <- cbind(bg=rdata$log.bg,gc=rdata$gc,gc.sq=rdata$gc.sq)
Y <- cbind(bg.sd=rdata$log.bg.var)
beta <- c(5,1,.01,-.01)
gamma <- c(-3,.1)
rdata$mu <- exp(beta[1] + scale(X) %*% beta[2:4])
rdata$phi <- exp(gamma[1] + scale(Y) %*% gamma[2])

create observed counts with simulated heterozygous duplication
cnv.nranges <- 200
bounds <- (round(m/2)+1):(round(m/2)+cnv.nranges)
O <- rnbinom(nrow(rdata),mu=rdata$mu,size=1/rdata$phi)
O[bounds] <- O[bounds] + rbinom(cnv.nranges,prob=0.5,size=O[bounds])
rdata[["sample1"]] <- O

run exomeCopy() and list segments
fit <- exomeCopy(rdata,"sample1",X.names=c("log.bg","gc","gc.sq"))

an example call with variance fitting.
see paper: this does not necessarily improve the fit
fit <- exomeCopy(rdata,"sample1",X.names=c("log.bg","gc","gc.sq"),

Y.names="log.bg",fit.var=TRUE)

see man page for copyCountSegments() for summary of
the predicted segments of constant copy count, and
for plot.ExomeCopy() for plotting fitted objects

ExomeCopy-class Class "ExomeCopy"

Description

Object returned by exomeCopy

Objects from the Class

Objects can be created by calls of the form new("ExomeCopy").

Slots

sample.name: Object of class "character": an identifier for the sample

type: Object of class "character": the type of model used, either "exomeCopy" or "exomeCopy-
Var"

path: Object of class "Rle": the index of the predicted state for each window

ranges: Object of class "IRangesList": the corresponding ranges for the observed counts and
covariates

O.norm: Object of class "numeric": the input vector of counts divided by X * beta

10 exomecounts

log.odds: Object of class "numeric": the log ratio of the emission probabilities along the pre-
dicted path over the emission probabilities of the normal state

fx.par: Object of class "list": a list of the settings S, d, normal.state and fit.var
init.par: Object of class "list": a list of the initial parameters goto.cnv, goto.normal, beta.hat

and phi.hat
final.par: Object of class "list": a list of the final parameters goto.cnv, goto.normal, beta (and

gamma for exomeCopyVar)
counts: Object of class "numeric": the number of evaluations of the log likelihood performed by

optim

convergence: Object of class "numeric": the integer for convergence of optim, 0 for convergence
nll: Object of class "numeric": the final value of the negative log likelihood

Methods

plot signature(x = "ExomeCopy", y = "missing"): ...
show signature(object = "ExomeCopy"): ...

See Also

exomeCopy

Examples

showClass("ExomeCopy")

exomecounts Sample counts from 16 exome sequencing samples from 1000
Genomes Project

Description

This data set gives sample read counts in 1000 genomic ranges for 16 exome sequencing samples
from the PUR population of the 1000 Genomes Project, along with the GC-content in the ranges.
For instructions on how to prepare read count and covariate data, please see the example code in the
man pages for subdivideGRanges and countBamInGRanges.

The genomic ranges are generated from small portion of the CCDS regions of chromosome 1
(hg19). The CCDS regions are subdivided evenly into ranges around 100bp using the subdivideGRanges
function with default settings. Only ranges with positive counts across samples are retained. These
regions were downloaded as a BED file from the UCSC Genome Browser (http://genome.ucsc.
edu/cgi-bin/hgGateway). The mapping files for the exome sequencing data and descriptions of
the experiments are available at the 1000 Genomes Project website (http://www.1000genomes.
org/data). The directories used are listed in the file 1000Genomes_files.txt in the extdata
directory.

The column names are the sample names from the 1000 Genomes Project. Library format is paired-
end reads and sample counts reflect both sequenced reads counted in their respective genomic
ranges.

http://genome.ucsc.edu/cgi-bin/hgGateway
http://genome.ucsc.edu/cgi-bin/hgGateway
http://www.1000genomes.org/data
http://www.1000genomes.org/data

generateBackground 11

Usage

data(exomecounts)

Format

A RangedData object.

Source

1000 Genomes Project and Consensus Coding Sequence Project

References

1000 Genomes Project Consortium. A map of human genome variation from population-scale
sequencing. Nature 467, 1061-1073 (2010). http://dx.doi.org/10.1038/nature09534.

1000 Genomes Project: Release of phase 1 exome alignments http://www.1000genomes.org/
announcements/release-phase-1-exome-alignments-2011-07-19

Pruitt, K. D. et al. The consensus coding sequence (CCDS) project: Identifying a common protein-
coding gene set for the human and mouse genomes. Genome research 19, 1316-1323 (2009). http:
//dx.doi.org/10.1101/gr.080531.108.

See Also

link{RangedData}

generateBackground Generate median background read depth

Description

Normalizes a set of columns representing read counts from different samples by their mean. Then
calculates a statistic across the rows of normalized counts.

Usage

generateBackground(sample.names, rdata, fn=median)

Arguments

sample.names A vector of column names in rdata to be used as background samples

rdata A RangedData object containing the read counts

fn The statistic to be applied across the rows of normalized counts. Defaults to
median, but the standard deviation can also be calculated in this way.

Value

The value of fn applied across the rows of normalized read counts.

http://dx.doi.org/10.1038/nature09534
http://www.1000genomes.org/announcements/release-phase-1-exome-alignments-2011-07-19
http://www.1000genomes.org/announcements/release-phase-1-exome-alignments-2011-07-19
http://dx.doi.org/10.1101/gr.080531.108
http://dx.doi.org/10.1101/gr.080531.108

12 getGCcontent

Examples

data(exomecounts)
sample.names <- grep("HG.+",colnames(exomecounts),value=TRUE)
exomecounts[["bg"]] <- generateBackground(sample.names, exomecounts,

median)
exomecounts[["bg.sd"]] <- generateBackground(sample.names,

exomecounts, sd)

getGCcontent Get the GC content of target ranges from a reference FASTA file

Description

A short function using scanFa from the Rsamtools package on a target GRanges and a reference
FASTA file

Usage

getGCcontent(target, reference.file)

Arguments

target GRanges object

reference.file the path to the reference FASTA file

Value

Returns a vector of the ratio of G and C basepairs to total basepairs (not counting N’s).

Examples

target.file <- system.file("extdata","targets.bed",package="exomeCopy")
target.df <- read.delim(target.file,header=FALSE,col.names=c("seqname","start","end"))
target <- GRanges(seqname=target.df$seqname,IRanges(start=target.df$start+1,end=target.df$end))
reference.file <- system.file("extdata","reference.fa",package="exomeCopy")
GCcontent <- getGCcontent(target, reference.file)

negLogLike 13

negLogLike Generalized negative log likelihood and Viterbi algorithms

Description

negLogLike: Returns the negative log likelihood calculated with the forward equations.

viterbiPath: Calculates the most likely sequence of hidden states for the Markov model given the
current parameters.

Usage

negLogLike(par,fx.par,data,nstates,stFn,trFn,emFn)
viterbiPath(par,fx.par,data,nstates,stFn,trFn,emFn)

Arguments

par A list of parameters, over which the likelihood will be optimized.

fx.par A list of fixed parameters.

data A list of data objects, which must contain a vector O, which represents the ob-
served sequence of the HMM.

nstates The number of states of the HMM.

stFn A function which takes arguments par, fx.par, data, and nstates, and returns a
vector of length nstates of starting probabilities.

trFn A function which takes arguments par, fx.par, data, and nstates, and returns a
matrix of dimension (nstates,nstates) of the transition probabilities.

emFn A function which takes arguments par, fx.par, data, and nstates, and returns a
matrix of dimension (nstates,length(O)) of the emission probabilities.

Value

negLogLike: The negative log likelihood of the HMM. The likelihood is slightly modified to ac-
count for ranges with read counts which have zero probability of originating from any of the states.
In this case the likelihood is lowered and the range is skipped.

viterbiPath: The Viterbi path through the states given the parameters.

References

On the forward equations and the Viterbi algorithm:

Rabiner, L. R. (1989): "A tutorial on hidden Markov models and selected applications in speech
recognition," Proceedings of the IEEE, 77, 257, 286, http://dx.doi.org/10.1109/5.18626.

http://dx.doi.org/10.1109/5.18626

14 plot.ExomeCopy

Examples

functions for starting, transition, and emission probabilities
stFn <- function(par,fx.par,data,nstates) rep(1/nstates,nstates)
trFn <- function(par,fx.par,data,nstates) {

A <- matrix(1/(nstates*10),ncol=nstates,nrow=nstates)
diag(A) <- 1 - rowSums(A)
A

}
emFn <- function(par,fx.par,data,nstates) {

t(sapply(1:nstates,function(j) dnorm(dataO,parmeans[j],fx.par$sdev)))
}

simulate some observations from two states
Q <- c(rep(1,100),rep(2,100),rep(1,100),rep(2,100))
T <- length(Q)
means <- c(-0.5,0.5)
sdev <- 1
O <- rnorm(T,means[Q],sdev)

use viterbiPath() to recover the state chain using parameters
viterbi.path <- viterbiPath(par=list(means=means),
fx.par=list(sdev=sdev), data=list(O=O), nstates=2,stFn,trFn,emFn)
plot(O,pch=Q,col=c("darkgreen","orange")[viterbi.path])

plot.ExomeCopy Plot function for exomeCopy

Description

Plots the predicted copy count segments of an ExomeCopy object

Usage

S3 method for class 'ExomeCopy'
plot(x, points = TRUE, cols = NULL, show.legend = TRUE,
main = "exomeCopy predicted segments", xlab = "genomic position",
ylab = "normalized read count", xlim = NULL, ylim = NULL, cex = 1, lwd = 4, ...)

Arguments

x The ExomeCopy object.

points Logical, whether normalized read counts should be drawn.

cols A vector of the same length as b, specifying a color for each of the states of the
HMM.

show.legend Logical, whether a default legend should be shown.

main main title

xlab x axis label

plotCompiledCNV 15

ylab y axis label

xlim x limits

ylim y limits

cex size of the points (if plotted)

lwd line width

... Other arguments passed to plot()

See Also

exomeCopy ExomeCopy-class copyCountSegments

Examples

example(exomeCopy)
plot(fit)

plotCompiledCNV Plot compiled CNV segments for one sequence/chromosome

Description

This function takes a RangedData object as produced by compileCopyCountSegments and plots
the CNV segments for one sequence/chromosomes across the samples with CNV segments.

The segments in the normal state should be removed as shown below in the example to produce a
cleaned RangedData object. See the vignette for a more complete example.

Usage

plotCompiledCNV(CNV.segments, seq.name, xlim=NULL, col=NULL,
copy.counts=0:6, normal.state = 2)

Arguments

CNV.segments A RangedData object as produced by compileCopyCountSegments and with
normal state removed.

seq.name The name of the sequence to plot

xlim The genomic coordinates for the x axis. If not included, the plotting window
will cover the range of the CNVs in CNV.segments

col The colors to use for the different copy count states

copy.counts The corresponding copy counts for the colors

normal.state The copy count of the normal state

16 subdivideGRanges

Value

Produces a plot.

Examples

example(compileCopyCountSegments)
CNV.clean <- CNV.segments[CNV.segments$copy.count != 2,]
chr.start <- start(range(fit@ranges)[["chr1"]])
chr.end <- end(range(fit@ranges)[["chr1"]])
plotCompiledCNV(CNV.clean, "chr1", xlim=c(chr.start,chr.end))

subdivideGRanges Subdivide ranges of a GRanges object into nearly equal width ranges

Description

Takes an input GRanges object and, splits each range into multiple ranges of nearly equal width. For
an input range of width w and subdividing size s, it will subdivide the range into max(1,floor(w/s))
nearly equal width ranges. The output is then a new GRanges object. This function can be used to
split the targeted region (such as exons in exome enrichment experiments) into nearly equal width
ranges. The ranges will be sorted and reduced if they are not already so.

Usage

subdivideGRanges(x,subsize=100)

Arguments

x An object of type GRanges.

subsize The desired width for the ranges in the output GRanges object.

Value

A GRanges object with ranges from the input GRanges object subdivided to nearly subsize.

See Also

GRanges

Examples

read in target region BED file
target.file <- system.file("extdata", "targets.bed", package="exomeCopy")
target.df <- read.delim(target.file, header=FALSE,

col.names=c("seqname","start","end"))

create GRanges object with 5 ranges over 2 sequences
target <- GRanges(seqname=target.df$seqname,

subdivideGRanges 17

IRanges(start=target.df$start,end=target.df$end))

subdivide into 7 smaller genomic ranges
target.sub <- subdivideGRanges(target)

Index

∗Topic classes
ExomeCopy-class, 9

∗Topic datasets
exomecounts, 10

∗Topic package
exomeCopy-package, 2

compileCopyCountSegments, 3, 15
copyCountSegments, 3, 3, 8, 15
countBamInGRanges, 4, 6, 8, 10
countOverlaps, 4

exomeCopy, 2, 4, 6, 10, 15
ExomeCopy-class, 9
exomeCopy-package, 2
exomecounts, 10

generateBackground, 6, 11
getGCcontent, 6, 12
GRanges, 5, 6, 16

indexBam, 4
IRanges, 8

negLogLike, 7, 8, 13

optim, 6, 7, 10

plot,ExomeCopy,missing-method
(ExomeCopy-class), 9

plot.ExomeCopy, 8, 14
plotCompiledCNV, 15

RangedData, 6, 8
Rsamtools, 5

show,ExomeCopy-method
(ExomeCopy-class), 9

subdivideGRanges, 4–6, 8, 10, 16

viterbiPath, 7
viterbiPath (negLogLike), 13

18

	exomeCopy-package
	compileCopyCountSegments
	copyCountSegments
	countBamInGRanges
	exomeCopy
	ExomeCopy-class
	exomecounts
	generateBackground
	getGCcontent
	negLogLike
	plot.ExomeCopy
	plotCompiledCNV
	subdivideGRanges
	Index

