
Package ‘compcodeR’
October 8, 2015

Type Package

Title RNAseq data simulation, differential expression analysis and
performance comparison of differential expression methods

Version 1.4.0

Author Charlotte Soneson

Maintainer Charlotte Soneson <Charlotte.Soneson@isb-sib.ch>

Description This package provides extensive functionality for
comparing results obtained by different methods for
differential expression analysis of RNAseq data. It also
contains functions for simulating count data and interfaces to
several packages for performing the differential expression
analysis.

Depends R (>= 3.0.2), sm

Imports tcltk, knitr (>= 1.2), markdown, ROCR, lattice (>= 0.16),
gplots, gtools, gdata, caTools, grid, KernSmooth, MASS,
ggplot2, stringr, modeest, edgeR, limma, vioplot, methods

Suggests BiocStyle, EBSeq, DESeq, DESeq2 (>= 1.1.31), baySeq (>=
1.16.0), genefilter, NOISeq, TCC, samr, NBPSeq

Enhances rpanel, DSS

License GPL (>= 2)

VignetteBuilder knitr

biocViews RNASeq, DifferentialExpression

NeedsCompilation no

R topics documented:
compcodeR-package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
baySeq.createRmd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
checkDataObject . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
checkTableConsistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
check_compData . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1



2 compcodeR-package

check_compData_results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
compData . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
compData-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
convertcompDataToList . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
convertListTocompData . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
DESeq.GLM.createRmd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
DESeq.nbinom.createRmd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
DESeq2.createRmd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
DSS.createRmd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
EBSeq.createRmd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
edgeR.exact.createRmd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
edgeR.GLM.createRmd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
generateCodeHTMLs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
generateSyntheticData . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
listcreateRmd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
logcpm.limma.createRmd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
NBPSeq.createRmd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
NOISeq.prenorm.createRmd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
runComparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
runComparisonGUI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
runDiffExp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
SAMseq.createRmd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
show,compData-method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
sqrtcpm.limma.createRmd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
summarizeSyntheticDataSet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
TCC.createRmd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
ttest.createRmd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
voom.limma.createRmd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
voom.ttest.createRmd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
vst.limma.createRmd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
vst.ttest.createRmd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Index 52

compcodeR-package RNAseq data simulation, differential expression analysis and perfor-
mance comparison of differential expression methods

Description

RNAseq data simulation, differential expression analysis and performance comparison of differen-
tial expression methods

Details

This package provides extensive functionality for comparing results obtained by different methods
for differential expression analysis of RNAseq data. It also contains functions for simulating count
data and interfaces to several packages for performing the differential expression analysis.



baySeq.createRmd 3

Author(s)

Charlotte Soneson

baySeq.createRmd Generate a .Rmd file containing code to perform differential expression
analysis with baySeq

Description

A function to generate code that can be run to perform differential expression analysis of RNAseq
data (comparing two conditions) using the baySeq package. The code is written to a .Rmd file. This
function is generally not called by the user, the main interface for performing differential expression
analysis is the runDiffExp function.

Usage

baySeq.createRmd(data.path, result.path, codefile, norm.method, distr.choice,
equaldisp, sample.size = 5000, estimation = "QL", pET = "BIC")

Arguments

data.path The path to a .rds file containing the compData object that will be used for the
differential expression analysis.

result.path The path to the file where the result object will be saved.

codefile The path to the file where the code will be written.

norm.method The between-sample normalization method used to compensate for varying li-
brary sizes and composition in the differential expression analysis. Possible
values are "quantile", "total" and "edgeR".

distr.choice The choice of underlying distribution assumption for the observed counts. Pos-
sible values are "NB", "Poisson" and "Dirichlet".

equaldisp Logical parameter indicating whether or not equal dispersion should be assumed
across all conditions.

sample.size The size of the sample used to estimate the priors (default 5000).

estimation The approach used to estimate the priors. Possible values are "QL" (default),
"ML" and "edgeR".

pET The method used to re-estimate the priors. Possible values are "BIC" (default),
"none" and "iteratively".

Details

For more information about the methods and the interpretation of the parameters, see the baySeq
package and the corresponding publications.



4 checkDataObject

Value

The function generates a .Rmd file containing the code for performing the differential expression
analysis. This file can be executed using e.g. the knitr package.

Author(s)

Charlotte Soneson

References

Hardcastle TJ (2012): baySeq: Empirical Bayesian analysis of patterns of differential expression in
count data. R package

Hardcastle TJ and Kelly KA (2010): baySeq: Empirical Bayesian methods for identifying differen-
tial expression in sequence count data. BMC Bioinformatics 11:422

Examples

try(
if (require(baySeq)) {
tmpdir <- normalizePath(tempdir(), winslash = "/")
mydata.obj <- generateSyntheticData(dataset = "mydata", n.vars = 1000,

samples.per.cond = 5, n.diffexp = 100,
output.file = file.path(tmpdir, "mydata.rds"))

## Note! In the interest of speed, we set sample.size=10 in this example.
## In a real analysis, much larger sample sizes are recommended (the default is 5000).
runDiffExp(data.file = file.path(tmpdir, "mydata.rds"), result.extent = "baySeq",

Rmdfunction = "baySeq.createRmd",
output.directory = tmpdir, norm.method = "edgeR",
distr.choice = "NB", equaldisp = TRUE,
sample.size = 10)

})

checkDataObject Check a list or a compData object for compatibility with the differential
expression functions interfaced by compcodeR

Description

Check if a list or a compData object contains the necessary slots for applying the differential ex-
pression functions interfaced by the compcodeR package. This function is provided for backward
compatibility, see also check_compData and check_compData_results.

Usage

checkDataObject(data.obj)

Arguments

data.obj A list containing data and condition information, or a compData object.



checkTableConsistency 5

Author(s)

Charlotte Soneson

Examples

mydata.obj <- generateSyntheticData(dataset = "mydata", n.vars = 1000,
samples.per.cond = 5, n.diffexp = 100)

checkDataObject(mydata.obj)

checkTableConsistency Check consistency of input table to runComparison

Description

Check that the dataset, nbr.samples, repl and de.methods columns of a data frame are consis-
tent with the information provided in the input files (given in the input.files column of the data
frame). If there are inconsistencies or missing information in any of the columns, replace the given
information with the information in the input files.

Usage

checkTableConsistency(file.table)

Arguments

file.table A data frame with columns named input.files and (optionally) datasets,
nbr.samples, repl, de.methods.

Value

Returns a consistent file table defining the result files that will be used as the basis for a method
comparison.

Author(s)

Charlotte Soneson

Examples

tmpdir <- normalizePath(tempdir(), winslash = "/")
mydata.obj <- generateSyntheticData(dataset = "mydata", n.vars = 1000,

samples.per.cond = 5, n.diffexp = 100,
output.file = file.path(tmpdir, "mydata.rds"))

runDiffExp(data.file = file.path(tmpdir, "mydata.rds"), result.extent = "voom.limma",
Rmdfunction = "voom.limma.createRmd", output.directory = tmpdir,
norm.method = "TMM")

runDiffExp(data.file = file.path(tmpdir, "mydata.rds"), result.extent = "edgeR.exact",
Rmdfunction = "edgeR.exact.createRmd", output.directory = tmpdir,
norm.method = "TMM",



6 check_compData

trend.method = "movingave", disp.type = "tagwise")

## A correct table
file.table <- data.frame(input.files = file.path(tmpdir,

c("mydata_voom.limma.rds", "mydata_edgeR.exact.rds")),
datasets = c("mydata", "mydata"),
nbr.samples = c(5, 5),
repl = c(1, 1),
stringsAsFactors = FALSE)

new.table <- checkTableConsistency(file.table)
new.table

## An incorrect table
file.table <- data.frame(input.files = file.path(tmpdir,

c("mydata_voom.limma.rds", "mydata_edgeR.exact.rds")),
datasets = c("mydata", "mydata"),
nbr.samples = c(5, 3),
repl = c(2, 1),
stringsAsFactors = FALSE)

new.table <- checkTableConsistency(file.table)
new.table

## A table with missing information
file.table <- data.frame(input.files = file.path(tmpdir,

c("mydata_voom.limma.rds", "mydata_edgeR.exact.rds")),
stringsAsFactors = FALSE)

new.table <- checkTableConsistency(file.table)
new.table

check_compData Check the validity of a compData object

Description

Check the validity of a compData object. An object that passes the check can be used as the input
for the differential expression analysis methods interfaced by compcodeR.

Usage

check_compData(object)

Arguments

object A compData object

Author(s)

Charlotte Soneson



check_compData_results 7

Examples

mydata <- generateSyntheticData(dataset = "mydata", n.vars = 1000,
samples.per.cond = 5, n.diffexp = 100)

check_compData(mydata)

check_compData_results

Check the validity of a compData result object

Description

Check the validity of a compData object containing differential expression results. An object that
passes the check can be used as the input for the method comparison functions in compcodeR.

Usage

check_compData_results(object)

Arguments

object A compData object

Author(s)

Charlotte Soneson

Examples

tmpdir <- normalizePath(tempdir(), winslash = "/")
mydata <- generateSyntheticData(dataset = "mydata", n.vars = 1000,

samples.per.cond = 5, n.diffexp = 100,
output.file = file.path(tmpdir, "mydata.rds"))

## Check an object without differential expression results
check_compData_results(mydata)

runDiffExp(data.file = file.path(tmpdir, "mydata.rds"),
result.extent = "voom.limma",
Rmdfunction = "voom.limma.createRmd",
output.directory = tmpdir, norm.method = "TMM")

resdata <- readRDS(file.path(tmpdir, "mydata_voom.limma.rds"))
## Check an object containing differential expression results
check_compData_results(resdata)



8 compData

compData Create a compData object

Description

The compData class is used to store information about the experiment, such as the count matrix,
sample and variable annotations, information regarding the generation of the data and results from
applying a differential expression analysis to the data. This constructor function creates a compData
object.

Usage

compData(count.matrix, sample.annotations, info.parameters,
variable.annotations = data.frame(), filtering = "no info",
analysis.date = "", package.version = "", method.names = list(),
code = "", result.table = data.frame())

Arguments

count.matrix A count matrix, with genes as rows and observations as columns.
sample.annotations

A data frame, containing at least one column named ’condition’, encoding the
grouping of the observations into two groups. The row names should be the
same as the column names of the count.matrix.

info.parameters

A list containing information regarding simulation parameters etc. The only
mandatory entries are dataset and uID, but it may contain entries such as the
ones listed below (see generateSyntheticData for more detailed information
about each of these entries).

• dataset: an informative name or identifier of the data set (e.g., summariz-
ing the simulation settings).

• samples.per.cond

• n.diffexp

• repl.id

• seqdepth

• minfact

• maxfact

• fraction.upregulated

• between.group.diffdisp

• filter.threshold.total

• filter.threshold.mediancpm

• fraction.non.overdispersed

• random.outlier.high.prob

• random.outlier.low.prob



compData 9

• single.outlier.high.prob

• single.outlier.low.prob

• effect.size

• uID: a unique ID for the data set. In contrast to dataset, the uID is unique
e.g. for each instance of replicated data sets generated with the same simu-
lation settings.

variable.annotations

A data frame with variable annotations (with number of rows equal to the num-
ber of rows in count.matrix, that is, the number of variables in the data set).
Not mandatory, but may contain columns such as the ones listed below. If
present, the row names should be the same as the row names of the count.matrix.

• truedispersions.S1: the true dispersion for each gene in condition S1.
• truedispersions.S2: the true dispersion for each gene in condition S2.
• truemeans.S1: the true mean value for each gene in condition S1.
• truemeans.S2: the true mean value for each gene in condition S2.
• n.random.outliers.up.S1: the number of ’random’ outliers with extremely

high counts for each gene in condition S1.
• n.random.outliers.up.S2: the number of ’random’ outliers with extremely

high counts for each gene in condition S2.
• n.random.outliers.down.S1: the number of ’random’ outliers with ex-

tremely low counts for each gene in condition S1.
• n.random.outliers.down.S2: the number of ’random’ outliers with ex-

tremely low counts for each gene in condition S2.
• n.single.outliers.up.S1: the number of ’single’ outliers with extremely

high counts for each gene in condition S1.
• n.single.outliers.up.S2: the number of ’single’ outliers with extremely

high counts for each gene in condition S2.
• n.single.outliers.down.S1: the number of ’single’ outliers with ex-

tremely low counts for each gene in condition S1.
• n.single.outliers.down.S2: the number of ’single’ outliers with ex-

tremely low counts for each gene in condition S2.
• M.value: the M-value (observed log2 fold change between condition S1

and condition S2) for each gene.
• A.value: the A-value (observed average expression level across condition

S1 and condition S2) for each gene.
• truelog2foldchanges: the true (simulated) log2 fold changes between

condition S1 and condition S2.
• upregulation: a binary vector indicating which genes are simulated to be

upregulated in condition S2 compared to condition S1.
• downregulation: a binary vector indicating which genes are simulated to

be downregulated in condition S2 compared to condition S1.
• differential.expression: a binary vector indicating which genes are

simulated to be differentially expressed in condition S2 compared to condi-
tion S1.



10 compData

filtering A character string containing information about the filtering that has been ap-
plied to the data set.

analysis.date If a differential expression analysis has been performed, a character string de-
tailing when it was performed.

package.version

If a differential expression analysis has been performed, a character string giving
the version of the differential expression packages that were applied.

method.names If a differential expression analysis has been performed, a list with entries full.name
and short.name, giving the full name of the differential expression method
(may including version number and parameter settings) and a short name or
abbreviation.

code If a differential expression analysis has been performed, a character string con-
taining the code that was run to perform the analysis. The code should be in R
markdown format, and can be written to an HTML file using the generateCodeHTMLs
function.

result.table If a differential expression analysis has been performed, a data frame containing
the results of the analysis. The number of rows should be equal to the number of
rows in count.matrix and if present, the row names should be identical. The
only mandatory column is score, which gives a score for each gene, where a
higher score suggests a "more highly differentially expressed" gene. Different
comparison functions use different columns of this table, if available. The list
below gives the columns that are used by the interfaced methods.

• pvalue nominal p-values
• adjpvalue p-values adjusted for multiple comparisons
• logFC estimated log-fold changes between the two conditions
• score the score that will be used to rank the genes in order of significance.

Note that high scores always signify differential expression, that is, a strong
association with the predictor. For example, for methods returning a nomi-
nal p-value the score can be defined as 1 - pvalue.

• FDR false discovery rate estimates
• posterior.DE posterior probabilities of differential expression
• prob.DE conditional probabilities of differential expression
• lfdr local false discovery rates
• statistic test statistics from the differential expression analysis
• dispersion.S1 dispersion estimates in condition S1
• dispersion.S2 dispersion estimates in condition S2

Value

A compData object.

Author(s)

Charlotte Soneson



compData-class 11

Examples

count.matrix <- round(matrix(1000*runif(4000), 1000))
sample.annotations <- data.frame(condition = c(1, 1, 2, 2))
info.parameters <- list(dataset = "mydata", uID = "123456")
cpd <- compData(count.matrix, sample.annotations, info.parameters)

compData-class Class compData

Description

The compData class is used to store information about the experiment, such as the count matrix,
sample and variable annotations, information regarding the generation of the data and results from
applying a differential expression analysis to the data.

Slots

count.matrix: The read count matrix, with genes as rows and samples as columns. Class matrix

sample.annotations: A data frame containing sample annotation information for all samples in
the data set. Must contain at least a column named condition, encoding the division of
the samples into two classes. The row names should be the same as the column names of
count.matrix. Class data.frame

info.parameters: A list of parameters detailing the simulation process used to generate the data.
Must contain at least two entries, named dataset (an informative name for the data set/simulation
setting) and uID (a unique ID for the specific data set instance). Class list

filtering: A character string detailing the filtering process that has been applied to the data. Class
character

variable.annotations: Contains information regarding the variables, such as the differential
expression status, the true mean, dispersion and effect sizes. If present, the row names should
be the same as those of count.matrix. Class data.frame

analysis.date: (If a differential expression analysis has been performed and the results are in-
cluded in the compData object). Gives the date when the differential expression analysis was
performed. Class character

package.version: (If a differential expression analysis has been performed and the results are
included in the compData object). Gives the version numbers of the package(s) used for the
differential expression analysis. Class character

method.names: (If a differential expression analysis has been performed and the results are in-
cluded in the compData object). A list, containing the name of the method used for the dif-
ferential expression analysis. The list should have two entries: full.name and short.name,
where the full.name is the full (potentially long) name identifying the method, and short.name
may be an abbreviation. Class list

code: (If a differential expression analysis has been performed and the results are included in the
compData object). A character string containing the code that was used to run the differential
expression analysis. The code should be in R markdown format. Class character



12 compData-class

result.table: (If a differential expression analysis has been performed and the results are in-
cluded in the compData object). Contains the results of the differential expression analysis,
in the form of a data frame with one row per gene. Must contain at least one column named
score, where a higher value corresponds to ’more strongly differentially expressed genes’.
Class data.frame

Methods

count.matrix signature(x="compData")

count.matrix<- signature(x="compData",value="matrix"): Get or set the count matrix in a
compData object. value should be a numeric matrix.

sample.annotations signature(x="compData")

sample.annotations<- signature(x="compData",value="data.frame"): Get or set the sample
annotations data frame in a compData object. value should be a data frame with at least a
column named ’condition’.

info.parameters signature(x="compData")

info.parameters<- signature(x="compData",value="list"): Get or set the list with info pa-
rameters in a compData object. value should be a list with at least elements named ’dataset’
and ’uID’.

filtering signature(x="compData")

filtering<- signature(x="compData",value="character"): Get or set the information about
the filtering in a compData object. value should be a character string describing the filtering
that has been performed.

variable.annotations signature(x="compData")

variable.annotations<- signature(x="compData",value="data.frame"): Get or set the vari-
able annotations data frame in a compData object. value should be a data frame.

analysis.date signature(x="compData")

analysis.date<- signature(x="compData",value="character"): Get or set the analysis date
in a compData object. value should be a character string describing when the differential
expression analysis of the data was performed.

package.version signature(x="compData")

package.version<- signature(x="compData",value="character"): Get or set the information
about the package version in a compData object. value should be a character string detailing
which packages and versions were used to perform the differential expression analysis of the
data.

method.names signature(x="compData")

method.names<- signature(x="compData",value="list"): Get or set the method names in a
compData object. value should be a list with slots full.name and short.name, giving the
full name and an abbreviation for the method that was used to perform the analysis of the data.

code signature(x="compData")

code<- signature(x="compData",value="character"): Get or set the code slot in a compData
object. value should be a character string in R markdown format, giving the code that was
run to obtain the results from the differential expression analysis.



convertcompDataToList 13

result.table signature(x="compData")

result.table<- signature(x="compData",value="data.frame"): Get or set the result table in a
compData object. value should be a data frame with one row per gene, and at least a column
named ’score’.

Construction

An object of the class compData can be constructed using the compData function.

Author(s)

Charlotte Soneson

convertcompDataToList Convert a compData object to a list

Description

Given a compData object, convert it to a list.

Usage

convertcompDataToList(cpd)

Arguments

cpd A compData object

Author(s)

Charlotte Soneson

Examples

mydata.obj <- generateSyntheticData(dataset = "mydata", n.vars = 12500,
samples.per.cond = 5, n.diffexp = 1250)

mydata.list <- convertcompDataToList(mydata.obj)



14 DESeq.GLM.createRmd

convertListTocompData Convert a list with data and results to a compData object

Description

Given a list with data and results (resulting e.g. from compcodeR version 0.1.0), convert it to a
compData object.

Usage

convertListTocompData(inp.list)

Arguments

inp.list A list with data and results, e.g. generated by compcodeR version 0.1.0.

Author(s)

Charlotte Soneson

Examples

convertListTocompData(list(count.matrix = matrix(round(1000*runif(4000)), 1000),
sample.annotations = data.frame(condition = c(1,1,2,2)),
info.parameters = list(dataset = "mydata",
uID = "123456")))

DESeq.GLM.createRmd Generate a .Rmd file containing code to perform differential expression
analysis with the DESeq GLM approach

Description

A function to generate code that can be run to perform differential expression analysis of RNAseq
data (comparing two conditions) using the GLM functionality from the DESeq package. The code
is written to a .Rmd file. This function is generally not called by the user, the main interface for
performing differential expression analysis is the runDiffExp function.

Usage

DESeq.GLM.createRmd(data.path, result.path, codefile, sharing.mode, disp.method,
fit.type)



DESeq.GLM.createRmd 15

Arguments

data.path The path to a .rds file containing the compData object that will be used for the
differential expression analysis.

result.path The path to the file where the result object will be saved.

codefile The path to the file where the code will be written.

sharing.mode The method used to select between the individually estimated dispersion and
the dispersion estimate obtained by fitting a dispersion-mean relationship to the
estimated values for all genes. Possible values are "fit-only" (use the fitted
value), "maximum" (take the maximum of the fitted and the estimated value) and
"gene-est-only" (use the estimated value).

disp.method The method used to estimate the dispersion. Possible values are "pooled",
"per-condition" and "blind".

fit.type The fitting method used to get the dispersion-mean relationship. Possible values
are "parametric" and "local".

Details

For more information about the methods and the interpretation of the parameters, see the DESeq
package and the corresponding publications.

Value

The function generates a .Rmd file containing the code for performing the differential expression
analysis. This file can be executed using e.g. the knitr package.

Author(s)

Charlotte Soneson

References

Anders S and Huber W (2010): Differential expression analysis for sequence count data. Genome
Biology 11:R106

Examples

try(
if (require(DESeq)) {
tmpdir <- normalizePath(tempdir(), winslash = "/")
mydata.obj <- generateSyntheticData(dataset = "mydata", n.vars = 1000,

samples.per.cond = 5, n.diffexp = 100,
output.file = file.path(tmpdir, "mydata.rds"))

runDiffExp(data.file = file.path(tmpdir, "mydata.rds"), result.extent = "DESeq.GLM",
Rmdfunction = "DESeq.GLM.createRmd",
output.directory = tmpdir, sharing.mode = "maximum",
disp.method = "pooled", fit.type = "parametric")

})



16 DESeq.nbinom.createRmd

DESeq.nbinom.createRmd

Generate a .Rmd file containing code to perform differential expression
analysis with the DESeq nbinom approach

Description

A function to generate code that can be run to perform differential expression analysis of RNAseq
data (comparing two conditions) using the nbinom test from the DESeq package. The code is written
to a .Rmd file. This function is generally not called by the user, the main interface for performing
differential expression analysis is the runDiffExp function.

Usage

DESeq.nbinom.createRmd(data.path, result.path, codefile, sharing.mode,
disp.method, fit.type)

Arguments

data.path The path to a .rds file containing the compData object that will be used for the
differential expression analysis.

result.path The path to the file where the result object will be saved.

codefile The path to the file where the code will be written.

sharing.mode The method used to select between the individually estimated dispersion and
the dispersion estimate obtained by fitting a dispersion-mean relationship to the
estimated values for all genes. Possible values are "fit-only" (use the fitted
value), "maximum" (take the maximum of the fitted and the estimated value) and
"gene-est-only" (use the estimated value).

disp.method The method used to estimate the dispersion. Possible values are "pooled",
"per-condition" and "blind".

fit.type The fitting method used to get the dispersion-mean relationship. Possible values
are "parametric" and "local".

Details

For more information about the methods and the interpretation of the parameters, see the DESeq
package and the corresponding publications.

Value

The function generates a .Rmd file containing the code for performing the differential expression
analysis. This file can be executed using e.g. the knitr package.

Author(s)

Charlotte Soneson



DESeq2.createRmd 17

References

Anders S and Huber W (2010): Differential expression analysis for sequence count data. Genome
Biology 11:R106

Examples

try(
if (require(DESeq)) {
tmpdir <- normalizePath(tempdir(), winslash = "/")
mydata.obj <- generateSyntheticData(dataset = "mydata", n.vars = 1000,

samples.per.cond = 5, n.diffexp = 100,
output.file = file.path(tmpdir, "mydata.rds"))

runDiffExp(data.file = file.path(tmpdir, "mydata.rds"), result.extent = "DESeq.nbinom",
Rmdfunction = "DESeq.nbinom.createRmd",
output.directory = tmpdir, sharing.mode = "maximum",
disp.method = "pooled", fit.type = "parametric")

})

DESeq2.createRmd Generate a .Rmd file containing code to perform differential expression
analysis with DESeq2

Description

A function to generate code that can be run to perform differential expression analysis of RNAseq
data (comparing two conditions) using the DESeq2 package. The code is written to a .Rmd file. This
function is generally not called by the user, the main interface for performing differential expression
analysis is the runDiffExp function.

Usage

DESeq2.createRmd(data.path, result.path, codefile, fit.type, test,
beta.prior = TRUE, independent.filtering = TRUE, cooks.cutoff = TRUE,
impute.outliers = TRUE)

Arguments

data.path The path to a .rds file containing the compData object that will be used for the
differential expression analysis.

result.path The path to the file where the result object will be saved.

codefile The path to the file where the code will be written.

fit.type The fitting method used to get the dispersion-mean relationship. Possible values
are "parametric", "local" and "mean".

test The test to use. Possible values are "Wald" and "LRT".

beta.prior Whether or not to put a zero-mean normal prior on the non-intercept coefficients.
Default is TRUE.



18 DESeq2.createRmd

independent.filtering

Whether or not to perform independent filtering of the data. With independent
filtering=TRUE, the adjusted p-values for genes not passing the filter threshold
are set to NA.

cooks.cutoff The cutoff value for the Cook’s distance to consider a value to be an outlier. Set
to Inf or FALSE to disable outlier detection. For genes with detected outliers,
the p-value and adjusted p-value will be set to NA.

impute.outliers

Whether or not the outliers should be replaced by a trimmed mean and the anal-
ysis rerun.

Details

For more information about the methods and the interpretation of the parameters, see the DESeq2
package and the corresponding publications.

Value

The function generates a .Rmd file containing the code for performing the differential expression
analysis. This file can be executed using e.g. the knitr package.

Author(s)

Charlotte Soneson

References

Anders S and Huber W (2010): Differential expression analysis for sequence count data. Genome
Biology 11:R106

Examples

try(
if (require(DESeq2)) {
tmpdir <- normalizePath(tempdir(), winslash = "/")
mydata.obj <- generateSyntheticData(dataset = "mydata", n.vars = 1000,

samples.per.cond = 5, n.diffexp = 100,
output.file = file.path(tmpdir, "mydata.rds"))

runDiffExp(data.file = file.path(tmpdir, "mydata.rds"), result.extent = "DESeq2",
Rmdfunction = "DESeq2.createRmd",
output.directory = tmpdir, fit.type = "parametric",
test = "Wald")

})



DSS.createRmd 19

DSS.createRmd Generate a .Rmd file containing code to perform differential expression
analysis with DSS

Description

A function to generate code that can be run to perform differential expression analysis of RNAseq
data (comparing two conditions) using the DSS package. The code is written to a .Rmd file. This
function is generally not called by the user, the main interface for performing differential expression
analysis is the runDiffExp function.

Usage

DSS.createRmd(data.path, result.path, codefile, norm.method, disp.trend)

Arguments

data.path The path to a .rds file containing the compData object that will be used for the
differential expression analysis.

result.path The path to the file where the result object will be saved.

codefile The path to the file where the code will be written.

norm.method The between-sample normalization method used to compensate for varying li-
brary sizes and composition in the differential expression analysis. Possible
values are "quantile", "total" and "median".

disp.trend A logical parameter indicating whether or not to include a trend in the dispersion
estimation.

Details

For more information about the methods and the interpretation of the parameters, see the DSS pack-
age and the corresponding publications.

Author(s)

Charlotte Soneson

References

Wu H, Wang C and Wu Z (2013): A new shrinkage estimator for dispersion improves differential
expression detection in RNA-seq data. Biostatistics 14(2), 232-243



20 EBSeq.createRmd

Examples

try(
if (require(DSS)) {
tmpdir <- normalizePath(tempdir(), winslash = "/")
mydata.obj <- generateSyntheticData(dataset = "mydata", n.vars = 1000,

samples.per.cond = 5, n.diffexp = 100,
output.file = file.path(tmpdir, "mydata.rds"))

runDiffExp(data.file = file.path(tmpdir, "mydata.rds"), result.extent = "DSS",
Rmdfunction = "DSS.createRmd",
output.directory = tmpdir, norm.method = "quantile",
disp.trend = TRUE)

})

EBSeq.createRmd Generate a .Rmd file containing code to perform differential expres-
sion analysis with EBSeq

Description

A function to generate code that can be run to perform differential expression analysis of RNAseq
data (comparing two conditions) using the EBSeq package. The code is written to a .Rmd file. This
function is generally not called by the user, the main interface for performing differential expression
analysis is the runDiffExp function.

Usage

EBSeq.createRmd(data.path, result.path, codefile, norm.method)

Arguments

data.path The path to a .rds file containing the compData object that will be used for the
differential expression analysis.

result.path The path to the file where the result object will be saved.

codefile The path to the file where the code will be written.

norm.method The between-sample normalization method used to compensate for varying li-
brary sizes and composition in the differential expression analysis. Possible
values are "median" and "quantile".

Details

For more information about the methods and the meaning of the parameters, see the EBSeq package
and the corresponding publications.

Value

The function generates a .Rmd file containing the differential expression code. This file can be
executed using e.g. the knitr package.



edgeR.exact.createRmd 21

Author(s)

Charlotte Soneson

References

Leng N, Dawson JA, Thomson JA, Ruotti V, Rissman AI, Smits BMG, Haag JD, Gould MN, Stewart
RM and Kendziorski C (2013): EBSeq: An empirical Bayes hierarchical model for inference in
RNA-seq experiments. Bioinformatics

Examples

try(
if (require(EBSeq)) {
tmpdir <- normalizePath(tempdir(), winslash = "/")
mydata.obj <- generateSyntheticData(dataset = "mydata", n.vars = 1000,

samples.per.cond = 5, n.diffexp = 100,
output.file = file.path(tmpdir, "mydata.rds"))

runDiffExp(data.file = file.path(tmpdir, "mydata.rds"), result.extent = "EBSeq",
Rmdfunction = "EBSeq.createRmd",
output.directory = tmpdir, norm.method = "median")

}
)

edgeR.exact.createRmd Generate a .Rmd file containing code to perform differential expression
analysis with the edgeR exact test

Description

A function to generate code that can be run to perform differential expression analysis of RNAseq
data (comparing two conditions) using the exact test functionality from the edgeR package. The
code is written to a .Rmd file. This function is generally not called by the user, the main interface
for performing differential expression analysis is the runDiffExp function.

Usage

edgeR.exact.createRmd(data.path, result.path, codefile, norm.method,
trend.method, disp.type)

Arguments

data.path The path to a .rds file containing the compData object that will be used for the
differential expression analysis.

result.path The path to the file where the result object will be saved.

codefile The path to the file where the code will be written.

norm.method The between-sample normalization method used to compensate for varying li-
brary sizes and composition in the differential expression analysis. Possible
values are "TMM", "RLE", "upperquartile" and "none".



22 edgeR.GLM.createRmd

trend.method The method used to estimate the trend in the mean-dispersion relationship. Pos-
sible values are "none", "movingave" and "loess"

disp.type The type of dispersion estimate used. Possible values are "common", "trended"
and "tagwise".

Details

For more information about the methods and the interpretation of the parameters, see the edgeR
package and the corresponding publications.

Value

The function generates a .Rmd file containing the code for performing the differential expression
analysis. This file can be executed using e.g. the knitr package.

Author(s)

Charlotte Soneson

References

Robinson MD, McCarthy DJ and Smyth GK (2010): edgeR: a Bioconductor package for differential
expression analysis of digital gene expression data. Bioinformatics 26, 139-140

Examples

tmpdir <- normalizePath(tempdir(), winslash = "/")
mydata.obj <- generateSyntheticData(dataset = "mydata", n.vars = 1000,

samples.per.cond = 5, n.diffexp = 100,
output.file = file.path(tmpdir, "mydata.rds"))

runDiffExp(data.file = file.path(tmpdir, "mydata.rds"), result.extent = "edgeR.exact",
Rmdfunction = "edgeR.exact.createRmd",
output.directory = tmpdir, norm.method = "TMM",
trend.method = "movingave", disp.type = "tagwise")

edgeR.GLM.createRmd Generate a .Rmd file containing code to perform differential expression
analysis with the edgeR GLM approach

Description

A function to generate code that can be run to perform differential expression analysis of RNAseq
data (comparing two conditions) using the GLM functionality from the edgeR package. The code
is written to a .Rmd file. This function is generally not called by the user, the main interface for
performing differential expression analysis is the runDiffExp function.



edgeR.GLM.createRmd 23

Usage

edgeR.GLM.createRmd(data.path, result.path, codefile, norm.method, disp.type,
disp.method, trended)

Arguments

data.path The path to a .rds file containing the compData object that will be used for the
differential expression analysis.

result.path The path to the file where the result object will be saved.

codefile The path to the file where the code will be written.

norm.method The between-sample normalization method used to compensate for varying li-
brary sizes and composition in the differential expression analysis. Possible
values are "TMM", "RLE", "upperquartile" and "none".

disp.type The type of dispersion estimate used. Possible values are "common", "trended"
and "tagwise".

disp.method The method used to estimate the dispersion. Possible values are "CoxReid",
"Pearson" and "deviance".

trended Logical parameter indicating whether or not a trended dispersion estimate should
be used.

Details

For more information about the methods and the interpretation of the parameters, see the edgeR
package and the corresponding publications.

Value

The function generates a .Rmd file containing the code for performing the differential expression
analysis. This file can be executed using e.g. the knitr package.

Author(s)

Charlotte Soneson

References

Robinson MD, McCarthy DJ and Smyth GK (2010): edgeR: a Bioconductor package for differential
expression analysis of digital gene expression data. Bioinformatics 26, 139-140

Examples

tmpdir <- normalizePath(tempdir(), winslash = "/")
mydata.obj <- generateSyntheticData(dataset = "mydata", n.vars = 1000,

samples.per.cond = 5, n.diffexp = 100,
output.file = file.path(tmpdir, "mydata.rds"))

runDiffExp(data.file = file.path(tmpdir, "mydata.rds"), result.extent = "edgeR.GLM",
Rmdfunction = "edgeR.GLM.createRmd",
output.directory = tmpdir, norm.method = "TMM",



24 generateCodeHTMLs

disp.type = "tagwise", disp.method = "CoxReid",
trended = TRUE)

generateCodeHTMLs Generate HTML file(s) containing code used to run differential expres-
sion analysis.

Description

A function to extract the code used to generate differential expression results from saved compData
result objects (typically obtained by runDiffExp), and to write the code to HTML files. This
requires that the code was saved as a character string in R markdown format in the code slot of the
result object, which is done automatically by runDiffExp. If the differential expression analysis
was performed with functions outside compcodeR, the code has to be added manually to the result
object.

Usage

generateCodeHTMLs(input.files, output.directory)

Arguments

input.files A vector with paths to one or several .rds files containing compData objects
with the results from differential expression analysis. One code HTML file is
generated for each file in the vector.

output.directory

The path to the directory where the code HTML files will be saved.

Author(s)

Charlotte Soneson

Examples

tmpdir <- normalizePath(tempdir(), winslash = "/")
mydata.obj <- generateSyntheticData(dataset = "mydata", n.vars = 1000,

samples.per.cond = 5, n.diffexp = 100,
output.file = file.path(tmpdir, "mydata.rds"))

runDiffExp(data.file = file.path(tmpdir, "mydata.rds"), result.extent = "voom.limma",
Rmdfunction = "voom.limma.createRmd", output.directory = tmpdir,
norm.method = "TMM")

generateCodeHTMLs(file.path(tmpdir, "mydata_voom.limma.rds"), tmpdir)



generateSyntheticData 25

generateSyntheticData Generate synthetic count data sets

Description

Generate synthetic count data sets, following the simulation strategy detailed in Soneson and De-
lorenzi (2013).

Usage

generateSyntheticData(dataset, n.vars, samples.per.cond, n.diffexp,
repl.id = 1, seqdepth = 1e+07, minfact = 0.7, maxfact = 1.4,
relmeans = "auto", dispersions = "auto", fraction.upregulated = 1,
between.group.diffdisp = FALSE, filter.threshold.total = 1,
filter.threshold.mediancpm = 0, fraction.non.overdispersed = 0,
random.outlier.high.prob = 0, random.outlier.low.prob = 0,
single.outlier.high.prob = 0, single.outlier.low.prob = 0,
effect.size = 1.5, output.file = NULL)

Arguments

dataset A name or identifier for the data set/simulation settings.
n.vars The initial number of genes in the simulated data set. Based on the filtering con-

ditions (filter.threshold.total and filter.threshold.mediancpm), the
number of genes in the final data set may be lower than this number.

samples.per.cond

The number of samples in each of the two conditions.
n.diffexp The number of genes simulated to be differentially expressed between the two

conditions.
repl.id A replicate ID for the specific simulation instance. Useful for example when

generating multiple count matrices with the same simulation settings.
seqdepth The base sequencing depth (total number of mapped reads). This number is

multiplied by a value drawn uniformly between minfact and maxfact for each
sample to generate data with different actual sequencing depths.

minfact,maxfact

The minimum and maximum for the uniform distribution used to generate fac-
tors that are multiplied with seqdepth to generate individual sequencing depths
for the simulated samples.

relmeans A vector of mean values to use in the simulation of data from the Negative Bi-
nomial distribution, or "auto". Note that these values may be scaled in order to
comply with the given sequencing depth. With the default value ("auto"), the
mean values are sampled from values estimated from the Pickrell and Cheung
data sets. If relmeans is a vector, the provided values will be used as mean val-
ues in the simulation for the samples in the first condition. The mean values for
the samples in the second condition are generated by combining the relmeans
and effect.size arguments.



26 generateSyntheticData

dispersions A vector or matrix of dispersions to use in the simulation of data from the Neg-
ative Binomial distribution, or "auto". With the default value ("auto"), the
dispersion values are sampled from values estimated from the Pickrell and Che-
ung data sets. If both relmeans and dispersions are set to "auto", the means
and dispersion values are sampled in pairs from the values in these data sets. If
dispersions is a single vector, the provided dispersions will be used for simu-
lating data from both conditions. If it is a matrix with two columns, the values
in the first column are used for condition 1, and the values in the second column
are used for condition 2.

fraction.upregulated

The fraction of the differentially expressed genes that is upregulated in condition
2 compared to condition 1.

between.group.diffdisp

Whether or not the dispersion should be allowed to be different between the
conditions. Only applicable if dispersions is "auto".

filter.threshold.total

The filter threshold on the total count for a gene across all samples. All genes
for which the total count across all samples is less than the threshold will be
filtered out.

filter.threshold.mediancpm

The filter threshold on the median count per million (cpm) for a gene across all
samples. All genes for which the median cpm across all samples is less than the
threshold will be filtered out.

fraction.non.overdispersed

The fraction of the genes that should be simulated according to a Poisson dis-
tribution, without overdispersion. The non-overdispersed genes will be divided
proportionally between the upregulated, downregulated and non-differentially
expressed genes.

random.outlier.high.prob

The fraction of ’random’ outliers with unusually high counts.
random.outlier.low.prob

The fraction of ’random’ outliers with unusually low counts.
single.outlier.high.prob

The fraction of ’single’ outliers with unusually high counts.
single.outlier.low.prob

The fraction of ’single’ outliers with unusually low counts.
effect.size The strength of the differential expression, i.e., the effect size, between the two

conditions. If this is a single number, the effect sizes will be obtained by sim-
ulating numbers from an exponential distribution (with rate 1) and adding the
results to the effect.size. For genes that are upregulated in the second con-
dition, the mean in the first condition is multiplied by the effect size. For genes
that are downregulated in the second condition, the mean in the first condition
is divided by the effect size. It is also possible to provide a vector of effect
sizes (one for each gene), which will be used as provided. In this case, the
fraction.upregulated and n.diffexp arguments will be ignored and the val-
ues will be derived from the effect.size vector.

output.file If not NULL, the path to the file where the data object should be saved. The
extension should be .rds, if not it will be changed.



generateSyntheticData 27

Details

In the comparison function, only results obtained for data sets with the same value of the dataset
parameter will be compared. Hence, it is important to give the same value of this parameter e.g. to
different replicates generated with the same simulation settings.

For more detailed information regarding the different types of outliers, see Soneson and Delorenzi
(2013).

Mean and dispersion parameters (if relmeans and/or dispersions is set to "auto") are sampled
from values estimated from the data sets by Pickrell et al (2010) and Cheung et al (2010). The data
sets were downloaded from the ReCount web page (Frazee et al (2011)) and processed as detailed
by Soneson and Delorenzi (2013).

To get the actual mean value for the Negative Binomial distribution used for the simulation of counts
for a given sample, take the column truemeans.S1 (or truemeans.S2, if the sample is in condition
S2) of the variable.annotations slot, divide by the sum of the same column and multiply with
the base sequencing depth (provided in the info.parameters list) and the depth factor for the
sample (given in the sample.annotations data frame). Thus, if you have a vector of mean values
that you want to provide as the relmeans argument and make sure to use it ’as-is’ in the simulation
(for condition S1), make sure to set the seqdepth argument to the sum of the values in the relmeans
vector, and to set minfact and maxfact equal to 1.

Value

A compData object. If output.file is not NULL, the object is saved in the given output.file
(which should have an .rds extension).

Author(s)

Charlotte Soneson

References

Soneson C and Delorenzi M (2013): A comparison of methods for differential expression analysis
of RNA-seq data. BMC Bioinformatics 14:91

Cheung VG, Nayak RR, Wang IX, Elwyn S, Cousins SM, Morley M and Spielman RS (2010):
Polymorphic cis- and trans-regulation of human gene expression. PLoS Biology 8(9):e1000480

Frazee AC, Langmead B and Leek JT (2011): ReCount: a multi-experiment resource of analysis-
ready RNA-seq gene count datasets. BMC Bioinformatics 12:449

Pickrell JK, Marioni JC, Pai AA, Degner JF, Engelhardt BE, Nkadori E, Veyrieras JB, Stephens M,
Gilad Y and Pritchard JK (2010): Understanding mechanisms underlying human gene expression
variation with RNA sequencing. Nature 464, 768-772

Robles JA, Qureshi SE, Stephen SJ, Wilson SR, Burden CJ and Taylor JM (2012): Efficient ex-
perimental design and analysis strategies for the detection of differential expression using RNA-
sequencing. BMC Genomics 13:484

Examples

mydata.obj <- generateSyntheticData(dataset = "mydata", n.vars = 1000,
samples.per.cond = 5, n.diffexp = 100)



28 logcpm.limma.createRmd

listcreateRmd List available *.createRmd functions

Description

Print a list of all *.createRmd functions that are available in the search path. These functions can
be used together with the runDiffExp function to perform differential expression analysis. Consult
the help pages for the respective functions for more information.

Usage

listcreateRmd()

Author(s)

Charlotte Soneson

Examples

listcreateRmd()

logcpm.limma.createRmd

Generate a .Rmd file containing code to perform differential expres-
sion analysis with limma after log-transforming the counts per million
(cpm)

Description

A function to generate code that can be run to perform differential expression analysis of RNAseq
data (comparing two conditions) using limma, after preprocessing the counts by computing the
counts per million (cpm) and applying a logarithmic transformation. The code is written to a .Rmd
file. This function is generally not called by the user, the main interface for performing differential
expression analysis is the runDiffExp function.

Usage

logcpm.limma.createRmd(data.path, result.path, codefile, norm.method)



logcpm.limma.createRmd 29

Arguments

data.path The path to a .rds file containing the compData object that will be used for the
differential expression analysis.

result.path The path to the file where the result object will be saved.

codefile The path to the file where the code will be written.

norm.method The between-sample normalization method used to compensate for varying li-
brary sizes and composition in the differential expression analysis. The nor-
malization factors are calculated using the calcNormFactors function from
the edgeR package. Possible values are "TMM", "RLE", "upperquartile" and
"none"

Details

For more information about the methods and the interpretation of the parameters, see the edgeR and
limma packages and the corresponding publications.

Value

The function generates a .Rmd file containing the code for performing the differential expression
analysis. This file can be executed using e.g. the knitr package.

Author(s)

Charlotte Soneson

References

Smyth GK (2005): Limma: linear models for microarray data. In: ’Bioinformatics and Computa-
tional Biology Solutions using R and Bioconductor’. R. Gentleman, V. Carey, S. Dudoit, R. Irizarry,
W. Huber (eds), Springer, New York, pages 397-420

Robinson MD, McCarthy DJ and Smyth GK (2010): edgeR: a Bioconductor package for differential
expression analysis of digital gene expression data. Bioinformatics 26, 139-140

Robinson MD and Oshlack A (2010): A scaling normalization method for differential expression
analysis of RNA-seq data. Genome Biology 11:R25

Examples

tmpdir <- normalizePath(tempdir(), winslash = "/")
mydata.obj <- generateSyntheticData(dataset = "mydata", n.vars = 1000,

samples.per.cond = 5, n.diffexp = 100,
output.file = file.path(tmpdir, "mydata.rds"))

runDiffExp(data.file = file.path(tmpdir, "mydata.rds"), result.extent = "logcpm.limma",
Rmdfunction = "logcpm.limma.createRmd",
output.directory = tmpdir, norm.method = "TMM")



30 NBPSeq.createRmd

NBPSeq.createRmd Generate a .Rmd file containing code to perform differential expression
analysis with NBPSeq

Description

A function to generate code that can be run to perform differential expression analysis of RNAseq
data (comparing two conditions) using NBPSeq. The code is written to a .Rmd file. This function is
generally not called by the user, the main interface for performing differential expression analysis
is the runDiffExp function.

Usage

NBPSeq.createRmd(data.path, result.path, codefile, norm.method, disp.method)

Arguments

data.path The path to a .rds file containing the compData object that will be used for the
differential expression analysis.

result.path The path to the file where the result object will be saved.

codefile The path to the file where the code will be written.

norm.method The between-sample normalization method used to compensate for varying li-
brary sizes and composition in the differential expression analysis. The nor-
malization factors are calculated using the calcNormFactors function from
the edgeR package. Possible values are "TMM", "RLE", "upperquartile" and
"none".

disp.method The method to use to estimate the dispersion values. Possible values are "NBP"
and "NB2".

Details

For more information about the methods and the interpretation of the parameters, see the NBPSeq
and edgeR packages and the corresponding publications.

Value

The function generates a .Rmd file containing the code for performing the differential expression
analysis. This file can be executed using e.g. the knitr package.

Author(s)

Charlotte Soneson



NOISeq.prenorm.createRmd 31

References

Robinson MD, McCarthy DJ and Smyth GK (2010): edgeR: a Bioconductor package for differential
expression analysis of digital gene expression data. Bioinformatics 26, 139-140

Robinson MD and Oshlack A (2010): A scaling normalization method for differential expression
analysis of RNA-seq data. Genome Biology 11:R25

Di Y, Schafer DW, Cumbie JS, and Chang JH (2011): The NBP Negative Binomial Model for
Assessing Differential Gene Expression from RNA-Seq. Statistical Applications in Genetics and
Molecular Biology 10(1), 1-28

Examples

try(
if (require(NBPSeq)) {
tmpdir <- normalizePath(tempdir(), winslash = "/")
mydata.obj <- generateSyntheticData(dataset = "mydata", n.vars = 1000,

samples.per.cond = 5, n.diffexp = 100,
output.file = file.path(tmpdir, "mydata.rds"))

runDiffExp(data.file = file.path(tmpdir, "mydata.rds"), result.extent = "NBPSeq",
Rmdfunction = "NBPSeq.createRmd",
output.directory = tmpdir, norm.method = "TMM", disp.method = "NBP")

})

NOISeq.prenorm.createRmd

Generate a .Rmd file containing code to perform differential expression
analysis with NOISeq

Description

A function to generate code that can be run to perform differential expression analysis of RNAseq
data (comparing two conditions) using NOISeq. The code is written to a .Rmd file. This function is
generally not called by the user, the main interface for performing differential expression analysis
is the runDiffExp function.

Usage

NOISeq.prenorm.createRmd(data.path, result.path, codefile, norm.method)

Arguments

data.path The path to a .rds file containing the compData object that will be used for the
differential expression analysis.

result.path The path to the file where the result object will be saved.

codefile The path to the file where the code will be written.



32 NOISeq.prenorm.createRmd

norm.method The between-sample normalization method used to compensate for varying li-
brary sizes and composition in the differential expression analysis. The nor-
malization factors are calculated using the calcNormFactors function from
the edgeR package. Possible values are "TMM", "RLE", "upperquartile" and
"none".

Details

For more information about the methods and the interpretation of the parameters, see the NOISeq
package and the corresponding publications.

Value

The function generates a .Rmd file containing the code for performing the differential expression
analysis. This file can be executed using e.g. the knitr package.

Author(s)

Charlotte Soneson

References

Robinson MD, McCarthy DJ and Smyth GK (2010): edgeR: a Bioconductor package for differential
expression analysis of digital gene expression data. Bioinformatics 26, 139-140

Robinson MD and Oshlack A (2010): A scaling normalization method for differential expression
analysis of RNA-seq data. Genome Biology 11:R25

Tarazona S, Furio-Tari P, Ferrer A and Conesa A (2012): NOISeq: Exploratory analysis and differ-
ential expression for RNA-seq data. R package

Tarazona S, Garcia-Alcalde F, Dopazo J, Ferrer A and Conesa A (2011): Differential expression in
RNA-seq: a matter of depth. Genome Res 21(12), 2213-2223

Examples

try(
if (require(NOISeq)) {
tmpdir <- normalizePath(tempdir(), winslash = "/")
mydata.obj <- generateSyntheticData(dataset = "mydata", n.vars = 1000,

samples.per.cond = 5, n.diffexp = 100,
output.file = file.path(tmpdir, "mydata.rds"))

runDiffExp(data.file = file.path(tmpdir, "mydata.rds"), result.extent = "NOISeq",
Rmdfunction = "NOISeq.prenorm.createRmd",
output.directory = tmpdir, norm.method = "TMM")

})



runComparison 33

runComparison Run the performance comparison between differential expression
methods.

Description

The main function for performing comparisons among differential expression methods and gen-
erating a report in HTML format. It is assumed that all differential expression results have been
generated in advance (using e.g. the function runDiffExp) and that the result compData object for
each data set and each differential expression method is saved separately in files with the extension
.rds. Note that the function can also be called via the runComparisonGUI function, which lets the
user set parameters and select input files using a graphical user interface.

Usage

runComparison(file.table, parameters, output.directory, check.table = TRUE,
out.width = NULL)

Arguments

file.table A data frame with at least a column input.files, potentially also columns
named datasets, nbr.samples, repl and de.methods.

parameters A list containing parameters for the comparison study. The following entries are
supported, and used by different comparison methods:

• incl.nbr.samples An array with sample sizes (number of samples per
condition) to consider in the comparison. If set to NULL, all sample sizes
will be included.

• incl.dataset A dataset name (corresponding to the dataset slot of the
results or data objects), indicating the dataset that will be used for the com-
parison. Only one dataset can be chosen.

• incl.replicates An array with replicate numbers to consider in the com-
parison. If set to NULL, all replicates will be included.

• incl.de.methods An array with differential expression methods to be com-
pared. If set to NULL, all differential expression methods will be included.

• fdr.threshold The adjusted p-value threshold for FDR calculations. De-
fault 0.05.

• tpr.threshold The adjusted p-value threshold for TPR calculations. De-
fault 0.05.

• mcc.threshold The adjusted p-value threshold for MCC calculations. De-
fault 0.05.

• typeI.threshold The nominal p-value threshold for type I error calcula-
tions. Default 0.05.

• fdc.maxvar The maximal number of variables to include in false discovery
curve plots. Default 1500.



34 runComparison

• overlap.threshold The adjusted p-value for overlap analysis. Default
0.05.

• fracsign.threshold The adjusted p-value for calculation of the fraction
of genes called significant. Default 0.05.

• ma.threshold The adjusted p-value threshold for coloring genes in MA
plots. Default 0.05.

• signal.measure Either 'mean' or 'snr', determining how to define the
signal strength for a gene which is expressed in only one condition.

• upper.limits,lower.limits Lists that can be used to manually set the
upper and lower plot limits for boxplots of fdr, tpr, auc, mcc, fracsign and
typeIerror.

• comparisons Array containing the comparison methods to be applied. The
entries must be chosen among the following abbreviations:

– "auc" - Compute the area under the ROC curve
– "mcc" - Compute Matthew’s correlation coefficient
– "tpr" - Compute the true positive rate at a given adjusted p-value

threshold (tpr.threshold)
– "fdr" - Compute the false discovery rate at a given adjusted p-value

threshold (fdr.threshold)
– "fdrvsexpr" - Compute the false discovery rate as a function of the

expression level.
– "typeIerror" - Compute the type I error rate at a given nominal p-

value threshold (typeI.threshold)
– "fracsign" - Compute the fraction of genes called significant at a

given adjusted p-value threshold (fracsign.threshold)
– "maplot" - Construct MA plots, depicting the average expression level

and the log fold change for the genes and indicating the genes called
differential expressed at a given adjusted p-value threshold (ma.threshold)

– "fdcurvesall" - Construct false discovery curves for each of the in-
cluded replicates

– "fdcurvesone" - Construct false discovery curves for a single replicate
only

– "rocall" - Construct ROC curves for each of the included replicates
– "rocone" - Construct ROC curves for a single replicate only
– "overlap" - Compute the overlap between collections of genes called

differentially expressed by the different methods at a given adjusted
p-value threshold (overlap.threshold)

– "sorensen" - Compute the Sorensen index, quantifying the overlap be-
tween collections of genes called differentially expressed by the differ-
ent methods, at a given adjusted p-value threshold (overlap.threshold)

– "correlation" - Compute the Spearman correlation between gene
scores assigned by different methods

– "scorevsoutlier" - Visualize the distribution of the gene scores as a
function of the number of outlier counts introduced for the genes

– "scorevsexpr" - Visualize the gene scores as a function of the average
expression level of the genes



runComparison 35

– "scorevssignal" - Visualize the gene score as a function of the ’signal
strength’ (see the signal.measure parameter above) for genes that are
expressed in only one condition

output.directory

The directory where the results should be written. The subdirectory structure
will be created automatically. If the directory already exists, it will be overwrit-
ten.

check.table Logical, should the input table be checked for consistency. Default TRUE.

out.width The width of the figures in the final report. Will be passed on to knitr when the
HTML is generated.

Details

The input to runComparison is a data frame with at least a column named input.files, containing
paths to .rds files containing result objects (of the class compData), such as those generated by
runDiffExp. Other columns that can be included in the data frame are datasets, nbr.samples,
repl and de.methods. They have to match the information contained in the corresponding result
objects. If these columns are not present, they will be added to the data frame automatically.

Value

The function will create a comparison report, named compcodeR_report<timestamp>.html, in the
output.directory. It will also create subfolders named compcodeR_code and compcodeR_figure,
where the code used to perform the differential expression analysis and the figures contained in the
report, respectively, will be stored. Note that if these directories already exists, they will be over-
written.

Author(s)

Charlotte Soneson

Examples

tmpdir <- normalizePath(tempdir(), winslash = "/")
mydata.obj <- generateSyntheticData(dataset = "mydata", n.vars = 1000,

samples.per.cond = 5, n.diffexp = 100,
output.file = file.path(tmpdir, "mydata.rds"))

runDiffExp(data.file = file.path(tmpdir, "mydata.rds"), result.extent = "voom.limma",
Rmdfunction = "voom.limma.createRmd", output.directory = tmpdir,
norm.method = "TMM")

runDiffExp(data.file = file.path(tmpdir, "mydata.rds"), result.extent = "edgeR.exact",
Rmdfunction = "edgeR.exact.createRmd", output.directory = tmpdir,
norm.method = "TMM",
trend.method = "movingave", disp.type = "tagwise")

file.table <- data.frame(input.files = file.path(tmpdir,
c("mydata_voom.limma.rds", "mydata_edgeR.exact.rds")),
stringsAsFactors = FALSE)

parameters <- list(incl.nbr.samples = 5, incl.replicates = 1, incl.dataset = "mydata",
incl.de.methods = NULL,
fdr.threshold = 0.05, tpr.threshold = 0.05, typeI.threshold = 0.05,



36 runComparisonGUI

ma.threshold = 0.05, fdc.maxvar = 1500, overlap.threshold = 0.05,
fracsign.threshold = 0.05, mcc.threshold = 0.05,
comparisons = c("auc", "fdr", "tpr", "ma", "correlation"))

runComparison(file.table = file.table, parameters = parameters, output.directory = tmpdir)

runComparisonGUI A GUI to the main function for running the performance comparison
between differential expression methods.

Description

This function provides a GUI to the main function for performing comparisons among differential
expression methods and generating a report in HTML format (runComparison). It is assumed
that all differential expression results have been generated in advance (using e.g. the function
runDiffExp) and that the result compData object for each data set and each differential expres-
sion method is saved separately in files with the extension .rds. The function opens a graphical
user interface where the user can set parameter values and choose the files to be used as the basis
of the comparison. It is, however, possible to circumvent the GUI and call the comparison function
runComparison directly.

Usage

runComparisonGUI(input.directories, output.directory, recursive,
out.width = NULL, upper.limits = NULL, lower.limits = NULL)

Arguments

input.directories

A list of directories containing the result files (*.rds). All results in the provided
directories will be available for inclusion in the comparison, and the selection is
performed through a graphical user interface. All result objects saved in the files
should be of the compData class, although list objects created by earlier versions
of compcodeR are supported.

output.directory

The directory where the results should be written. The subdirectory structure
will be created automatically. If the directory already exists, it will be overwrit-
ten.

recursive A logical parameter indicating whether or not the search should be extended
recursively to subfolders of the input.directories.

out.width The width of the figures in the final report. Will be passed on to knitr when the
HTML is generated. Can be for example "800px" (see knitr documentation for
more information)

upper.limits,lower.limits

Lists that can be used to manually set upper and lower limits for boxplots of fdr,
tpr, auc, mcc, fracsign and typeIerror.



runDiffExp 37

Details

This function requires that the rpanel package is installed. If this package can not be installed,
please use the runComparison function directly.

Value

The function will create a comparison report, named compcodeR_report<timestamp>.html, in the
output.directory. It will also create subfolders named compcodeR_code and compcodeR_figure,
where the code used to perform the differential expression analysis and the figures contained in the
report, respectively, will be saved. Note that if these directories already exist they will be overwrit-
ten.

Author(s)

Charlotte Soneson

Examples

## Not run:
mydata.obj <- generateSyntheticData(dataset = "mydata", n.vars = 12500,

samples.per.cond = 5, n.diffexp = 1250,
output.file = "mydata.rds")

runDiffExp(data.file = "mydata.rds", result.extent = "voom.limma",
Rmdfunction = "voom.limma.createRmd", output.directory = ".",
norm.method = "TMM")

runDiffExp(data.file = "mydata.rds", result.extent = "ttest",
Rmdfunction = "ttest.createRmd", output.directory = ".",
norm.method = "TMM")

runComparisonGUI(input.directories = ".", output.directory = ".", recursive = FALSE)

## End(Not run)

runDiffExp The main function to run differential expression analysis

Description

The main function for running differential expression analysis (comparing two conditions), using
one of the methods interfaced through compcodeR or a user-defined method.

Usage

runDiffExp(data.file, result.extent, Rmdfunction, output.directory = ".",
norm.path = TRUE, ...)



38 runDiffExp

Arguments

data.file The path to a .rds file containing the data on which the differential expres-
sion analysis will be performed, for example a compData object returned from
generateSyntheticData.

result.extent The extension that will be added to the data file name in order to construct the
result file name. This can be for example the differential expression method
together with a version number.

Rmdfunction A function that creates an Rmd file containing the code that should be run to
perform the differential expression analysis. All functions available through
compcodeR can be listed using the listcreateRmd function.

output.directory

The directory in which the result object will be saved.

norm.path Logical, whether to include the full (absolute) path to the output object in the
saved code.

... Additional arguments that will be passed to the Rmdfunction, such as parameter
choices for the differential expression method.

Author(s)

Charlotte Soneson

Examples

tmpdir <- normalizePath(tempdir(), winslash = "/")
mydata.obj <- generateSyntheticData(dataset = "mydata", n.vars = 1000,

samples.per.cond = 5, n.diffexp = 100,
output.file = file.path(tmpdir, "mydata.rds"))

listcreateRmd()
runDiffExp(data.file = file.path(tmpdir, "mydata.rds"), result.extent = "voom.limma",

Rmdfunction = "voom.limma.createRmd",
output.directory = tmpdir, norm.method = "TMM")

## Not run:
## The following list covers the currently available
differential expression methods:
runDiffExp(data.file = "mydata.rds", result.extent = "baySeq",

Rmdfunction = "baySeq.createRmd",
output.directory = ".", norm.method = "edgeR",
distr.choice = "NB", equaldisp = TRUE)

runDiffExp(data.file = "mydata.rds", result.extent = "DESeq.GLM",
Rmdfunction = "DESeq.GLM.createRmd",
output.directory = ".", sharing.mode = "maximum",
disp.method = "pooled", fit.type = "parametric")

runDiffExp(data.file = "mydata.rds", result.extent = "DESeq.nbinom",
Rmdfunction = "DESeq.nbinom.createRmd",
output.directory = ".", sharing.mode = "maximum",
disp.method = "pooled", fit.type = "parametric")

runDiffExp(data.file = "mydata.rds", result.extent = "DESeq2",
Rmdfunction = "DESeq2.createRmd",



runDiffExp 39

output.directory = ".", fit.type = "parametric",
test = "Wald", beta.prior = TRUE,
independent.filtering = TRUE, cooks.cutoff = TRUE,
impute.outliers = TRUE)

runDiffExp(data.file = "mydata.rds", result.extent = "DSS",
Rmdfunction = "DSS.createRmd",
output.directory = ".", norm.method = "quantile",
disp.trend = TRUE)

runDiffExp(data.file = "mydata.rds", result.extent = "EBSeq",
Rmdfunction = "EBSeq.createRmd",
output.directory = ".", norm.method = "median")

runDiffExp(data.file = "mydata.rds", result.extent = "edgeR.exact",
Rmdfunction = "edgeR.exact.createRmd",
output.directory = ".", norm.method = "TMM",
trend.method = "movingave", disp.type = "tagwise")

runDiffExp(data.file = "mydata.rds", result.extent = "edgeR.GLM",
Rmdfunction = "edgeR.GLM.createRmd",
output.directory = ".", norm.method = "TMM",
disp.type = "tagwise", disp.method = "CoxReid",
trended = TRUE)

runDiffExp(data.file = "mydata.rds", result.extent = "logcpm.limma",
Rmdfunction = "logcpm.limma.createRmd",
output.directory = ".", norm.method = "TMM")

runDiffExp(data.file = "mydata.rds", result.extent = "NBPSeq",
Rmdfunction = "NBPSeq.createRmd",
output.directory = ".", norm.method = "TMM",
disp.method = "NBP")

runDiffExp(data.file = "mydata.rds", result.extent = "NOISeq",
Rmdfunction = "NOISeq.prenorm.createRmd",
output.directory = ".", norm.method = "TMM")

runDiffExp(data.file = "mydata.rds", result.extent = "SAMseq",
Rmdfunction = "SAMseq.createRmd",
output.directory = ".")

runDiffExp(data.file = "mydata.rds", result.extent = "sqrtcpm.limma",
Rmdfunction = "sqrtcpm.limma.createRmd",
output.directory = ".", norm.method = "TMM")

runDiffExp(data.file = "mydata.rds", result.extent = "TCC",
Rmdfunction = "TCC.createRmd",
output.directory = ".", norm.method = "tmm",
test.method = "edger", iteration = 3,
normFDR = 0.1, floorPDEG = 0.05)

runDiffExp(data.file = "mydata.rds", result.extent = "ttest",
Rmdfunction = "ttest.createRmd",
output.directory = ".", norm.method = "TMM")

runDiffExp(data.file = "mydata.rds", result.extent = "voom.limma",
Rmdfunction = "voom.limma.createRmd",
output.directory = ".", norm.method = "TMM")

runDiffExp(data.file = "mydata.rds", result.extent = "voom.ttest",
Rmdfunction = "voom.ttest.createRmd",
output.directory = ".", norm.method = "TMM")

runDiffExp(data.file = "mydata.rds", result.extent = "vst.limma",
Rmdfunction = "vst.limma.createRmd",
output.directory = ".", fit.type = "parametric")



40 SAMseq.createRmd

runDiffExp(data.file = "mydata.rds", result.extent = "vst.ttest",
Rmdfunction = "vst.ttest.createRmd",
output.directory = ".", fit.type = "parametric")

## End(Not run)

SAMseq.createRmd Generate a .Rmd file containing code to perform differential expression
analysis with SAMseq

Description

A function to generate code that can be run to perform differential expression analysis of RNAseq
data (comparing two conditions) using SAMseq. The code is written to a .Rmd file. This function is
generally not called by the user, the main interface for performing differential expression analysis
is the runDiffExp function.

Usage

SAMseq.createRmd(data.path, result.path, codefile)

Arguments

data.path The path to a .rds file containing the compData object that will be used for the
differential expression analysis.

result.path The path to the file where the result object will be saved.

codefile The path to the file where the code will be written.

Details

For more information about the methods and the interpretation of the parameters, see the SAMseq
package and the corresponding publications.

Value

The function generates a .Rmd file containing the code for performing the differential expression
analysis. This file can be executed using e.g. the knitr package.

Author(s)

Charlotte Soneson

References

Li J and Tibshirani R (2011): Finding consistent patterns: a nonparametric approach for identifying
differential expression in RNA-Seq data. Statistical Methods in Medical Research



show,compData-method 41

Examples

try(
if (require(samr)) {
tmpdir <- normalizePath(tempdir(), winslash = "/")
mydata.obj <- generateSyntheticData(dataset = "mydata", n.vars = 1000,

samples.per.cond = 5, n.diffexp = 100,
output.file = file.path(tmpdir, "mydata.rds"))

runDiffExp(data.file = file.path(tmpdir, "mydata.rds"), result.extent = "SAMseq",
Rmdfunction = "SAMseq.createRmd",
output.directory = tmpdir)

})

show,compData-method Show method for compData object

Description

Show method for compData object.

Usage

## S4 method for signature 'compData'
show(object)

Arguments

object A compData object

Author(s)

Charlotte Soneson

Examples

mydata <- generateSyntheticData(dataset = "mydata", n.vars = 12500,
samples.per.cond = 5, n.diffexp = 1250)

mydata



42 sqrtcpm.limma.createRmd

sqrtcpm.limma.createRmd

Generate a .Rmd file containing code to perform differential expres-
sion analysis with limma after square root-transforming the counts
per million (cpm)

Description

A function to generate code that can be run to perform differential expression analysis of RNAseq
data (comparing two conditions) using limma, after preprocessing the counts by computing the
counts per million (cpm) and applying a square-root transformation. The code is written to a .Rmd
file. This function is generally not called by the user, the main interface for performing differential
expression analysis is the runDiffExp function.

Usage

sqrtcpm.limma.createRmd(data.path, result.path, codefile, norm.method)

Arguments

data.path The path to a .rds file containing the compData object that will be used for the
differential expression analysis.

result.path The path to the file where the result object will be saved.

codefile The path to the file where the code will be written.

norm.method The between-sample normalization method used to compensate for varying li-
brary sizes and composition in the differential expression analysis. The nor-
malization factors are calculated using the calcNormFactors function from
the edgeR package. Possible values are "TMM", "RLE", "upperquartile" and
"none".

Details

For more information about the methods and the interpretation of the parameters, see the edgeR and
limma packages and the corresponding publications.

Value

The function generates a .Rmd file containing the code for performing the differential expression
analysis. This file can be executed using e.g. the knitr package.

Author(s)

Charlotte Soneson



summarizeSyntheticDataSet 43

References

Smyth GK (2005): Limma: linear models for microarray data. In: ’Bioinformatics and Computa-
tional Biology Solutions using R and Bioconductor’. R. Gentleman, V. Carey, S. Dudoit, R. Irizarry,
W. Huber (eds), Springer, New York, pages 397-420

Robinson MD, McCarthy DJ and Smyth GK (2010): edgeR: a Bioconductor package for differential
expression analysis of digital gene expression data. Bioinformatics 26, 139-140

Robinson MD and Oshlack A (2010): A scaling normalization method for differential expression
analysis of RNA-seq data. Genome Biology 11:R25

Examples

tmpdir <- normalizePath(tempdir(), winslash = "/")
mydata.obj <- generateSyntheticData(dataset = "mydata", n.vars = 1000,

samples.per.cond = 5, n.diffexp = 100,
output.file = file.path(tmpdir, "mydata.rds"))

runDiffExp(data.file = file.path(tmpdir, "mydata.rds"), result.extent = "sqrtcpm.limma",
Rmdfunction = "sqrtcpm.limma.createRmd",
output.directory = tmpdir, norm.method = "TMM")

summarizeSyntheticDataSet

Summarize a synthetic data set by some diagnostic plots

Description

Summarize a synthetic data set (generated by generateSyntheticData) by some diagnostic plots.

Usage

summarizeSyntheticDataSet(data.set, output.filename)

Arguments

data.set A data set, either a compData object or a path to an .rds file where such an
object is stored.

output.filename

The filename of the resulting html report (including the path).

Author(s)

Charlotte Soneson



44 TCC.createRmd

Examples

tmpdir <- normalizePath(tempdir(), winslash = "/")
mydata.obj <- generateSyntheticData(dataset = "mydata", n.vars = 1000,

samples.per.cond = 5, n.diffexp = 100,
output.file = file.path(tmpdir, "mydata.rds"))

summarizeSyntheticDataSet(data.set = file.path(tmpdir, "mydata.rds"),
output.filename = file.path(tmpdir, "mydata_check.html"))

TCC.createRmd Generate a .Rmd file containing code to perform differential expression
analysis with TCC

Description

A function to generate code that can be run to perform differential expression analysis of RNAseq
data (comparing two conditions) using the TCC package. The code is written to a .Rmd file. This
function is generally not called by the user, the main interface for performing differential expression
analysis is the runDiffExp function.

Usage

TCC.createRmd(data.path, result.path, codefile, norm.method, test.method,
iteration = 3, normFDR = 0.1, floorPDEG = 0.05)

Arguments

data.path The path to a .rds file containing the compData object that will be used for the
differential expression analysis.

result.path The path to the file where the result object will be saved.

codefile The path to the file where the code will be written.

norm.method The between-sample normalization method used to compensate for varying li-
brary sizes and composition in the differential expression analysis. Possible
values are "tmm", and "deseq".

test.method The method used in TCC to find differentially expressed genes. Possible values
are "edger", "deseq" and "bayseq".

iteration The number of iterations used to find the normalization factors. Default value is
3.

normFDR The FDR cutoff for calling differentially expressed genes in the computation of
the normalization factors. Default value is 0.1.

floorPDEG The minimum value to be eliminated as potential differentially expressed genes
before performing step 3 in the TCC algorithm. Default value is 0.05.

Details

For more information about the methods and the interpretation of the parameters, see the TCC pack-
age and the corresponding publications.



ttest.createRmd 45

Author(s)

Charlotte Soneson

References

Kadota K, Nishiyama T, and Shimizu K. A normalization strategy for comparing tag count data.
Algorithms Mol Biol. 7:5, 2012.

Sun J, Nishiyama T, Shimizu K, and Kadota K. TCC: an R package for comparing tag count data
with robust normalization strategies. BMC Bioinformatics 14:219, 2013.

Examples

try(
if (require(TCC)) {
tmpdir <- normalizePath(tempdir(), winslash = "/")
mydata.obj <- generateSyntheticData(dataset = "mydata", n.vars = 1000,

samples.per.cond = 5, n.diffexp = 100,
output.file = file.path(tmpdir, "mydata.rds"))

runDiffExp(data.file = file.path(tmpdir, "mydata.rds"), result.extent = "TCC",
Rmdfunction = "TCC.createRmd",
output.directory = tmpdir, norm.method = "tmm",
test.method = "edger")

})

ttest.createRmd Generate a .Rmd file containing code to perform differential expression
analysis with a t-test

Description

A function to generate code that can be run to perform differential expression analysis of RNAseq
data (comparing two conditions) using a t-test, applied to the normalized counts. The code is written
to a .Rmd file. This function is generally not called by the user, the main interface for performing
differential expression analysis is the runDiffExp function.

Usage

ttest.createRmd(data.path, result.path, codefile, norm.method)

Arguments

data.path The path to a .rds file containing the compData object that will be used for the
differential expression analysis.

result.path The path to the file where the result object will be saved.

codefile The path to the file where the code will be written.



46 voom.limma.createRmd

norm.method The between-sample normalization method used to compensate for varying li-
brary sizes and composition in the differential expression analysis. The nor-
malization factors are calculated using the calcNormFactors function from
the edgeR package. Possible values are "TMM", "RLE", "upperquartile" and
"none"

Details

For more information about the methods and the interpretation of the parameters, see the edgeR
package and the corresponding publications.

Value

The function generates a .Rmd file containing the code for performing the differential expression
analysis. This file can be executed using e.g. the knitr package.

Author(s)

Charlotte Soneson

References

Robinson MD, McCarthy DJ and Smyth GK (2010): edgeR: a Bioconductor package for differential
expression analysis of digital gene expression data. Bioinformatics 26, 139-140

Robinson MD and Oshlack A (2010): A scaling normalization method for differential expression
analysis of RNA-seq data. Genome Biology 11:R25

Examples

try(
if (require(genefilter)) {
tmpdir <- normalizePath(tempdir(), winslash = "/")
mydata.obj <- generateSyntheticData(dataset = "mydata", n.vars = 1000,

samples.per.cond = 5, n.diffexp = 100,
output.file = file.path(tmpdir, "mydata.rds"))

runDiffExp(data.file = file.path(tmpdir, "mydata.rds"), result.extent = "ttest",
Rmdfunction = "ttest.createRmd",
output.directory = tmpdir, norm.method = "TMM")

})

voom.limma.createRmd Generate a .Rmd file containing code to perform differential expression
analysis with voom+limma



voom.limma.createRmd 47

Description

A function to generate code that can be run to perform differential expression analysis of RNAseq
data (comparing two conditions) by applying the voom transformation (from the limma package)
followed by differential expression analysis with limma. The code is written to a .Rmd file. This
function is generally not called by the user, the main interface for performing differential expression
analysis is the runDiffExp function.

Usage

voom.limma.createRmd(data.path, result.path, codefile, norm.method)

Arguments

data.path The path to a .rds file containing the compData object that will be used for the
differential expression analysis.

result.path The path to the file where the result object will be saved.

codefile The path to the file where the code will be written.

norm.method The between-sample normalization method used to compensate for varying li-
brary sizes and composition in the differential expression analysis. The normal-
ization factors are calculated using the calcNormFactors of the edgeR package.
Possible values are "TMM", "RLE", "upperquartile" and "none"

Details

For more information about the methods and the interpretation of the parameters, see the limma
package and the corresponding publications.

Value

The function generates a .Rmd file containing the code for performing the differential expression
analysis. This file can be executed using e.g. the knitr package.

Author(s)

Charlotte Soneson

References

Smyth GK (2005): Limma: linear models for microarray data. In: ’Bioinformatics and Computa-
tional Biology Solutions using R and Bioconductor’. R. Gentleman, V. Carey, S. Dudoit, R. Irizarry,
W. Huber (eds), Springer, New York, pages 397-420

Law CW, Chen Y, Shi W and Smyth GK (2014): voom: precision weights unlock linear model
analysis tools for RNA-seq read counts. Genome Biology 15, R29



48 voom.ttest.createRmd

Examples

tmpdir <- normalizePath(tempdir(), winslash = "/")
mydata.obj <- generateSyntheticData(dataset = "mydata", n.vars = 1000,

samples.per.cond = 5, n.diffexp = 100,
output.file = file.path(tmpdir, "mydata.rds"))

runDiffExp(data.file = file.path(tmpdir, "mydata.rds"), result.extent = "voom.limma",
Rmdfunction = "voom.limma.createRmd",
output.directory = tmpdir, norm.method = "TMM")

voom.ttest.createRmd Generate a .Rmd file containing code to perform differential expression
analysis with voom+t-test

Description

A function to generate code that can be run to perform differential expression analysis of RNAseq
data (comparing two conditions) by applying the voom transformation (from the limma package)
followed by differential expression analysis with a t-test. The code is written to a .Rmd file. This
function is generally not called by the user, the main interface for performing differential expression
analysis is the runDiffExp function.

Usage

voom.ttest.createRmd(data.path, result.path, codefile, norm.method)

Arguments

data.path The path to a .rds file containing the compData object that will be used for the
differential expression analysis.

result.path The path to the file where the result object will be saved.

codefile The path to the file where the code will be written.

norm.method The between-sample normalization method used to compensate for varying li-
brary sizes and composition in the differential expression analysis. The nor-
malization factors are calculated using the calcNormFactors function from
the edgeR package. Possible values are "TMM", "RLE", "upperquartile" and
"none".

Details

For more information about the methods and the interpretation of the parameters, see the limma and
edgeR packages and the corresponding publications.

Value

The function generates a .Rmd file containing the code for performing the differential expression
analysis. This file can be executed using e.g. the knitr package.



vst.limma.createRmd 49

Author(s)

Charlotte Soneson

References

Smyth GK (2005): Limma: linear models for microarray data. In: ’Bioinformatics and Computa-
tional Biology Solutions using R and Bioconductor’. R. Gentleman, V. Carey, S. Dudoit, R. Irizarry,
W. Huber (eds), Springer, New York, pages 397-420

Law CW, Chen Y, Shi W and Smyth GK (2014): voom: precision weights unlock linear model
analysis tools for RNA-seq read counts. Genome Biology 15, R29

Examples

try(
if (require(genefilter)) {
tmpdir <- normalizePath(tempdir(), winslash = "/")
mydata.obj <- generateSyntheticData(dataset = "mydata", n.vars = 1000,

samples.per.cond = 5, n.diffexp = 100,
output.file = file.path(tmpdir, "mydata.rds"))

runDiffExp(data.file = file.path(tmpdir, "mydata.rds"), result.extent = "voom.ttest",
Rmdfunction = "voom.ttest.createRmd",
output.directory = tmpdir, norm.method = "TMM")

})

vst.limma.createRmd Generate a .Rmd file containing code to perform differential expres-
sion analysis with limma after the variance-stabilizing transformation
provided in DESeq

Description

A function to generate code that can be run to perform differential expression analysis of RNAseq
(comparing two conditions) by applying the variance-stabilizing transformation of the DESeq pack-
age followed by differential expression analysis using limma. The code is written to a .Rmd file.
This function is generally not called by the user, the main interface for performing differential ex-
pression analysis is the runDiffExp function.

Usage

vst.limma.createRmd(data.path, result.path, codefile, fit.type)

Arguments

data.path The path to a .rds file containing the compData object that will be used for the
differential expression analysis.

result.path The path to the file where the result object will be saved.

codefile The path to the file where the code will be written.



50 vst.ttest.createRmd

fit.type The fitting method used to get the dispersion-mean relationship. Possible values
are "parametric" and "local".

Details

For more information about the methods and the interpretation of the parameters, see the limma and
DESeq packages and the corresponding publications.

Value

The function generates a .Rmd file containing the code for performing the differential expression
analysis. This file can be executed using e.g. the knitr package.

Author(s)

Charlotte Soneson

References

Smyth GK (2005): Limma: linear models for microarray data. In: ’Bioinformatics and Computa-
tional Biology Solutions using R and Bioconductor’. R. Gentleman, V. Carey, S. Dudoit, R. Irizarry,
W. Huber (eds), Springer, New York, pages 397-420

Anders S and Huber W (2010): Differential expression analysis for sequence count data. Genome
Biology 11:R106

Examples

try(
if (require(DESeq)) {
tmpdir <- normalizePath(tempdir(), winslash = "/")
mydata.obj <- generateSyntheticData(dataset = "mydata", n.vars = 1000,

samples.per.cond = 5, n.diffexp = 100,
output.file = file.path(tmpdir, "mydata.rds"))

runDiffExp(data.file = file.path(tmpdir, "mydata.rds"), result.extent = "vst.limma",
Rmdfunction = "vst.limma.createRmd",
output.directory = tmpdir, fit.type = "parametric")

})

vst.ttest.createRmd Generate a .Rmd file containing code to perform differential expres-
sion analysis with a t-test after the variance-stabilizing transformation
provided in DESeq

Description

A function to generate code that can be run to perform differential expression analysis of RNAseq
data (comparing two conditions) by applying the variance-stabilizing transformation of the DESeq
package followed by differential expression analysis using a t-test. The code is written to a .Rmd
file. This function is generally not called by the user, the main interface for performing differential
expression analysis is the runDiffExp function.



vst.ttest.createRmd 51

Usage

vst.ttest.createRmd(data.path, result.path, codefile, fit.type)

Arguments

data.path The path to a .rds file containing the compData object that will be used for the
differential expression analysis.

result.path The path to the file where the result object will be saved.

codefile The path to the file where the code will be written.

fit.type The fitting method used to get the dispersion-mean relationship. Possible values
are "parametric" and "local".

Details

For more information about the methods and the interpretation of the parameters, see the DESeq
package and the corresponding publications.

Value

The function generates a .Rmd file containing the code for performing the differential expression
analysis. This file can be executed using e.g. the knitr package.

Author(s)

Charlotte Soneson

References

Anders S and Huber W (2010): Differential expression analysis for sequence count data. Genome
Biology 11:R106

Examples

try(
if (require(DESeq) && require(genefilter)) {
tmpdir <- normalizePath(tempdir(), winslash = "/")
mydata.obj <- generateSyntheticData(dataset = "mydata", n.vars = 1000,

samples.per.cond = 5, n.diffexp = 100,
output.file = file.path(tmpdir, "mydata.rds"))

runDiffExp(data.file = file.path(tmpdir, "mydata.rds"), result.extent = "vst.ttest",
Rmdfunction = "vst.ttest.createRmd",
output.directory = tmpdir, fit.type = "parametric")

})



Index

∗Topic package
compcodeR-package, 2

baySeq.createRmd, 3

check_compData, 4, 6
check_compData_results, 4, 7
checkDataObject, 4
checkTableConsistency, 5
compcodeR (compcodeR-package), 2
compcodeR-package, 2
compData, 8, 13, 27, 43
compData-class, 11
convertcompDataToList, 13
convertListTocompData, 14

DESeq.GLM.createRmd, 14
DESeq.nbinom.createRmd, 16
DESeq2.createRmd, 17
DSS.createRmd, 19

EBSeq.createRmd, 20
edgeR.exact.createRmd, 21
edgeR.GLM.createRmd, 22

generateCodeHTMLs, 10, 24
generateSyntheticData, 25, 38, 43

listcreateRmd, 28, 38
logcpm.limma.createRmd, 28

NBPSeq.createRmd, 30
NOISeq.prenorm.createRmd, 31

runComparison, 5, 33, 35–37
runComparisonGUI, 33, 36
runDiffExp, 3, 14, 16, 17, 19–22, 24, 28, 30,

31, 33, 35, 36, 37, 40, 42, 44, 45,
47–50

SAMseq.createRmd, 40

show,compData-method, 41
sqrtcpm.limma.createRmd, 42
summarizeSyntheticDataSet, 43

TCC.createRmd, 44
ttest.createRmd, 45

voom.limma.createRmd, 46
voom.ttest.createRmd, 48
vst.limma.createRmd, 49
vst.ttest.createRmd, 50

52


	compcodeR-package
	baySeq.createRmd
	checkDataObject
	checkTableConsistency
	check_compData
	check_compData_results
	compData
	compData-class
	convertcompDataToList
	convertListTocompData
	DESeq.GLM.createRmd
	DESeq.nbinom.createRmd
	DESeq2.createRmd
	DSS.createRmd
	EBSeq.createRmd
	edgeR.exact.createRmd
	edgeR.GLM.createRmd
	generateCodeHTMLs
	generateSyntheticData
	listcreateRmd
	logcpm.limma.createRmd
	NBPSeq.createRmd
	NOISeq.prenorm.createRmd
	runComparison
	runComparisonGUI
	runDiffExp
	SAMseq.createRmd
	show,compData-method
	sqrtcpm.limma.createRmd
	summarizeSyntheticDataSet
	TCC.createRmd
	ttest.createRmd
	voom.limma.createRmd
	voom.ttest.createRmd
	vst.limma.createRmd
	vst.ttest.createRmd
	Index

