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annotate Annotates the reagents (probes) of a cellHTS object

Description

Annotate the reagents (probes) of a cellHTS object. In RNAi-screens, there is a often a 1:1 cor-
respondence between reagents and intended target genes, hence in this software package the term
gene ID is used as a synonym.

Usage

## S4 method for signature 'cellHTS'
annotate(object, geneIDFile, path)

Arguments

object a cellHTS object.

geneIDFile the name of the file with the gene IDs (see details). This argument is just
passed on to the read.table function, so any of the valid argument types for
read.table are valid here, too. Must contain one row for each well in each
plate.

path a character of length 1 indicating the path in which to find the gene annotation
file (optional).

Details

geneIDFile This file is expected to be a tab-delimited file with at least three columns, and column
names Plate, Well and GeneID. The contents of Plate are expected to be integer. Further
columns are allowed.

Value

An S4 object of class cellHTS, which is obtained by copying object and updating the following
slots:

featureData the contents of the annotation file are stored here.

state the processing status of the cellHTS object is updated to state["annotated"]= TRUE.
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Author(s)

Wolfgang Huber, Ligia Bras

References

Boutros, M., Bras, L.P. and Huber, W. (2006) Analysis of cell-based RNAi screens, Genome Biology
7, R66.

See Also

readPlateList, configure

Examples

datadir <- system.file("KcViabSmall", package = "cellHTS2")
x <- readPlateList("Platelist.txt", path=datadir, name="KcViabSmall")
x <- configure(x, "Description.txt", "Plateconf.txt", "Screenlog.txt", path=datadir)
x <- annotate(x, "GeneIDs_Dm_HFAsubset_1.1.txt", path=datadir)

batch Access and replace the batch information of a cellHTS object

Description

This method accesses and replaces the batch data stored in the slot plateData of a cellHTS object.

Usage

batch(object)
batch(object) <- value

Arguments

object object of class cellHTS.

value a dataframe of integer values giving the batch number for each plate, and sample.

Value

batch returns a dataframe containing the contents of slot plateData$Batch. This dataframe has
dimensions number of plates x number of samples of the cellHTS object.

See class cellHTS for details.

Author(s)

Ligia Bras
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References

Boutros, M., Bras, L.P. and Huber, W. (2006) Analysis of cell-based RNAi screens, Genome Biology
7, R66.

See Also

cellHTS, nbatch

bdgpbiomart Dataset with annotation of CG identifiers

Description

See the vignette End-to-end analysis of cell-based screens: from raw intensity readings to the anno-
tated hit list, Section Using biomaRt to annotate the target genes online for details. The annotations
were obtained on 21 September 2007.

Usage

data(bdgpbiomart)

Format

Dataframe with 21888 rows and 11 columns plate, well, controlStatus, HFAID, GeneID, chromosome_name,
start_position, end_position, description, flybasename_gene, go, go_description.

Source

BioMart webinterface to Ensembl.

Examples

data("bdgpbiomart")

Bscore B score normalization

Description

Correction of plate and spatial effects of data stored in slot assayData of a cellHTS object using
the B score method (without variance adjustment of the residuals). Using this method, a two-way
median polish is fitted, on a per-plate basis, to account for row and column effects.

Usage

Bscore(object, save.model = FALSE)
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Arguments

object a cellHTS object that has already been configured. See details.

save.model a logical value specifying whether the per-plate models should be stored in slots
rowcol.effects and overal.effects. See details.

Details

This function is usually not called directly by the user, but from within the normalizePlates
function. The normalization is performed in a per-plate fashion using the B score method, for each
replicate and channel. In the B score method, the residual rijp of the measurement for row i and
column j on the p-th plate is obtained by fitting a two-way median polish, in order to account for
both row and column effects within the plate:

rijp = yijp − ŷijp = yijp − (µ̂p + R̂ip + Ĉjp)

yijp is the measurement value in row i and column j of plate p (taken from slot assayData - only
sample wells are considered), and ŷipj is the corresponding fitted value. This is defined as the sum
between the estimated average of the plate (µ̂p), the estimated systematic offset for row i (R̂ip), and
the systematic offset for column j (Ĉjp).

NOTE: In the original B score method, as presented by Malo et al., a further step is performed: for
each plate p, each of the obtained residual values rijp’s are divided by the median absolute deviation
of the residuals in plate p (MADp), resulting in:

rijp
MADp

The intention of such a further adjustment is to compensate for plate-to-plate variability in dynamic
range. In the Bscore function, this step is not automatically performed, but can be done if B score
normalization is called using the function normalizePlates with arguments method="Bscore"
and varianceAdjust="byPlate". See the latter function for more details.

If save.model=TRUE, the models row and column offsets and overall offsets are stored in the slots
rowcol.effects and overall.effects of object.

Value

An object of class cellHTS with B-score normalized data stored in slot assayData.

Furthermore, if save.model=TRUE, the row and column effects and the overall effects are stored
in slots rowcol.effects and overall.effects , respectively. The latter slots are arrays with
the same dimension as Data(object), except the overall.effects slot, which has dimensions
nr Plates x nr Samples x nr Channels.

After calling this function, the processing status of the cellHTS object is updated in the slot state
to object@state["normalized"]=TRUE.

Author(s)

Ligia Bras
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References

Brideau, C., Gunter, B., Pikounis, B. and Liaw, A. (2003) Improved statistical methods for hit
selection in high-throughput screening, J. Biomol. Screen 8, 634–647.

Malo, N., Hanley, J.A., Cerquozzi, S., Pelletier, J. and Nadon, R. (2006) Statistical practice in
high-throughput screening data analysis, Nature Biotechn 24(2), 167–175.

Boutros, M., Br\’as, L.P. and Huber, W. (2006) Analysis of cell-based RNAi screens, Genome
Biology 7, R66.

See Also

medpolish, loess, locfit.robust, plotSpatialEffects, normalizePlates, summarizeChannels
plateEffects

Examples

data("KcViabSmall")
xb <- Bscore(KcViabSmall, save.model = TRUE)
## Calling Bscore function from "normalizePlates" and adding the per-plate variance adjustment step:
xopt <- normalizePlates(KcViabSmall, method="Bscore", varianceAdjust="byPlate", save.model = TRUE)
## Access the slots overall.effects and rowcol.effects
ef1 = plateEffects(xb)
ef2 = plateEffects(xopt)

## double-check
stopifnot(

all(xb@rowcol.effects==xopt@rowcol.effects, na.rm=TRUE),
all(xb@overall.effects==xopt@overall.effects, na.rm=TRUE),
identical(ef1, ef2)

)

buildCellHTS2 Build a cellHTS2 object from a data frame containing measurements

Description

Builds a cellHTS2 object from a data frame.

Usage

buildCellHTS2(xd, measurementNames)
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Arguments

xd a data frame containing the columns plate, replicate and well, and the mea-
surement columns. The plate and replicate columns must contain integer
values, starting from 1. The well column must contain well names formed by
one to two capitals letter followed by two digits, e.g. A12 or AB01. Letter order-
ing is as follows: A, B, C,..., Z, AA, AB, AC,..., AZ, BA, BB, ..., ZZ.

measurementNames

an optional character vector containing the measurement names. If missing, the
names of the measurement columns in xd are used. If NULL, the measurements
are not named.

Details

The function uses readPlateList to build a cellHTS2 object.

Value

An object of class cellHTS, which extends the class NChannelSet.

Author(s)

Gregoire Pau <gregoire.pau@embl.de>

References

Boutros, M., Bras, L.P. and Huber, W. (2006) Analysis of cell-based RNAi screens, Genome Biology
7, R66.

See Also

readPlateList.

Examples

wells = sprintf("%s%02d", rep(LETTERS[1:8], each=12), 1:12)
xd = expand.grid(plate=1:3, replicate=1:2, well=wells)
xd$cell.number = rnorm(nrow(xd))
xd$cell.size = rnorm(nrow(xd))
x = buildCellHTS2(xd)
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cellHTS-class A class for data from cell-based high-throughput assays performed in
plate format.

Description

Container for data and experimental meta-data from cell-based high-throughput assays performed
in plate format. Typical applications are RNA interference or small molecular compound screens.
The class extends the NChannelSet class. Data are from experiments where the same set of reagents
(probes) where used. The class can represent data from multi-channel assays.

The data can be thought of as being organised in a two- or three-dimensional array as follows:

• The first dimension corresponds to reagents (e.g. siRNAs, chemical compounds) that were
used in the assays. For example, if the screen used 100 plates of 384 wells (24 columns, 16
rows), then the first dimension has size 38,400, and the cellHTS object keeps track of plate
ID, row, and column associated with each element. For historic reasons, and because we are
using infrastructure that was developed for microarray experiments, the following terms are
used synonymously for the elements of the first dimension: reagents, features, probes, genes.

• The second dimension corresponds to assays, including replicates and different experimental
conditions (cell type, treatment, genetic background). A potentially confusing terminology
is that the data structure that annotates the second dimension is called phenoData. This is
because we are using infrastructure (the NChannelSet class) that uses this unfortunate term
for this purpose. The software provides methodology for replicate summarization and scoring,
however more complicated experimental designs are not directly supported. Multi-purpose
tools like lmFit in the limma package should be consulted.

• The (optional) third dimension corresponds to different channels (e.g. different luminescence
reporters)

Objects from the Class

Objects can be created by calls of the form new("cellHTS", assayData, phenoData, ...).
See the examples below.

Slots

plateList: a data.frame containing what was read from input measurement data files plus a
column status of type character containing the string "OK" if the data import appeared to
have gone well, and the respective error or warning message otherwise.

intensityFiles: a list, where each component contains a copy of the imported input data files.
Its length corresponds to the number of rows of plateList.

state: a logical vector of length 4 representing the processing status of the object. It must have
the names "configured", "normalized", "scored" and "annotated".

plateConf: a data.frame containing what was read from the configuration file for the experiment
(except the first two header rows). It contains at least three columns named Plate, Well and
Content. Columns Plate and Well are allowed to contain regular expressions.
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screenLog: a data.frame containing what was read from the screen log file for the experiment, in
case it exists. Contains at least three columns, and column names Plate, Well, and Flag. Ad-
ditional columns are Sample (when there are replicates or more than one sample or condition)
and Channel (when there are multiple channels).

screenDesc: a character containing what was read from the description file of the experiment.
rowcol.effects: a 3D array of size Features (i.e. plate size x number of plates) x Samples x

Channels containing estimated row and column plate spatial offsets.
overall.effects: a 3D array of size Features x Samples x Channels containing estimated plate

overall offsets.
assayData: Object of class AssayData, usually an environment containing matrices of identical

size. Each matrix represents a single channel. Columns in each matrix correspond to samples
(or replicate), rows to features (probes). Once created, cellHTS manages coordination of
samples and channels.

plateData: A list of data frames, with number of rows of each frame equal to the number of plates
used in the assay and number of columns equal to the number of samples. Each data frame in
the list should contain factorial annotation information relevant for the individual plates, like
experimental batches or varying types of micro-titre plates. Currently, this information will be
used for between-batch normalization and quality assessment.

phenoData: Object of class AnnotatedDataFrame. Please see the documentation of the phenoData
slot of NChannelSet for more details.
It contains information about the screens, and it must have the following columns in its data
component: replicate and assay, where replicate is expected to be a vector of integers
giving the replicate number, while assay is expected to be a vector of characters giving the
name of the biological assay. Both of these vectors should have the same length as the number
of Samples.
Once created, cellHTS coordinates selection and subsetting of channels in phenoData.

featureData: Object of class AnnotatedDataFrame, containing information about the reagents:
plate, well, column, the well annotation (sample, control, etc.), etc. For a cellHTS object,
this slot must contain in its data component at least three mandatory columns named plate,
well and controlStatus. Column plate is expected to be a numeric vector giving the plate
number (e.g. 1, 2, ...), well should be a vector of characters (alphanumeric characters) giving
the well ID within the plate (e.g. A01, B01, H12, etc.). Column controlStatus should be a
factor specifying the annotation for each well with possible levels: empty, other, neg, sample,
and pos. Other levels besides pos and neg may be employed for controls.

experimentData: Object of class MIAME containing descriptions of the experiment.
annotation: A "character" of length 1, which can be used to specify the name of an annotation

package that goes with the reagents used for this experiment.
processingInfo: A list containing information about which normalization and summarization

methods have been used.
.__classVersion__: Object of class Versions, containing automatically created information about

the class definition, Biobase package version, and other information about the user system at
the time the instance was created. See classVersion and updateObject for examples of use.

Extends

Class NChannelSet, directly.
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Methods

Methods with class-specific functionality:

name(object) signature(object="cellHTS"). Obtains the name of the assay stored in the
object. This corresponds to the contents of column assay of the phenoData slot of the
cellHTS object.

name(object) <- value signature(object = "cellHTS", value = "character") as-
sign the character of length one (value) to the elements in column assay of the slot phenoData
of object.

pdim(object) signature(object = "cellHTS"). Obtain the plate dimension for the data stored
in object.

nbatch(object) signature(object = "cellHTS"). Obtain the total number of batches for the
data stored in object.

compare2cellHTS(x, y) signature(x = "cellHTS", y = "cellHTS"). Compares two
cellHTS objects, x and y, returning TRUE if they are from the same experiment (i.e. if they
derive from the same initial cellHTS object), or FALSE otherwise.

Methods with functionality derived from class NChannelSet: channel, channelNames, channelNames<-,
selectChannels, object[features, samples], sampleNames

Methods with functionality derived from eSet: annotation, assayData, assayData<-, classVersion,
classVersion<-, dim, dims, experimentData, featureData, phenoData, phenoData<-, pubMedIds,
sampleNames, sampleNames<-, storageMode, varMetadata, isCurrent, isVersioned.

Additional methods:

initialize used internally for creating objects

show invoked automatically when the object is displayed to the screen. It prints a summary of the
object.

state Access the state slot of a cellHTS instance.

annotate Annotate the cellHTS object using the screen annotation file.

configure Configure the cellHTS object using the the screen description file, the screen configu-
ration file and the screen log file.

writeTab Write the contents of assayData slot of a cellHTS object to a tab-delimited file.

ROC Construct an object of S4 class ROC, which represents a receiver-operator-characteristic curve,
from the data of the annotated positive and negative controls in a scored cellHTS object.

meanSdPlot(x) signature(x = "cellHTS") plots row standard deviations across samples versus
row means across samples for data stored in slot assayData of a cellHTS object. If there are
multiple channels, row standard deviations and row means are calculated across samples for
each channel separately. Only wells containing "sample" are considered. See meanSdPlot for
more details about this function.

Author(s)

Ligia P. Bras <ligia@ebi.ac.uk>, Wolfgang Huber <huber@ebi.ac.uk>
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See Also

NChannelSet readPlateList annotate configure writeTab state Data normalizePlates ROC

Examples

showClass("cellHTS")
showMethods(class="cellHTS")

## An empty cellHTS
obj <- new("cellHTS")

data("KcViabSmall")
KcViabSmall
state(KcViabSmall)
## Replicate 1 as a cellHTS object
y <- KcViabSmall[,1]
compare2cellHTS(KcViabSmall, y)
data("KcViab")
compare2cellHTS(KcViab, KcViabSmall)

cellHTS2 cellHTS2 Package Overview

Description

cellHTS2 Package Overview

Details

This package provides data structures and algorithms for cell-based high-throughput assays per-
formed in plate format. Typical applications are RNA interference or small molecular compound
screens. The most important data class is cellHTS, which extends the NChannelSet class.

Full help on methods and associated functions is available from within class help pages.

Data sets: KcViab, KcViabSmall, oldKcViabSmall, dualCh, bdgpbiomart.

Introductory information is available from vignettes, type openVignette().

Class-specific methods: annotate, batch, batch<-, compare2cellHTS, configure, Data, Data<-,
geneAnno, intensityFiles, name, name<-, nbatch, pdim, plate, plateConf, plateEffects,
plateList, position, screenDesc, screenLog, state, well, wellAnno, writeTab, ROC.

Generic functions: show, initialize, validObject.

Other functions: oneRowPerId, write.tabdel, readPlateList, readHTAnalystData, normalizePlates,
Bscore, spatialNormalization, plotSpatialEffects, summarizeChannels, scoreReplicates,
summarizeReplicates, imageScreen, configurationAsScreenPlot, getEnVisionRawData, getEnVisionCrosstalkCorrectedData,
getTopTable, getMeasureRepAgreement. getDynamicRange, getZfactor, writeReport, convertOldCellHTS,
scores2calls, and templateDescriptionFile.

A full listing of documented topics is available in HTML view by typing help.start() and select-
ing the cellHTS2 package from the Packages menu or via library(help="cellHTS2").
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Author(s)

Ligia P. Bras

References

Boutros, M., Bras, L.P. and Huber, W. (2006) Analysis of cell-based RNAi screens, Genome Biology
7, R66.

See Also

Below, we present a list of ‘high level’ functions in the celHTS2 package together with a brief
description of what they do.

Data import:
readPlateList read a collection of plate reader data files.

readHTAnalystData read input files from a HTanalyser plate reader containing data for a set of
plate replicates.

getEnVisionRawData this function can be used as an import function when calling readPlateList
to read plate result files obtained from EnVision Plate Reader.

getEnVisionCrosstalkCorrectedData this function can be used as an import function when call-
ing readPlateList to read plate result files obtained from EnVision Plate Reader.

Screen configuration and annotation:
annotate annotates the reagents (e.g. siRNAs, molecular compounds) of a cellHTS object.

configure annotates the plates and the plate result files of a gcellHTS object.

Accessors:
batch accesses and replaces the batch slot of a cellHTS object.

Data accesses and replaces the assayData slot of a cellHTS object. It returns a 3D array with
dimensions number of features (product between the number of wells per plates and the number of
plates) x number of samples (or replicates) x number of channels.

geneAnno returns the reagent IDs used in the screen (i.e. the contents of fData(object)[,"GeneID"].

intensityFiles returns a list, where each component contains a copy of the imported input data
files.

name obtains the name(s) of the assay, or multiple assays, stored in the object. This corresponds
to the contents of column assay of the phenoData slot of the cellHTS object.

pdim obtains the plate dimensions (number of rows and columns) for the data stored in object.

plate plate identifier for each feature (well).

plateConf returns a data.frame that contains what was read from the plate configuration input file
(except the first two header rows) during the screen configuration step.

plateList returns a data.frame containing what was read from the plate list file, plus a column
status of type character that contains the string "OK" if the data import appeared to have gone
well, and the respective error or warning message otherwise.

plateEffects accesses the slots rowcol.effects and overall.effects.

position gives the well number for each feature (well) within each plate.
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screenDesc returns an object of class character that contains what was read from the screen
description input file during the configuration of the cellHTS object.

screenLog returns a data.frame containing what was read from the screen log input file during the
screen configuration step.

state This generic function accesses the state of an object derived from the cellHTS class.

well gives the alphanumeric identifier (e.g. A01, A02, ...) for each well and plate.

wellAnno accesses the plate annotation stored in fData(object)[,"controlStatus"].

Data preprocessing:

All the following methods work on the data stored in the slot assayData of a cellHTS object.

normalizePlates per-plate data transformation, normalization and variance adjustment.

Bscore correction of plate and spatial effects using the B score method (without variance adjustment
of the residuals).

spatialNormalization correction of spatial effects by fitting a polynomial surface within each
plate using local regression (loess or robust local fit). Uses a second degree polynomial
(local quadratic fit). Only wells containing "sample" are considered to fit the models.

summarizeChannels combines intensities from a dual-channel assay by applying the function de-
fined in fun.

scoreReplicates transform per-replicate values into scores.

summarizeReplicates summarizes between normalized and scored replicate values, obtaining a
single value for each probe.

scores2calls applies a sigmoidal transformation to the z-score values stored in a cellHTS object
mapping them to the range [0,1].

Miscellaneous:

compare2cellHTS compares two cellHTS objects to see whether they derive from the same initial
cellHTS object.

convertOldCellHTS converts an old S3 class cellHTS object obtained using cellHTS package to
new S4 class cellHTS object(s) to use with package cellHTS2.

convertWellCoordinates converts between different ways of specifying well coordinates within
a plate. For example, wells can be identified by an alphanumeric character (e.g. "B02" or c("B",
"02")) or by an integer value (e.g. 26).

ROC creates an object of class ROC from a scored cellHTS object which can be plotted as a ROC
curve.

getTopTable generates the hit list from a scored cellHTS object and write it to a tab-delimited file.

getMeasureRepAgreement calculates the agreement between plate replicates using raw data or
normalized data stored in a cellHTS object.

getDynamicRange calculates per-plate dynamic range of data stored in a cellHTS object.

getZfactor calculates per-experiment Z’-factor of data stored in a cellHTS object. The Z’-factor
is a measure that quantifies the separation between the distribution of positive and negative controls.

plotSpatialEffects this function plots the per-plate row and column effects estimated by the B
score method or by the spatial normalization.
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imageScreen creates an image plot that gives an overview of the whole set of score values stored
in a scored cellHTS object.

writeReport creates a directory with HTML pages of linked tables and plots documenting the
contents of the preprocessing of a cellHTS object.

oneRowPerId rearranges dataframe entries such that there is exactly one row per ID.

nbatch gives the total number of batches in a cellHTS object.

templateDescriptionFile creates a template description file for an RNAi experiment with default
entries compliant with MIAME class and with additional entries specific for a cellHTS object.

writeTab this function is a wrapper for the function write.table to write the contents of assayData
slot of a cellHTS object to a tab-delimited file. If the object is already annotated, the probe infor-
mation (fData(object)@GeneID) is also added.

write.tabdel a wrapper for the function write.table used to write data to a tab-delimited file.

meanSdPlot method for meanSdPlot (from the vsn package) to construct the standard deviation
versus mean plot of data stored in a cellHTS object.

configurationAsScreenPlot

Screen plot of the plate configuration of a cellHTS object

Description

Screen plot displaying the plate configuration of a cellHTS object.

Usage

configurationAsScreenPlot(x, verbose=interactive(), posControls,
negControls, legend=FALSE, main="")

Arguments

x a configured cellHTS object (i.e. state(x)['configured'] must be TRUE).

verbose a logical value, if TRUE, the function reports some of its intermediate progress.
The default is interactive().

posControls a list or vector of regular expressions specifying the name of the positive con-
trols. See details.

negControls a vector of regular expressions specifying the name of the negative controls. See
details.

legend logical defining whether to include a legend.

main character giving a figure caption.
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Details

This function calls the function plotScreen to create a screen plot showing the plate configuration
(as defined by the plate configuration file used to configure the cellHTS object – see function
configure) used for the RNAi experiment stored in x.

posControls and negControls should be given as vectors of regular expression patterns speci-
fying the name(s) of the positive(s) and negative(s) controls, respectivey, as provided in the plate
configuration file (and acccessed via wellAnno(x)).

By default, if posControls is not given, "pos" will be taken as the annotation name for the wells
containing positive controls. Similarly, if negControls is missing, by default "neg" will be con-
sidered as the name used to annotate the negative controls. The content of posControls and
negControls will be passed to regexpr for pattern matching within the well annotation given
in column controlStatus of the featureData slot of the cellHTS object.

Value

Invisibly, a vector with the color map used to display the well annotation in the image plot.

Author(s)

Ligia Bras <ligia@ebi.ac.uk>

References

Boutros, M., Bras, L.P. and Huber, W. (2006) Analysis of cell-based RNAi screens, Genome Biology
7, R66.

See Also

plotScreen, writeReport

Examples

data("KcViab")
configurationAsScreenPlot(KcViab)

configure Configures the plates and plate result files

Description

Annotate the plates and the plate result files of a cellHTS object.

Usage

## S4 method for signature 'cellHTS'
configure(object, descripFile, confFile, logFile,
path, descFunArgs=NULL, confFunArgs=NULL, logFunArgs=NULL)
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Arguments

object a cellHTS object.

descripFile the name of the screen description file (see details). This argument is just passed
on to the readLines function, so any of the valid argument types for readLines
are valid here, too. Alternatively this can be a function. See details.

confFile the name of the configuration file (see details). This argument is just passed on to
the read.table function, so any of the valid argument types for read.table are
valid here, too. Must contain one row for each well and each batch. Alternatively
this can be a function. See details.

logFile optional; the name of the screen log file (see details). This argument is just
passed on to the read.table function, so any of the valid argument types for
read.table are valid here, too. Alternatively this can be a function. See details.

path optional; a character of length one indicating the path in which to find the con-
figuration files. It can be useful when the files are located in the same directory,
and may be omitted otherwise.

descFunArgs, confFunArgs, logFunArgs

optional; lists of additional arguments that can be passed on if one or more of
descripFile, confFile or logFile are functions rather than file names. See
details.

Details

The configuration has three components:

confFile: This file specifies where the controls are. This file is expected to be a tab-delimited file
with two first header rows giving the total number of wells and plates in the screen. The next rows
should be in the form of a spreadsheet table with at least three columns named Plate, Well and
Content. Columns Plate and Well are allowed to contain regular expressions. Data from wells
that are configured as empty will be ignored and are set to NA in the data slot xraw. For an example,
and for more details, please read the accompanying vignette.

logFile: This optional file allows to flag certain measurements as invalid. It is expected to be a
tab-delimited file with at least three columns, and column names Plate, Well, and Flag. If there
are multiple samples (replicates or conditions), a column called Sample should also be given. If
there are multiple channels, a column called Channel must be given. Further columns are allowed.

descripFile: The screen description file contains general information about the screen.

Alternatively, any of the three arguments can also be a user-defined function returning data frames
similar to those produced by read.table from the respective files. If confFile is a function, it
has to return a list, where the first list item is an integer vector of length 2 giving the total number
of plates and wells, and the second list item is the data.frame of the actual plate configuration.
Additional parameters can be passed on to these functions via the descFunArgs, confFunArgs
and logFunArgs arguments. This design allows for instance to import the necessary information
directly from a data base rather than using flat files.

Value

An S4 object of class cellHTS, which is obtained by copying object and updating the following
slots:
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plateConf a data frame containing what was read from input file confFile (except the first
two header rows).

screenLog a data frame containing what was read from input file logFile.

screenDesc object of class character containing what was read from input file descripFile.

state the processing status of the cellHTS object is updated in to state["configured"]=TRUE.

featureData the column controlStatus is updated taking into account the well annotation
given by the plate configuration file.

experimentData an object of class MIAME containing descriptions of the experiment, constructed
from the screen description file.

Author(s)

Wolfgang Huber <huber@ebi.ac.uk>, Ligia Bras <ligia@ebi.ac.uk>

References

Boutros, M., Bras, L.P. and Huber, W. (2006) Analysis of cell-based RNAi screens, Genome Biology
7, R66.

See Also

readPlateList templateDescriptionFile

Examples

datadir <- system.file("KcViabSmall", package = "cellHTS2")
x <- readPlateList("Platelist.txt", name="KcViabSmall", path=datadir)
x <- configure(x, "Description.txt", "Plateconf.txt", "Screenlog.txt", path=datadir)

convertOldCellHTS Convert an old S3 class cellHTS object to the new S4 class cellHTS
object

Description

Convert an old S3 cellHTS object (from the cellHTS package) into one or several S4 cellHTS
objects (from the cellHTS2 package).

Usage

convertOldCellHTS(oldObject)

Arguments

oldObject an S3 class cellHTS object obtained using the package cellHTS.
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Value

The function returns a list containing one or more cellHTS objects. The element raw contains
the unnormalized data from oldObject. Depending on the state of oldObject (on whether it is
normalized and scored), the other components of this list can be: normalized, an S4 cellHTS
object containing the normalized data, and scored, an S4 class cellHTS object containing the
scored data.

Author(s)

Ligia P. Bras <ligia@ebi.ac.uk>

References

Boutros, M., Bras, L.P. and Huber, W. (2006) Analysis of cell-based RNAi screens, Genome Biology
7, R66.

See Also

updateCellHTS

Examples

data("oldKcViabSmall")
out <- convertOldCellHTS(oldKcViabSmall)
names(out)
out[["raw"]]

convertWellCoordinates

Converts different well identifiers

Description

For example, "B02" <-> c("B", "02") <-> 26, "AB32" <-> c("AB", "32") <-> 1328.

Usage

convertWellCoordinates(x, pdim, type="384")

Arguments

x either: a character vector with alphanumeric well identifiers (e.g. B03 or AB32);
or an nx2 character matrix whose first column contains letters and whose second
column contains numbers; or an integer vector with position identifiers for wells
within a plate (e.g. 27).

pdim a vector of length 2 with names nrow and ncol giving the number of rows and
columns in a plate. E.g. ’c(nrow=32, ncol=48)’ for 1536-well plates.
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type an alternative way of specifying pdim. Supported are the values "24" for c(nrow=4, ncol=6),
"96" for c(nrow= 8, ncol=12), "384" for c(nrow=16, ncol=24) and "1536"
for c(nrow=32, ncol=48).

Value

A list with elements: letnum, with the alphanumeric well identifiers; let.num, with the alphanu-
meric well identifiers giving as a pair c(letter(s), 2-digits); num, with the integer position of the well
within a plate.

Author(s)

Ligia Bras <ligia@ebi.ac.uk> and Wolfgang Huber <huber@ebi.ac.uk>

Examples

pd <- c("nrow"=8L, "ncol"=12L) # 96-well plate
w <- sample(prod(pd), 3L)
wpos <- convertWellCoordinates(w, pd)
wpos

Data Access and replace the assayData slot of a cellHTS object

Description

This generic function accesses and replaces the data stored in slot assayData of an object of
cellHTS class.

Usage

Data(object)
Data(object) <- value

Arguments

object Object derived from class cellHTS.

value a 3D array of dimensions dim(object)[1] (this corresponds to the total number
of features: number of wells per plate x number of plates) x dim(object)[2] (this
corresponds to the number of samples or replicates) x number of channels.

Value

Data returns a 3D array containing the contents of slot assayData. This array has dimensions
number of features (product between the number of wells per plates and the number of plates) x
number of samples (or replicates) x number of channels. Depending on the preprocessing status of
the cellHTS object, this array corresponds to the raw data, or to normalized data or to scored data.

See class cellHTS for details.
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Author(s)

Ligia Bras

References

Boutros, M., Bras, L.P. and Huber, W. (2006) Analysis of cell-based RNAi screens, Genome Biology
7, R66.

See Also

cellHTS

dualCh A sample cellHTS object containing dual channel data

Description

Archived cellHTS object corresponding to the first three 384-well plates of a genome-wide RNAi
screen for pathway activity in Drosophila cells

Usage

##cellHTS object, see examples for details

Format

cellHTS object

Examples

data(dualCh)

getDynamicRange Per-plate dynamic range of a cellHTS object

Description

Calculates per-plate dynamic range of data stored in a cellHTS object.

Usage

getDynamicRange(x,
verbose=interactive(),
definition,
posControls,
negControls)



22 getDynamicRange

Arguments

x a configured cellHTS object. See details.

verbose a logical, if TRUE the function reports some of its intermediate progress. The
default is the state of interactive().

definition a character string with possible values "ratio" or "difference". See details.

posControls (optional) a list or vector of regular expressions specifying the name of the pos-
itive controls. See details.

negControls (optional) a vector of regular expressions specifying the name of the negative
controls. See details.

Details

x should be an already configured cellHTS object (state(x)["configured"]=TRUE), so that the
information about the well annotation of the plates is available.

The per-plate dynamic ranges are calculated for the data stored in slot assayData of x. This can be
raw data, normalized data or scored data.

If definition="difference", the dynamic range is calculated as the absolute difference between
the arithmetic average on positive and negative controls.

If definition="ratio", the dynamic range is calculated as the ratio between the geometric mean
on positive and negative controls.

NOTE: the argument definition should only be set to "ratio" if data are in positive scale!

If definition is missing it is determined based on the scale of the data. By default, if data are in
positive scale, definition is set to "ratio", otherwise, it is set to "difference".

posControls and negControls should be given as a vector of regular expression patterns specify-
ing the name of the positive(s) and negative(s) controls, respectivey, as provided in the plate con-
figuration file (and accessed via wellAnno(x)). The length of these vectors should be equal to the
current number of channels in x (dim(Data(x))[3]). By default, if posControls is not given, pos
will be taken as the name for the wells containing positive controls. Similarly, if negControls is
missing, by default neg will be considered as the name used to annotated the negative controls. The
content of posControls and negControls will be passed to regexpr for pattern matching within
the well annotation given in wellAnno(x) (see examples). If no controls are available for a given
channel, use "" or NA for that channel. For example, posControls = c("", "(?i)^diap$")
means that channel 1 has no positive controls, while diap is the positive control for channel 2.

The arguments posControls and negControls are particularly useful in multi-channel data since
the controls might be reporter-specific, or after normalizing multi-channel data.

If there are different positive controls, the dynamic range is calculated between each of the positive
controls and the negative controls.

In the case of a two-way assay, where two types of "positive" controls are used in the screen ("acti-
vators" and "inhibitors"), posControls should be defined as a list with two components (called act
and inh), each of which should be vectors of regular expressions of the same length as the current
number of reporters (as explained above). The dynamic range is calculated between each type of
positive control (activators or inhibitors) and the negative controls.
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Value

The function generates a list with the per-plate dynamic ranges in each channel and each replicate.
The average dynamic range between replicates is also given. Each element of this list is an array
of dimensions nrPlates x (nrReplicates + 1) x nrChannels, and is named by the positive
controls. In the case of a two-way assay, these elements are called activators and inhibitors,
while for a one-way assay, the elements have the same name of the positive controls. See Examples
section.

Author(s)

Ligia P. Bras <ligia@ebi.ac.uk>

References

Boutros, M., Bras, L.P. and Huber, W. (2006) Analysis of cell-based RNAi screens, Genome Biology
7, R66.

See Also

configure, writeReport

Examples

data(KcViabSmall)
## pCtrls <- c("pos")
## nCtrls <- c("neg")
## or for safety reasons (not a problem for the current well annotation, however)
pCtrls <- c("^pos$")
nCtrls <- c("^neg$")
dr <- getDynamicRange(KcViabSmall, definition="ratio", posControls=pCtrls, negControls=nCtrls)
## same as:
## getDynamicRange(KcViabSmall)

x <- normalizePlates(KcViabSmall, scale="multiplicative", log=TRUE, method="median", varianceAdjust="none")
try(drn <- getDynamicRange(x, definition="ratio"))
drn <- getDynamicRange(x, definition="difference")

getEnVisionRawData Read a plate file obtain from EnVision Plate Reader

Description

Import functions to read a plate file obtained from EnVision Plate Reader. These functions should
be set as the import function of readPlateList through the argument importFun when reading
plate result files obtained from EnVision plate reader.
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Usage

getEnVisionRawData(f, p)
getEnVisionCrosstalkCorrectedData(f, p)

Arguments

f the name of the result plate file to read.

p capturing the additional path argument, which will actually be ignored. f is
expected to be a fully resolved file path.

Details

These functions should not be called directly. Instead, they should be set as the import function of
readPlateList through the argument importFun when reading plate result files obtained from an
EnVision plate reader.

Value

These functions return a list with two components. The first component should be a ’data.frame’
with the following slots: well (a character vector with the well identifier in the plate) and val (the
intensity values measured at each well). The second component of this list should be a character
vector containing a copy of the imported input data file (such as the output of readLines). It should
be suitable to be used as input for writeLines.

Author(s)

Ligia Bras <ligia@ebi.ac.uk>

See Also

readPlateList

Examples

plateFile <- system.file("EnVisionExample/XXX_1500.csv", package = "cellHTS2")
onePlate <- getEnVisionRawData(plateFile)

## to get the cross talk corrected data:
onePlate2 <- getEnVisionCrosstalkCorrectedData(plateFile)
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getMeasureRepAgreement

Measures of agreement between plate replicates from a cellHTS object

Description

Calculate the agreement between plate replicates using raw data or normalized data stored in a
cellHTS object. This function calculates the repeatability standard deviation between replicate
plates and the correlation coefficient between replicates. If there are more than 2 replicates, the
minimum and maximum correlation between replicates is given. These measures are calculated
only for sample wells.

Usage

getMeasureRepAgreement(x, corr.method = "spearman")

Arguments

x a configured cellHTS object. See details.

corr.method a character string indicating which correlation coefficient should be computed.
Can be either "pearson", "kendall" or "spearman" (default). The correlation is
calculated by calling the function cor.

Details

Given an already configured cellHTS object (state(x)[["configured"]]=TRUE), this function
calculates the repeatability standard deviation between replicate plates and the correlation coeffi-
cient between plate replicates using only the sample wells. If there are more than 2 replicates, the
minimum and maximum correlation value between pairs of replicates are given.

These measures are calculated using the data values stored in slot assayData of the x.

For a given plate p, the repeatability standard deviation is determined as the square root of the
average of the squared standard deviations (sr) calculated for each sample well k by considering
the measurement of all of the replicates:

RepStDevp =

√∑
sr2

nk

where nk is the total number of sample probes for plate p.

Value

The function generates a list with elements:

"repStDev": matrix with the calculated repeatability standard deviation between plate replicates. It
has dimensions nrPlates x nrChannels;
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"corrCoef" (if the number of replicates equals 2): matrix with the correlation coefficients between
plate replicates. It has dimensions: nrPlates x nrChannels;

"corrCoef.min" (if the number of replicates is greater than 2): matrix with the minimum value of
the correlation coefficients between plate replicates. It has dimensions nrPlates x nrChannels;

"corrCoef.max" (if the number of replicates is greater than 2): matrix with the maximum value of
the correlation coefficients between plate replicates. It has dimensions nrPlates x nrChannels.

Author(s)

Ligia Bras <ligia@ebi.ac.uk>

References

Boutros, M., Bras, L.P. and Huber, W. (2006) Analysis of cell-based RNAi screens, Genome Biology
7, R66.

See Also

configure, writeReport

Examples

data(KcViabSmall)
repAgree <- getMeasureRepAgreement(KcViabSmall)
x <- normalizePlates(KcViabSmall, scale="multiplicative", log=FALSE, method="median", varianceAdjust="none")
repAgree <- getMeasureRepAgreement(x)

getTopTable Generate the hit list from a scored cellHTS object

Description

Generate the hit list from a scored cellHTS object and write it to a tab-delimited file.

Usage

getTopTable(cellHTSlist, file="topTable.txt", verbose=interactive())

Arguments

cellHTSlist a list of cellHTS objects. See details.

file the name of the output file. Default is "topTable.txt".

verbose a logical value, if TRUE, the function reports its progress. Defaults to the state of
interactive().
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Details

Argument cellHTSlist should be a list containing at least one component named "scored" which
corresponds to a scored cellHTS object. Other possible components of cellHTSlist can be:

"raw": a cellHTS object containing unpreprocessed data. I.e. state(cellHTSlist[["raw"]])["normalized"]=FALSE.

"normalized": a cellHTS object containing normalized data. I.e. state(cellHTSlist[["normalized"]])["normalized"]=TRUE
and state(cellHTSlist[["normalized"]])["scored"]=FALSE.

All of the components of cellHTSlist should be cellHTS objects containing data from the same
experiment, but in different preprocessing stages.

This function generates a data.frame that is written to file. This data.frame and the output file
contain the list of scored probes ordered by decreasing score values. They have one row for each
well and plate, and contain the following columns (depending on the components of cellHTSlist):

plate: plate identifier for each well.

position: gives the position of the well in the plate (ranges from 1 to the total number of wells in
the plate).

well: gives the alphanumeric identifier for the wells.

score: content of slot assayData of the scored cellHTS object given in cellHTSlist[["scored"]].

codewellAnno: ell annotation as given by the plate configuration file.

codefinalWellAnno: gives the final well annotation for the scored values. It combines the infor-
mation given in the plate configuration file with the values in assayData slot of the scored
cellHTS object, in order to have into account the wells that have been flagged either by the
screen log file, or manually by the user during the analysis. These flagged wells appear with
the annotation flagged.

raw_ri_chj: (if cellHTSlist[["raw"]] is given) contains the raw intensities for replicate i in
channel j (content of slot assayData of the cellHTS object given in cellHTSlist[["raw"]]).

median_chj: (if cellHTSlist[["raw"]] is given) corresponds to the median of raw measure-
ments across replicates in channel j.

diff_chj: (if cellHTSlist[["raw"]] is given and if there are two replicates or samples) gives
the difference between replicate (sample) raw measurements in channel j.

average_chj: (if cellHTSlist[["raw"]] is given and if there are more than 2 replicates or sam-
ples) corresponds to the average between replicate raw intensities for channel j.

raw/PlateMedian_ri_chj: (if cellHTSlist[["raw"]] is given) this column gives the ratio be-
tween each raw measurement and the median intensity in each plate for replicate (or sample)
i in channel j. The plate median is determined for the raw intensities using exclusively the
wells annotated as sample.

normalized_ri_chj: (if cellHTSlist[["normalized"]] is given) gives the normalized intensi-
ties for replicate (sample) i in channel j. This corresponds to the content of slot assayData
of the cellHTS object given in cellHTSlist[["normalized"]].

Additionally, if the cellHTS object given in cellHTSlist[["scored"]] is already annotated, the
output topTable also contains the gene annotation stored in slot featureData.
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Value

Generates the file with the hit list and outputs a data.frame with the same contents.

Author(s)

Ligia P. Bras <ligia@ebi.ac.uk>

References

Boutros, M., Bras, L.P. and Huber, W. (2006) Analysis of cell-based RNAi screens, Genome Biology
7, R66.

See Also

cellHTS

Examples

data(KcViabSmall)
xn <- normalizePlates(KcViabSmall, scale="multiplicative", log=FALSE, method="median", varianceAdjust="none")
xsc <- scoreReplicates(xn, sign="-", method="zscore")
xsc <- summarizeReplicates(xsc, summary="mean")
out <- getTopTable(cellHTSlist=list("raw"=KcViabSmall, "normalized"=xn, "scored"=xsc), file=tempfile())

getZfactor Per-experiment Z’-factor of a cellHTS object

Description

Calculates per-experiment Z’-factor of data stored in a cellHTS object. The Z’-factor is a measure
that quantifies the separation between the distribution of positive and negative controls.

Usage

getZfactor(x,
robust=TRUE,
verbose=interactive(),
posControls,
negControls)

Arguments

x a configured cellHTS object. See details.

robust a logical, if TRUE the Z’-factor is calculated using the median and MAD instead
of mean and standard deviation, respectively.

verbose a logical, if TRUE the function reports some of its intermediate progress. The
default is the state of interactive().
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posControls (optional) a list or vector of regular expressions specifying the name of the pos-
itive controls. See details.

negControls (optional) a vector of regular expressions specifying the name of the negative
controls. See details.

Details

x should be an already configured cellHTS object (state(x)["configured"]=TRUE), so that the
information about the well annotation of the plates is available.

The per-experiment Z’-factor values are calculated for the data stored in slot assayData of x.

If robust=TRUE (default), the Z’-factor is calculated using robust estimates of location (median)
and spread (mad).

posControls and negControls should be given as a vector of regular expression patterns spec-
ifying the name of the positive(s) and negative(s) controls, respectivey, as provided in the plate
configuration file (and accessed via wellAnno(x)). The length of these vectors should be equal to
the current number of channels in x (dim(Data(x))[3]). By default, if posControls is not given,
pos will be taken as the name for the wells containing positive controls. Similarly, if negControls
is missing, by default neg will be considered as the name used to annotated the negative controls.
The content of posControls and negControls will be passed to regexpr for pattern matching
within the well annotation given in wellAnno(x) (see examples). If no controls are available for a
given channel, use "" or NA for that channel. For example, posControls = c("", "(?i)^diap$")
means that channel 1 has no positive controls, while diap is the positive control for channel 2.

The arguments posControls and negControls are particularly useful in multi-channel data since
the controls might be reporter-specific, or after normalizing multi-channel data.

If there are different positive controls, the Z’-factor is calculated between each of the positive con-
trols and the negative controls.

In the case of a two-way assay, where two types of "positive" controls are used in the screen ("acti-
vators" and "inhibitors"), posControls should be defined as a list with two components (called act
and inh), each of which should be vectors of regular expressions of the same length as the current
number of reporters (as explained above). The Z’-factor values are calculated between each type of
positive control (activators or inhibitors) and the negative controls.

Value

The function generates a list with the per-experiment Z’-factor values in each channel and each
replicate. Each element of this list is a matrix with dimensions nrReplicates x nrChannels,
and is named by the positive controls. In the case of a two-way assay, these elements are called
activators and inhibitors, while for a one-way assay, the elements have the same name of the
positive controls. See examples section.

Author(s)

Ligia P. Bras <ligia@ebi.ac.uk>

References

Zhang, J.H., Chung, T.D. and Oldenburg, K.R. (1999) A simple statistical parameter for use in
evaluation and validation of high throughput screening assays, J. Biomol. Screen. 4(2), 67–73.
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See Also

configure, writeReport

Examples

data(KcViabSmall)
## pCtrls <- c("pos")
## nCtrls <- c("neg")
## or for safety reasons (not a problem for the current well annotation, however)
pCtrls <- c("^pos$")
nCtrls <- c("^neg$")
zf <- getZfactor(KcViabSmall, robust=TRUE, posControls=pCtrls, negControls=nCtrls)

x <- normalizePlates(KcViabSmall, scale="multiplicative", log=FALSE, method="median", varianceAdjust="none")
zfn <- getZfactor(x)

gseaModule Constructor for an object of class gseaModule

Description

gseaModule objects encapsulate all the information that is necessary to add the results of a gene set
enrichment analysis to a cellHTS report. This feature is still experimental

Usage

gseaModule(geneSets, statFuns, scores, annotation)

Arguments

geneSets An object of class GeneSetCollection containing the information about gene
sets for which to perform the analysis.

statFuns A list of functions to compute per gene set statistics. These will be called by
applyByCategory and need to be able to handle two mandatory arguments: x
are the scores for the respective category, and y are all scores of the whole assay.
This allows for statistics like t.test(x,y).

scores An optional numeric vector of assay scores. This should be extended to also
handle numeric matrices for multi-channel assays.

annotation A data.frame with additional annotation for the repsective gene sets.

Details

The resulting gseaModule object can be supplied as an additional argument to writeReport.

This feature is still experimental.
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Value

An object of class gseaModule.

Author(s)

Florian Hahne

imageScreen Experiment-wide quality control plot of a cellHTS object

Description

Experiment-wide quality control plot of a scored cellHTS object.

Usage

imageScreen(object, ar=3/5, zrange=NULL, map=FALSE, anno=NULL,
col=list(posNeg=rev(brewer.pal(11,

"RdBu"))[c(1:5, rep(6, 3), 7:11)], pos=brewer.pal(9,
"Greys")), nbImageBins=256, nbLegendBins=7)

Arguments

object a cellHTS object that has already been scored (i.e. state(object)['scored']=TRUE).

ar the desired aspect ration for the image plot (i.e. number of columns per number
of rows)

zrange the range of values to be mapped into the color scale. If missing, zrange will be
set to the range of the score values stored in slot assayData of object.

map a logical value that determines whether an image map should be created using
tooltips to indicate the annotation at each position. It only makes sense to set it
to TRUE when the function is called from writeReport function, so the default
is FALSE.

anno optional input giving the annotation information for the mapping. It should be a
vector of the same size as the total number of featured in object. See details.

col a list giving the colors for the plot. The first element posNeg is used if zrange[1]<0
and zrange[2]>0, the second if all values are either positive or negative.

nbImageBins The number of color bins used in the map. Default is 256.

nbLegendBins The number of color bins shown in the legend. Default is 7.
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Details

This function creates an image plot that gives an overview of the whole set of score values stored in
slot assayData of a scored cellHTS object. When the annotation mapping is performed, by default,
anno is set to:

1. (if object is annotated) The content of column named GeneSymbol or named GeneID (if the
former is not available) of the featureData slot of object;

2. The position within the plate, if object is not annotated.

Author(s)

Ligia Bras <ligia@ebi.ac.uk>

References

Boutros, M., Bras, L.P. and Huber, W. (2006) Analysis of cell-based RNAi screens, Genome Biology
7, R66.

See Also

normalizePlates, summarizeChannels, scoreReplicates, summarizeReplicates, Data writeReport

Examples

data(KcViabSmall)
x <- KcViabSmall
x <- normalizePlates(x, scale="multiplicative", log=FALSE, method="median", varianceAdjust="none")
x <- scoreReplicates(x, sign="-", method="zscore")
x <- summarizeReplicates(x, summary="min")
imageScreen(x, zrange=c(-5,5))

intensityFiles Retrieve the contents of the input files used to generate a given cellHTS
object.

Description

These generic functions access different slots of an object derived from the cellHTS class, which
contain the original content of the input files used to create the object.

Usage

intensityFiles(object)
plateList(object)
plateConf(object)
screenLog(object)
screenDesc(object)
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Arguments

object an object of class cellHTS.

Value

intensityFiles returns a list, where each component contains a copy of the imported input data
files.

plateList returns a data.frame containing what was read from the plate list file, plus a column
status of type character that contains the string "OK" if the data import appeared to have gone
well, and the respective error or warning message otherwise. See readPlateList for more details.

plateConf returns a data.frame that contains what was read from the plate configuration input
file (except the first two header rows) during the screen configuration step. For more details see
configure.

screenLog returns a data.frame containing what was read from the screen log input file during the
screen configuration step. See configure for more details.

screenDesc returns an object of class character that contains what was read from the screen
description input file during the configuration of the cellHTS object. See configure for more
details.

Author(s)

Ligia Bras <ligia@ebi.ac.uk>

See Also

cellHTS, readPlateList, configure, name

KcViab A sample cellHTS object - D. melanogaster genome-wide RNAi screen

Description

Archived cellHTS object from a genome-wide RNAi screen of cell viability in Drosophila Kc167
cells

Usage

##cellHTS object, see examples for details

Format

cellHTS object
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References

Boutros, M., Kiger, A.A., Armknecht,S., Kerr,K., Hild,M., Koch,B., Haas, S.A., Heidelberg Fly
Array Consortium, Paro,R. and Perrimon, N. (2004) Genome-wide RNAi analysis of growth and
viability in Drosophila cells, Science 303:832–5.

Examples

data(KcViab)

KcViabSmall A sample cellHTS object - D. melanogaster genome-wide RNAi screen

Description

Archived cellHTS object corresponding to the first three 384-well plates of a genome-wide RNAi
screen of cell viability in Drosophila Kc167 cells

Usage

##cellHTS object, see examples for details

Format

cellHTS object

References

Boutros, M., Kiger, A.A., Armknecht,S., Kerr,K., Hild,M., Koch,B., Haas, S.A., Heidelberg Fly
Array Consortium, Paro,R. and Perrimon, N. (2004) Genome-wide RNAi analysis of growth and
viability in Drosophila cells, Science 303:832–5.

Examples

data(KcViabSmall)
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normalizePlates Per-plate data transformation, normalization and variance adjustment

Description

Plate-by-plate normalization of the raw data stored in slot assayData of a cellHTS object. Nor-
malization is performed separately for each plate, replicate and channel. Log2 data transformation
can be performed and variance adjustment can be performed in different ways (none, per-plate,
per-batch or per-experiment).

Usage

normalizePlates(object, scale="additive", log=FALSE, method="median", varianceAdjust="none", posControls, negControls,...)

Arguments

object a cellHTS object that has already been configured. See details.
scale a character specifying the scale that the input data are considered to be on: "ad-

ditive" scale (default) or "multiplicative". The interpretation of this terminology
is that data on an additive scale will be normalised by subtraction of a correction
offset, whereas data on a multiplicative scale are normalised by division through
a correction factor.

log logical. If TRUE, data will first be log2 transformed. If data are on an additive
scale (i.e. if scale is "additive"), then log is only allowed to be FALSE. The
default is log=FALSE.

method character specifying the normalization method to use for the per-plate normal-
ization. Allowed values are "median" (the default), "mean", "shorth", "POC",
"NPI", "negatives", Bscore and "locfit". See details.

varianceAdjust character specifying the variance adjustment to perform. Allowed values are
"none" (the default), code"byPlate", "byBatch" and "byExperiment". See de-
tails.

posControls a vector of regular expressions giving the name of the positive control(s). See
details.

negControls a vector of regular expressions giving the name of the negative control(s). See
details.

... Further arguments that get passed on to the function implementing the normal-
ization method chosen by method. Currently, this is only used for Bscore and
locfit.

Details

The function normalizePlates uses the content of the assayData slot of object. For dual-channel
data, a recommended workflow is (i) to correct for plate effects using the normalizePlates func-
tion, (ii) combine the two channels using the function summarizeChannels, and (iii) finally, if
necessary, normalize the summarized intensities calling normalizePlates again.

In this function, the normalization is performed in a plate-by-plate fashion, following this workflow:
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1. Log transformation of the data (optional)

2. Per-plate normalization

3. Variance adjustment of the plate intensity corrected data (optional)

The argument scale defines the scale of the data. If the data are on a multiplicative scale (scale="multiplicative"),
the data can be log2 transformed by setting log=TRUE. This then changes the scale of the data to
code"additive".

In the next step of preprocessing, intensities are corrected in a plate-by-plate basis using the chosen
normalization method:

• If method="median", plates effects are corrected by the median value across wells that are
annotated as sample in wellAnno(object), for each plate and replicate.

• If method="mean", the average in the sample wells is used instead.

• If method="shorth", the midpoint of the shorth of the distribution of values in the wells
annotated as sample is used.

• If method="negatives", the median of the negative controls is used.

Depending on the scale of the data prior to normalization, the data are divided by the above defined
correction factors (scale: "multiplicative"), or the value is subtracted (scale: "additive").

Further available normalization methods are:

• method="POC" (percent of control): for each plate and replicate, each measurement is divided
by the average of the measurements on the plate positive controls, and multiplied by 100.

• method="NPI" (normalized percent inhibition): each measurement is subtracted from the av-
erage of the intensities on the plate positive controls, and this result is divided by the difference
between the means of the measurements on the positive and the negative controls.

• method="Bscore": for each plate and replicate, the B-score method, which is based on a
2-way median polish, is applied to remove row and column biases.

• method="locfit" (robust local fit regression): for each plate and replicate, spatial effects are
removed by fitting a bivariate local polynomial regression (see spatialNormalization).

In the final preprocessing step, variance of plate-corrected intensities can be adjusted as follows:

• varianceAdjust="byPlate": per plate normalized intensities are divided by the per-plate
median absolute deviations (MAD) in "sample" wells. This is done separately for each repli-
cate and channel;

• varianceAdjust="byBatch": using the content of slot batch, plates are split according to
assay batches and the individual normalized intensities in each group of plates (batch) are
divided by the per-batch of plates MAD values (calculated based on "sample" wells). This is
done separately for each replicate and channel;

• varianceAdjust="byExperiment": each normalized measurement is divided by the overall
MAD of normalized values in wells containing "sample". This is done separately for each
replicate and channel;

By default, no variance adjustment is performed (varianceAdjust="none").

The arguments posControls and negControls are required for applying the normalization meth-
ods based on the control measurements that is, when method="POC", or method="NPI", or method="negatives").
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posControls and negControls should be vectors of regular expression patterns specifying the
name of the positive(s) and negative(s) controls, respectivey, as provided in the plate configura-
tion file (and accessed via wellAnno(object)). The length of these vectors should be equal to
the current number of channels in object (i.e. to the dim(Data(object))[3]). By default, if
posControls is not given, pos will be taken as the name for the wells containing positive con-
trols. Similarly, if negControls is missing, by default neg will be considered as the name used to
annotate the negative controls. The content of posControls and negControls will be passed to
regexpr for pattern matching within the well annotation given in the featureData slot of object
(which can be accessed via wellAnno(object)) (see examples for summarizeChannels). The
arguments posControls and negControls are particularly useful in multi-channel data since the
controls might be reporter-specific, or after normalizing multi-channel data.

See the Examples section for an example on how this function can be used to apply a robust version
of the Z score method, whereby, for each plate and replicate, the per-plate median (computed only
from sample wells) is subtracted from the measurements, and the result is divided by the per-plate
MAD (only from sample wells).

Value

An object of class cellHTS with the normalized data stored in slot assayData (its previous contents
were overridden). The processing status of the object is updated in the slot state to object@state[["normalized"]]=TRUE.

Additional slots of object may be updated if method="Bscore" or method="locfit" are used.
Please refer to the help page of the Bscore function and spatialNormalization functions.

Author(s)

Ligia Bras <ligia@ebi.ac.uk>, Wolfgang Huber <huber@ebi.ac.uk>

References

Boutros, M., Bras, L.P. and Huber, W. (2006) Analysis of cell-based RNAi screens, Genome Biology
7, R66.

See Also

Bscore, spatialNormalization, summarizeChannels

Examples

data(KcViabSmall)
# per-plate median scaling of intensities
x1 <- normalizePlates(KcViabSmall, scale="multiplicative", log=FALSE, method="median", varianceAdjust="none")
# per-plate median subtraction of log2 transformed intensities
x2 <- normalizePlates(KcViabSmall, scale="multiplicative", log=TRUE, method="median", varianceAdjust="none")
## Not run:
x3 <- normalizePlates(KcViabSmall, scale="multiplicative", log=TRUE, method="Bscore", varianceAdjust="none", save.model=TRUE)

## End(Not run)

## robust Z score method (plate intensities are subtracted by the per-plate median on sample wells and divided by the per-plate MAD on sample wells):
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xZ <- normalizePlates(KcViabSmall, scale="additive", log=FALSE, method="median", varianceAdjust="byPlate")

## an example to illustrate the use of slot 'batch':
## Not run:
try(xnorm <- normalizePlates(KcViabSmall, scale="multiplicative", method="median", varianceAdjust="byBatch"))

# It doesn't work because we need to have slot 'batch'!
# For example, we will suppose that a different lot of reagents was used for plate 1:
pp <- plate(KcViabSmall)
fData(KcViabSmall)$"reagent" <- "lot B"
fData(KcViabSmall)$"reagent"[pp==1] <- "lot A"
fvarMetadata(KcViabSmall)["reagent",] <- "Lot of reagent used"

bb <- as.factor(fData(KcViabSmall)$"reagent")
batch(KcViabSmall) <- array(as.integer(bb), dim=dim(Data(KcViabSmall)))
## check number of batches:
nbatch(KcViabSmall)
x1 <- normalizePlates(KcViabSmall, scale="multiplicative", log = FALSE, method="median", varianceAdjust="byBatch")

## End(Not run)

oldKcViabSmall A sample S3 class cellHTS object - D. melanogaster genome-wide
RNAi screen

Description

Archived S3 class cellHTS object corresponding to the first three 384-well plates of a genome-wide
RNAi screen of cell viability in Drosophila Kc167 cells. This data set was assembled and stored
using cellHTS package and is used to show how to convert an old S3 class cellHTS object to the
new S4 data class associated with cellHTS2 package.

Usage

##cellHTS object, see examples for details

Format

S3 class cellHTS object as detailed in package cellHTS.

References

Boutros, M., Kiger, A.A., Armknecht,S., Kerr,K., Hild,M., Koch,B., Haas, S.A., Heidelberg Fly
Array Consortium, Paro,R. and Perrimon, N. (2004) Genome-wide RNAi analysis of growth and
viability in Drosophila cells, Science 303:832–5.

Examples

data(oldKcViabSmall)
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oneRowPerId Rearrange dataframe entries such that there is exactly one row per ID.

Description

Rearrange dataframe entries such that there is exactly one row per ID. The IDs are taken from the
argument ids and are matched against the first column of x. If an ID is missing in x[,1], a row with
NA values is inserted. If an ID occurs multiple times in x[,1], rows are collapsed into characters of
comma-separated values.

Usage

oneRowPerId(x, ids)

Arguments

x dataframe.

ids character vector.

Value

A dataframe whose rows correspond 1:1 to ids.

Author(s)

W. Huber <huber@ebi.ac.uk>, Ligia Pedroso Bras <ligia@ebi.ac.uk>

Examples

x = data.frame(ids=I(c("a", "a", "c")), val=11:13)
oneRowPerId(x, letters[1:3])

plate Retrieve information related with the format of a RNAi experiment

Description

These generic functions retrieves information related with the format of RNAi experiment con-
ducted in multi-plate format and stored in an object of cellHTS class.

Usage

pdim(object)
plate(object)
well(object)
position(object)
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Arguments

object an object of class cellHTS.

Value

pdim returns a vector of length 2 containing integer values that correspond to the number of rows
and columns in a plate. This corresponds to the plate format used in the screen (for example, 96-well
or 384-well plates).

plate returns a vector of integers with the same length as the product between the number of
wells per plate and the number of plates. This gives the plate number for each well in the assay.
Corresponds to fData(object)[,"plate"].

well returns a character vector containing the wells identifiers (for example "A01", "H06"). Its
length equals the product between the number of wells per plate and the number of plates. This
vector corresponds to fData(object)[,"well"].

position gives a numeric vector containing every well positions (1, 2, 3, ...). Its length is equal to
the product between the number of wells per plate and the number of plates.

Author(s)

Ligia Bras <ligia@ebi.ac.uk>

See Also

cellHTS

plateEffects Access plate effects stored in a cellHTS object.

Description

This generic function accesses plate effects stored in slot rowcol.effects and overall.effects
of a cellHTS instance.

Usage

plateEffects(object)

Arguments

object Object derived from class cellHTS that has been normalized by a spatial nor-
malization method. See details.
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Value

plateEffects returns a list with two elements: rowcol and overall.

plateEffects[["rowcol"]] corresponds to the contents of slot rowcol.effects of object. This
is a 3D array with the same dimensions as Data(object): nr of Features x nr of Samples x nr of Channels
of the current cellHTS object.

plateEffects[["overall"]] contains the data stored in slot overall.effects of object. This
is a 3D array with dimensions nr Plates x nr Samples x nr Channels of object. Slot
overall.effects is only estimated when B score method is used to normalize the data.

Note that these 2 slots accessed by this function were stored after preprocessing the data either
using Bscore method or local regression fit (see normalizePlates for details), by setting the option
save.model=TRUE.

Author(s)

Ligia Bras <ligia@ebi.ac.uk>

See Also

cellHTS normalizePlates Bscore spatialNormalization

plotSpatialEffects Plate plot with the row and column offsets estimated by the a spatial
normalization method

Description

The function plots the per-plate row and column effects estimated by the B score method or by the
spatial normalization.

Usage

plotSpatialEffects(object, channel = 1, plates)

Arguments

object a cellHTS object that has been normalized using the B score method or other
spatial normalization (see details).

channel a numeric value giving the channel of object to plot.

plates a vector of integers giving the plate numbers to plot. If missing, the function
considers all of the plates.
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Details

The function plots the plate plots displaying the row and column offsets (stored in slot rowcol.effects
of the cellHTS object) within the plates in plates, and for channel channel, as determined by the
B score method or spatial normalization. Before plotting the spatial offsets, the values within
the chosen channel (argument channel) are transformed in order to be confined in the range [0, 1],
as follows:

yt =
(y −min(y))

max(y)−min(y)

Here, yt are the transformed values, and y the estimated spatial effects. The maximum and the min-
imum values are calculated using all the values in plateEffects(object)$rowcol[,,channel].

Author(s)

Ligia P. Bras <ligia@ebi.ac.uk>

See Also

plotPlate, Bscore, spatialNormalization, normalizePlates, summarizeChannels

Examples

data(KcViabSmall)
x <- normalizePlates(KcViabSmall, scale="multiplicative", log=TRUE, method="Bscore", save.model = TRUE)
## see plate plots with the row and column estimated offsets for plates 1 and 3:
plotSpatialEffects(x, plates=c(1,3))

readHTAnalystData Read a set of plate results obtained from a HTanalyser plate reader

Description

Reads input files (specified by the argument filenames) containing replicate data for the same set
of assay plates and obtained using an HTanalyser. The number of replicates corresponds to the
number of given files (length(filenames)), while the total number of plates should be given by
the argument nrPlates.

Usage

readHTAnalystData(filenames, path=dirname(filenames), name, nrPlates, verbose=interactive())
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Arguments

filenames vector of characters giving the name(s) of the input file(s) obtained in a HTanal-
yser plate reader and containing the set of measurements for each set of replicate
plates (see details).

path can be either a character vector with the same length as filenames or a character
of length 1 indicating the path in which to find the input file(s) filenames. By
default, it can extract the path from filenames.

name a character of length 1 with the experiment name.

nrPlates an integer value indicating the number of plates in the input file(s).

verbose a logical value, if TRUE, the function reports some of its intermediate progress.
Defaults to the state of interactive().

Details

This function reads input files obtained in a HTanalyser plate reader for a multi-plate format screen-
ing experiment. Data for the same set of replicate measurements of all plates are expected to come
in a single input file. So, the argument filenames should be a character vector specifying the name
of the input files for each replicate. Each of these files is expected to contain data for a total of
nrPlates assay plates. It contains meta-experimental data together with plate measurements in a
matrix-like format. The same type of format is expected for each of the nrPlates contained in
each input file indicated in filenames. The input files should be suitable to be used as input for
readLines.

The following metadata fields are expected to be repeated along the input file(s) for each assay
plate:

• Microplate format, indicates the plate format used in the screen. Should be the same across
plates.

• Barcode, this field is used to uniquely identify each assay plate.

• Method ID, indicates the method used to perform the assay. Should be the same for every
plate.

• Data, indicates the type of data and should be the same for every plate.

• Units, indicates the units of the readings. Should be the same for every plate.

• Display format, indicating the numeric format used to display the data measurements. Should
be the same along plates.

This function expects that the next line after the meta field "Display format" for a given plate
contains the column numbers (1:ncol) which are then followed by the matrix of measurements in
each well. Each entry of the data matrix corresponds to a position in the assay plate with coordinates
(row, col), except the first column, which gives the row ID, as upper letters (A, B, ...).

Value

An object of class cellHTS, which extends the class NChannelSet. After calling this function, the
content of the following slots is as follows:
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assayData an object of class AssayData containing the imported measurement data. Each
matrix represents a single channel, and each sample (replicate) corresponds to
a column. Thus, the total number of rows in each matrix corresponds to the
product between the number of wells per plate and the number of assay plates.

phenoData the argument name is stored in its column assay.

featureData the information about the plate and well identifiers for each plate measurement
are stored in columns plate and well of this slot.

intensityFiles a list, where each component contains a copy of the measurement data of a
given plate, replicate and channel. Its length corresponds to the number of rows
of plateList.

plateList a data.frame containing the columns "Filename", "Plate", "Replicate", "Chan-
nel" and "status". Each row of this slot makes the correspondence between a
given component (name given in column "Filename") in the list stored in slot
intensityFiles (i.e. plate) and its respective plate, replicate and channel num-
ber. Thus, this data.frame contains as many rows as the product between the total
number of plates, replicates and channels. The last column named status is of
type character and contains the string "OK" indicated the success status of the
data import.

Author(s)

W. Huber <huber@ebi.ac.uk>, Ligia Bras <ligia@ebi.ac.uk>

References

Boutros, M., Bras, L.P. and Huber, W. (2006) Analysis of cell-based RNAi screens, Genome Biology
7, R66.

See Also

To read a collection of plate result files with measurements of a single plate and replicate, see
readPlateList.

Examples

datadir <- system.file("KcCellTiter", package = "cellHTS2")
x <- readHTAnalystData(filenames = c("KcCellTiter0607.txt", "KcCellTiter0707.txt"), name="KcData", path=datadir, nrPlates=3L)
x <- configure(x, confFile = "Plateconf.txt", logFile="Screenlog.txt", descripFile = "Description.txt",

path = datadir)

readPlateList Read a collection of plate reader data files
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Description

Reads a collection of plate reader data files into a cellHTS object. The names of the files, plus
additional information (plate number, repeat number, assay/treatment/condition) is expected to be
stored in a tab-delimited table specified by the argument filename. Alternatively, the data can be
provided directly from non file-based sources, e.g. a data base (see details).

Usage

readPlateList(filename, path=NA, name="anonymous", importFun,
dec=".", verbose=interactive(), ...)

Arguments

filename the name of the plate list file (see details). This argument is just passed on to the
read.table function, so any of the valid argument types for the file argument
of read.table are valid here, too. Alternatively, a user-defined function which
is supposed to create a table-like R object of the plate list. Additional arguments
to readPlateList in . . . will be passed on to this function.

path a character of length 1 indicating the path in which to find the plate reader files.
If the importFun argument is supplied, the value of path will not be automat-
ically prepended to the file names. This has to be explicitely dealt with in the
importFun function. See details.

name a character of length 1 with the experiment name.

importFun a function to read the data files. The default function works for a certain file
format, such as that of the example files provided with this package. If your plate
reader software produces files with a different format or if you want to import
data from a non file-based source, the import function needs to be adapted. See
details and examples.

dec Optional argument that is passed to importFun, and can be used to accommodate
for data files that use characters different from . to represent the decimal point
(e.g., the comma ,).

verbose a logical value, if TRUE, the function reports some of its intermediate progress.

... additional arguments that are being passed on to filename if it is a function.

Details

The plate list is expected to be a tab-delimited file with at least three columns named Filename,
Plate, and Replicate. The contents of the columns Plate and Replicate are expected to be
integers. Filename should be a vector of file names of the respective raw data files. If the path
argument is supplied and importFun is missing, its value will automatically be prepended to the
file names. The optional Batch column can be used to supply batch information for an experiment,
e.g., when a reagent has been changed or the experiment has been run over several days.

Further columns are allowed, and can be used to denote, for example, different variants of the assay,
treatments, incubation times, conditions, etc.
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Alternatively, the value of filename can be a user-defined function which creates a data.frame
similar to the one described before. This is for instance useful if the plate list information is di-
rectly imported from a data base. In order to allow for non-elementary data types, the output of the
function can also be a named list, where each element has to be a vector of equal length. The afore-
mentioned type restrictions still apply. The function will be called with all additional . . . arguments,
which allows to pass in additional information like experiment identifiers or data base queries.

importFun can be used to define a custom function to import data files. The importFun function
should accept as its first argument names from the Filename column of the plate list (which in
principle do not need to be individual files, they could also be handles for database entries, queries,
or pointers into relevants parts of a file). As it second argument, the function should accept the value
of the path argument, and the user needs to explicitely prepend this to the file names if needed. It
should return a list with two components:

• The first component should be a data.frame with the following columns

– well, a character vector with the well identifier in the plate.
– val, the intensity values measured in that well.

and with as many rows as there are wells in the plate.

• The second component should be a character vector containing a copy of the imported input
data file (such as the output of readLines). It should be suitable to be used as input for
writeLines, since it will be used to reproduce the intensity files that are linked in the HTML
quality reports generated by writeReport.

For example, to import plate data files from EnVision plate reader, set importFun=getEnVisionRawData
or importFun=getEnvisionCrosstalkCorrectedData. See function getEnVisionRawData.

Direct data base import without the need for any flat files at all could for instance be achieved by:

• Providing a user-defined function as the filename argument and an experiment identifier as
an additional . . . argument. The function would have to query the data base for the plate
information using this identifier and return a table as described above, where the Filename
column contains identifiers needed to fetch the respective raw data for a single plate in a
subsequent query. Alternatively, this could be a data base handle, or the query itself.

• Providing a second user-defined function as the importFun argument, which takes the value
of the Filename column for a single plate and retrieves the respective raw data from the data
base.

Value

An object of class cellHTS, which extends the class NChannelSet.

After calling this function, the content of the following slots is as follows:

assayData an object of class AssayData containing the imported measurement data. Each
matrix represents a single channel, and each run corresponds to a column. Thus,
the total number of rows in each matrix corresponds to the product between the
number of wells per plate and the number of assay plates.

phenoData information about the runs, inferred from the plateList file: which replicate,
which variant of the assay, treatment, incubation times etc.
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featureData the information about the plate and well identifiers for each plate measurement
are stored in columns plate and well of this slot.

plateList a data.frame containing what was read from input file x, plus a column status
of type character: it contains the string "OK" if the data import appeared to have
gone well, and the respective error or warning message otherwise.

intensityFiles a list, where each component contains a copy of the imported input data files.
Its length corresponds to the number of rows of plateList.

Author(s)

W. Huber <huber@ebi.ac.uk>, Ligia Bras <ligia@ebi.ac.uk>, Florian Hahne <florian.hahne@novartis.com>

References

Boutros, M., Bras, L.P. and Huber, W. (2006) Analysis of cell-based RNAi screens, Genome Biology
7, R66.

See Also

To read input files obtained in a HTanalyser plate reader, see readHTAnalystData. To build a
cellHTS2 object from a data frame, see buildCellHTS2.

Examples

datadir <- system.file("KcViabSmall", package = "cellHTS2")
x <- readPlateList("Platelist.txt", "KcViabSmall", path=datadir)

## To read data files obtained from an EnVision plate reader:
datadir <- system.file("EnVisionExample", package = "cellHTS2")
x <- readPlateList("platelist.txt", name="EnVisionEx",

importFun=getEnVisionRawData, path=datadir)

## to get the cross talk corrected data:
y <- readPlateList("platelist.txt", name="EnVisionEx",

importFun=getEnVisionCrosstalkCorrectedData, path=datadir)

ROC Creates an object of class "ROC" which can be plotted as a ROC curve

Description

The function ROC construct an object of S4 class ROC, which represents a receiver-operator-characteristic
curve, from the data of the annotated positive and negative controls in a scored cellHTS object.
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Usage

## S4 method for signature 'cellHTS'
ROC(object, positives, negatives)
## S4 method for signature 'ROC,missing'
plot(x, col="darkblue", type="l", main = "ROC curve", ...)
## S4 method for signature 'ROC'
lines(x, ...)

Arguments

object a cellHTS object which replicate data have already been scored and summarized
(see details).

positives a list or vector of regular expressions specifying the name of the positive con-
trol(s). See the details for the argument posControls of writeReport function.
The default is "^pos$".

negatives a vector of regular expressions specifying the name of the negative control(s).
See the details for the argument negControls of writeReport function. The
default is "^neg$".

x a ROC object obtained using function ROC.

col the graphical parameter for color; see par for details.

type the graphical parameter giving the type of plot desired; see par for details.

main the graphical parameter giving the desired title of plot; see par for details.

... other graphical parameters as in par may be also passed as arguments.

Details

The cellHTS object object must be already scored (state(object)["scored"]=TRUE), and se-
lection proceeds from large to small values of this single per-probe score. Furthermore, object is
expected to contain positive and negative controls annotated in the column controlStatus of the
featureData slot - which can be accessed via wellAnno(object). The arguments positives and
negatives should be given as regular expression patterns specifying the name of the positive(s)
and negative(s) controls, respectivey. By default, if positives is not given, pos will be taken as the
name for the wells containing positive controls. Similarly, if negatives is missing, by default neg
will be considered as the name used to annotate the negative controls. The content of posControls
and negControls are passed to regexpr for pattern matching within the well annotation (see ex-
amples for summarizeChannels). If the assay is a two-way experiment, positives should be a list
with components act and inh, specifying the name of the activators, and inhibitors, respectively.
In this case, the ROC curve is constructed based on the absolute values of Data(object).

Value

An S4 object of class ROC. There are methods show, plot and lines.

Author(s)

Ligia P. Bras <ligia@ebi.ac.uk>
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Examples

data(KcViabSmall)
x <- normalizePlates(KcViabSmall, scale="multiplicative", log=FALSE, method="median", varianceAdjust="byExperiment")
x <- scoreReplicates(x, sign="-", method="zscore")
x <- summarizeReplicates(x, summary="mean")
y <- ROC(x)
plot(y)
lines(y, col="green")
show(y)

ROC-class Class that contain data that can be plotted as a ROC curve.

Description

Container for data that represent a receiver-operator-characteristic curve, and that were generated
from the data of the annotated positive and negative controls in a scored cellHTS object.

Creating Objects

new("ROC")

ROC(object, positives, negatives) with object being an cellHTS instance.

Slots

name: a character of length 1 with the name of the experiment from which the ROC object derives.

assayType: a character of length 1 with the type of screenning assay. Possible values are: "one-
way assay" and "two-way assay".

TP: a vector of integers of length 1000.

FP: a vector of integers of length 1000.

posNames: a character vector with the name of the positive controls.

negNames: a character vector with the name of the negative controls.

Methods

show Print a summary of the object.

plot Plot the ROC curve corresponding to the object.

lines Line plot of the ROC object.

Author(s)

Ligia Bras <ligia@ebi.ac.uk>, Wolfgang Huber <huber@ebi.ac.uk>

See Also

ROC
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Examples

showClass("ROC")
showMethods(class="ROC")

## Not run:
data(KcViabSmall)
x <- normalizePlates(KcViabSmall, scale="multiplicative", log=FALSE, method="median", varianceAdjust="none")
x <- scoreReplicates(x, sign="-", method="zscore")
x <- summarizeReplicates(x, summary="mean")
y <- ROC(x)
plot(y)
lines(y, col="green")
show(y)

## End(Not run)

rsa Perform RSA ranking on the screening results.

Description

The RSA method ranks the resulting hit list of a screening experiment, taking into account the
design of the screening library (i.e., multiple probes targeting the same effector molecule).

Usage

rsa(x, geneColumn="GeneID", lowerBound=0, upperBound=1, reverse=FALSE, drop=FALSE)

Arguments

x Object derived from class cellHTS.

geneColumn The name of the well annotation column to be used for the grouping of effector
molecules and probes.

lowerBound The lower boundary parameter for the RSA algorithm.

upperBound The upper boundary parameter for the RSA algorithm.

reverse Boolean. Reverse the ranking.

drop Boolean. Drop all probes from the analysis for which no effector molecule is
defined.

Details

The input argument x has to be a cellHTS2 object which has been scored, summarized and anno-
tated. For details on the RSA algorithm please see the publication referenced below.
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Value

A data.frame with the following columns:

Value of argument geneColumn:

the target molecule identifier.

Plate: the plate identifier.

Well: the well identifier.

Score: the probe score in the screen.

RSARank: the computed RSA rank.

ScoreRank: the rank based on a simple cutoff scheme.

PValue: the computed RSA $p$-value.

RSAHit: the RSA hit flag.

#HitWell: the number of probes counted as positive RSA hits for a given target molecule.

#TotalWell: the total number of probes for a given target molecule.

%HitWell: the percentage of postive hits for a given molecule.

Author(s)

Florian Hahne <florian.hahne@novartis.com>

References

Renate Koenig, Chih-yuan Chiang, Buu P Tu, S Frank Yan, Paul D DeJesus, Angelica Romero,
Tobias Bergauer, Anthony Orth, Ute Krueger, Yingyao Zhou & Sumit K Chanda: A probability-
based approach for the analysis of large-scale RNAi screens

NATURE METHODS | VOL.4 NO.10 | OCTOBER 2007 | 847

See Also

cellHTS

Examples

data(KcViabSmall)
KcViabSmall <- scoreReplicates(KcViabSmall, sign="-", method="zscore")
KcViabSmall <- summarizeReplicates(KcViabSmall, summary="mean")
ranking <- rsa(KcViabSmall)
head(ranking)



52 scoreReplicates

scoreReplicates Scores normalized replicate values given in a cellHTS object

Description

This function scores the normalized replicate values stored in slot assayData of a cellHTS ob-
ject. Current available options are to take the z-score value or the per-replicate normalized percent
inhibition (NPI). Data are stored in slot assayData overridding its current content.

Usage

scoreReplicates(object, sign="+", method="zscore", ...)

Arguments

object an object of class cellHTS that has already been normalized.

sign a character string, either "+" (default) or "-", which corresponds to multiplying
the data by +1 or -1, respectively, after applying the scoring method specified
by argument method. See details.

method a character string indicating which method to use to score the replicate measure-
ments. Available options are "none", "zscore" (default), "NPI". See details.

... additional parameters required by some of the methods chosen in method.

Details

This function scores the normalized values given in the slot assayData of object. Current availabe
scoring methods are:

• method="none", no scoring is applied.

• method="zscore" (robust z-scores), for each replicate, this is calculated by subtracting the
overall median from each measurement and dividing the result by the overall mad. These are
estimated for each replicate by considering the distribution of intensities (over all plates) in
the wells whose content is annotated as sample.

• method="NPI" (normalized percent inhibition applied in a per-replicate basis, i.e. using the
overall mean of positive and negative controls across all plates of a given replicate), for each
replicate, this method consists of subtracting each measurement from the average of the in-
tensities on the positive controls (taken across all plates), and this result is then divided by
the difference between the averages of the measurements on the positive and the negative
controls (taken across all plates). If this method is chosen, one may need to provide fur-
ther arguments to scoreReplicates, namely, arguments posControls and negControls.
These arguments should be vectors of regular expression patterns specifying the name of the
positive(s) and negative(s) controls, respectivey, as provided in the plate configuration file.
The length of these vectors should match the current number of channels in object (i.e.
dim(Data(object))[3]). By default, if posControls or negControls are not given, pos
and neg will be taken as the name for the wells containing positive or negative controls. The
content of posControls and negControls is passed to regexpr for pattern matching within
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the well annotation given in the featureData slot of object (which can be accessed via
wellAnno(object)) (see examples for summarizeChannels).

After replicate scoring using the chosen method, the value given in sign ("+" or "-") is used to set
the sign of the calculated scores. For example, with a sign="-", a strong decrease in the signal will
be represented by a positive score, whereas setting sign="+", such a phenotype will be represented
by a negative score. This option can be set to calculate the results to the commonly used convention.

Value

A cellHTS object with its slot assayData replaced with the scored values (same dimension).

Important: Note that the processing state "scored" of the cellHTS object is only updated to TRUE
after summarizing the replicates, which is the next preprocessing step (see summarizeReplicates).

Author(s)

W. Huber <huber@ebi.ac.uk>, Ligia Braz <ligia@ebi.ac.uk>

References

Boutros, M., Bras, L.P. and Huber, W. (2006) Analysis of cell-based RNAi screens, Genome Biology
7, R66.

See Also

normalizePlates, summarizeChannels, summarizeReplicates.

Examples

data(KcViabSmall)
x <- normalizePlates(KcViabSmall, scale="multiplicative", method="median", varianceAdjust="none")
x <- scoreReplicates(x, sign="-", method="zscore")
x <- summarizeReplicates(x, summary="min") # conservative approach

scores2calls Sigmoidal transformation of the score values stored in a cellHTS ob-
ject obtaining the call values for each probe.

Description

Apply a sigmoidal transformation with parameters z0 and lambda to the summarized scored values
stored in a cellHTS object. The obtained results are called calls and are stored in slot assayData,
overridding its current content.

Currently this function is implemented only for single-color data.

Usage

scores2calls(x, z0, lambda)



54 scores2calls

Arguments

x an object of class cellHTS containing replicate data that have already been
scored and summarized (see details).

z0 a numeric value giving the centre of the sigmoidal transformation. See details.

lambda a numeric value (>0) that corresponds to the parameter lambda of the sigmoidal
transformation. This value should be >0, but usually it makes more sense to use
a value >=1. See details.

Details

This function applies a sigmoidal transformation with parameters z0 and lambda to the single per-
probe score values stored in a cellHTS object. The obtained results are called calls. The transfor-
mation is given by:

1/(1 + exp(−lambda ∗ (z − z0)))

where z are the score values, z0 is the centre of the sigmoidal transformation, and the lambda is a
parameter that controls the smoothness of the transformation. The higher is lambda, more steeper is
the transition from lower to higher values. lambda should be > 0, but usually it makes more sense
to use a value >=1.

This transformation maps the score values to the interval [0,1], and is intended to expand the scale
of scores with intermediate values and shrink the ones showing extreme values, therefore making
the difference between intermediate phenotypes larger.

Value

The cellHTS object with the call values stored in slot assayData. This is an object of class
assayData corresponding to a single matrix of dimensions Features x 1.

Author(s)

W. Huber <huber@ebi.ac.uk>, Ligia Braz <ligia@ebi.ac.uk>

References

Boutros, M., Bras, L.P. and Huber, W. (2006) Analysis of cell-based RNAi screens, Genome Biology
7, R66.

See Also

normalizePlates, summarizeChannels, scoreReplicates, summarizeReplicates, imageScreen.

Examples

data(KcViabSmall)
x <- normalizePlates(KcViabSmall, scale="multiplicative", method="median", varianceAdjust="none")
x <- scoreReplicates(x, sign="-", method="zscore")
x <- summarizeReplicates(x, summary="min")
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xc <- scores2calls(x, z0=1.5, lambda=2)
plot(Data(x), Data(xc), col="blue", xlab="z-scores", ylab="calls", main=expression(1/(1+e^{-lambda *(z-z[0])})))
if(require(splots)) {
sp = split(Data(xc), plate(xc))
plotScreen(sp, zrange=c(0,1), fill=c("white", "red"), na.fill="yellow",

main="Calls", ncol=3L)
}

settings cellHTS2 HTML report settings

Description

Functions to control the output of writeReport through session-wide or call-specific settings.

Usage

setSettings(x)
getSettings()

Arguments

x A named list of settings. See details for supported values.

Details

The writeReport function produces a complete audit trail of the analysis in the form of an HTML
report. The content of this report is highly customizable though session-wide and also though call-
specific settings. The former are supposed to be set using the setSettings function by providing
a named nested list of values. The latter can be set by passing a similiar list on to writeHTML as the
optional settings argument. The current values for all available settings can be queried using the
getSettings function.

Similar to the structure of the HTML report, the available settings are broken up into subsections,
and the names of these subsection have to be matched by the names in the nestes list structure:

plateList The settings for all the plots in the plate list section of the report. There are several
sub-section:

correlation The settings for the correlation plots:

size The width in inches of the pdf device holding the plot. The default value is 7.5.
fontSize The point size of the font for all the text in the pdf version of the plot. The

default value is 14.
font The font used for all the text in the pdf version of the plot. The default is "Helvetica".
thumbFactor The factor by which the thumbnail png version of the plot is smaller com-

pared to the high-resolution pdf version. The default value is 1.5.
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thumbFontSize The point size of the font for all the text in the thumbnail png version
of the plot. The default value is 12.

maplot The settings for the correlation plots:
size The width in inches of the pdf device holding the plot. The default value is 7.5.
fontSize The point size of the font for all the text in the pdf version of the plot. The

default value is 14.
font The font used for all the text in the pdf version of the plot. The default is "Helvetica".
thumbFactor The factor by which the thumbnail png version of the plot is smaller com-

pared to the high-resolution pdf version. The default value is 1.5.
thumbFontSize The point size of the font for all the text in the thumbnail png version

of the plot. The default value is 12.
histograms The settings for the histogram plots:

size The width in inches of the pdf device holding the plot. The default value is 8.
fontSize The point size of the font for all the text in the pdf version of the plot. The

default value is 14.
font The font used for all the text in the pdf version of the plot. The default is "Helvetica".
thumbFactor The factor by which the thumbnail png version of the plot is smaller com-

pared to the high-resolution pdf version. The default value is 2.
thumbFontSize The point size of the font for all the text in the thumbnail png version

of the plot. The default value is 10.
type The type of plot produced here. One in histogram or density. Both plot types have

pros and cons: histograms can be misleading because of bin size artefacts, whereas
density plots hide the sample size information.

reproducibility The settings for the reproducibility plate plots:
size The width in inches of the pdf device holding the plot. The default value is 8.
fontSize The point size of the font for all the text in the pdf version of the plot. The

default value is 12.
font The font used for all the text in the pdf version of the plot. The default is "Helvetica".
thumbFactor The factor by which the thumbnail png version of the plot is smaller com-

pared to the high-resolution pdf version. The default value is 1.3.
thumbFontSize The point size of the font for all the text in the thumbnail png version

of the plot. The default value is 10.
col The color range that gets passed on to plotPlate as argument col. The default value

is brewer.pal(9, "YlOrRd").
range The data range that gets passed on to plotPlate as argument xrange. The default

value is function(x) c(0, quantile(x, 0.95, na.rm=TRUE)).
include A logical indicating whether to create the plate plot or not. The default value is

FALSE.
map A logical indicating whether to tooltips containing the plate annotation for each

well or not. The default value is FALSE.
average The settings for the reproducibility plate plots:

size The width in inches of the pdf device holding the plot. The default value is 8.
fontSize The point size of the font for all the text in the pdf version of the plot. The

default value is 12.
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font The font used for all the text in the pdf version of the plot. The default is "Helvetica".
thumbFactor The factor by which the thumbnail png version of the plot is smaller com-

pared to the high-resolution pdf version. The default value is 1.3.
thumbFontSize The point size of the font for all the text in the thumbnail png version

of the plot. The default value is 10.
col The color range that gets passed on to plotPlate as argument col. The default value

is brewer.pal(9, "YlOrRd").
range The data range that gets passed on to plotPlate as argument xrange. The default

value is function(x) c(0, quantile(x, 0.95, na.rm=TRUE)).
include A logical indicating whether to create the plate plot or not. The default value is

FALSE.
map A logical indicating whether to tooltips containing the plate annotation for each

well or not. The default value is FALSE.

intensities The settings for the raw data plate plots:

size The width in inches of the pdf device holding the plot. The default value is 8.
fontSize The point size of the font for all the text in the pdf version of the plot. The

default value is 12.
font The font used for all the text in the pdf version of the plot. The default is "Helvetica".
thumbFactor The factor by which the thumbnail png version of the plot is smaller com-

pared to the high-resolution pdf version. The default value is 1.6.
thumbFontSize The point size of the font for all the text in the thumbnail png version

of the plot. The default value is 10.
col The color range that gets passed on to plotPlate as argument col. The default value

is rev(brewer.pal(9, "RdBu")).
range The data range that gets passed on to plotPlate as argument xrange. The default

value is function(x) quantile(x, c(0.025, 0.975), na.rm = TRUE). A
useful alternative setting here would be function(x) c(-1,1) * max(abs(x), na.rm=TRUE),
which forces a value of 0 to be white.

include A logical indicating whether to create the plate plot or not. The default value is
FALSE.

map A logical indicating whether to tooltips containing the plate annotation for each
well or not. The default value is FALSE.

plateConfiguration This controls settings for the plate configuration part of the report. Available
settings are:

size The width in inches of the pdf device holding the plot. The default value is 14.
fontSize The point size of the font for all the text in the pdf version of the plot. The default

value is 12.
font The font used for all the text in the pdf version of the plot. The default is "Helvetica".
thumbFactor The factor by which the thumbnail png version of the plot is smaller compared

to the high-resolution pdf version. The default value is 2.
thumbFontSize The point size of the font for all the text in the thumbnail png version of the

plot. The default value is 9.
include A logical indicating whether to create the plate configuration plot or not. The default

value is TRUE.
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plateSummaries This controls settings for the plate summary plots in the report. There are two
sub-sections:

boxplot size The width in inches of the pdf device holding the plot. The default value is 7.5.
fontSize The point size of the font for all the text in the pdf version of the plot. The

default value is 12.
font The font used for all the text in the pdf version of the plot. The default is "Helvetica".
thumbFactor The factor by which the thumbnail png version of the plot is smaller com-

pared to the high-resolution pdf version. The default value is 1.5.
thumbFontSize The point size of the font for all the text in the thumbnail png version

of the plot. The default value is 11.
col The colors used to fill the boxes. A vector of length two, where the first item spec-

ifies the color for the raw data panel and the second item specifies the color for the
normalized data panel. The default value is c("pink", "lightblue").

controls size The width in inches of the pdf device holding the plot. The default value is 7.5.
fontSize The point size of the font for all the text in the pdf version of the plot. The

default value is 12.
font The font used for all the text in the pdf version of the plot. The default is "Helvetica".
thumbFactor The factor by which the thumbnail png version of the plot is smaller com-

pared to the high-resolution pdf version. The default value is 1.5.
thumbFontSize The point size of the font for all the text in the thumbnail png version

of the plot. The default value is 11.

screenSummary The settings for all the plots in the screen summary section of the report. There
are several sub-section:

scores The settings for summary screen image plots:
size The width in inches of the pdf device holding the plot. The default value is 7.
fontSize The point size of the font for all the text in the pdf version of the plot. The

default value is 10.
font The font used for all the text in the pdf version of the plot. The default is "Helvetica".
thumbFactor The factor by which the thumbnail png version of the plot is smaller com-

pared to the high-resolution pdf version. The default value is 1.
thumbFontSize The point size of the font for all the text in the thumbnail png version

of the plot. The default value is 9.
col The color range used to map the data values into. This has to be a named list

of length two, with the first item posNeg being the color range used when there
are both positive and negative values, and the second item being the color range
for positive values only. One usually wants the former to be centered on white to
blend into the background, and the former to start from white. The default value is
list(posNeg=rev(brewer.pal(11, "RdBu"))[c(1:5, rep(6,3), 7:11)], pos=brewer.pal(9, "Greys")).

aspect The aspect ratio of the plot. The default value is 1.
annotation An alternative character vector of annotation mappings. See imageScreen

for details.
map A logical indicating whether to tooltips containing the plate annotation for each

well or not. The default value is FALSE.
range The range of values into which the colors will be mapped. A numeric of length 2.



settings 59

nbImageBins The number of color bins used in the map. Default is 256.
nbLegendBins The number of color bins shown in the legend. Default is 7.

qqplot The settings for the Normal Q-Q plots:

size The width in inches of the pdf device holding the plot. The default value is 7.
fontSize The point size of the font for all the text in the pdf version of the plot. The

default value is 10.
font The font used for all the text in the pdf version of the plot. The default is "Helvetica".
thumbFactor The factor by which the thumbnail png version of the plot is smaller com-

pared to the high-resolution pdf version. The default value is 1.
thumbFontSize The point size of the font for all the text in the thumbnail png version

of the plot. The default value is 9.

distribution The settings for the density distribution plot:

size The width in inches of the pdf device holding the plot. The default value is 7.
fontSize The point size of the font for all the text in the pdf version of the plot. The

default value is 10.
font The font used for all the text in the pdf version of the plot. The default is "Helvetica".
thumbFactor The factor by which the thumbnail png version of the plot is smaller com-

pared to the high-resolution pdf version. The default value is 1.
thumbFontSize The point size of the font for all the text in the thumbnail png version

of the plot. The default value is 9.

screenResults The settings for the screen results panel:

keepFieldPattern A regular expression indicating which column names to keep. Default is
"^plate$|^well$|^score$|^wellAnno$|^finalWellAnno$|raw_|normalized_|GeneID|GeneSymbol".

htmlMaxItems The maximal number of cells in the output table to produce an HTML table.
Default is 20000.

htmlLinks A data frame containing a plate column, a well column, followed by the columns
containing the HTML hyper links to add to the output table. Default is NULL, no links.

controls The settings for the annotation of control wells and other type of wells. Currently these
are only two item:

col A named vector of colors to be used across all plots for the annotation of the well types.
Allowed values are: sample, neg, controls, other, empty, flagged, act, inh and pos.
Additional user-defined well types that don’t fall in any of these groups will be assigned
a color from the palette defined in otherCol.

col A color palette from which colors are drawn for well types not defined in col.

controls Global report settings:

ppi A numeric indicating the resolution of the screen. This parameter is used to generate
PNG images. Large numbers produce large PNG images. Default is 72.

Value

The current settings for getSettings.

setSettings is called for its side effect of setting session-wide settings.
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Author(s)

Florian Hahne

See Also

writeReport

Examples

oset <- getSettings()
oset

setSettings(list(plateConfiguration=list(size=2),
list(plateList=list(intensities=list(include=FALSE)))))

getSettings()

setSettings(oset)

spatialNormalization Spatial normalization

Description

Adjust spatial plate effects. This function works on the data stored in the slot assayData of a
cellHTS object by fitting a bivariate function within each plate using local regression (robust local fit)
with second degree polynomials. Only wells containing "sample" are considered for the parameter
fitting, but adjusted data for all wells are returned.

Usage

spatialNormalization(object, save.model=FALSE, ...)

Arguments

object a cellHTS object that has already been configured.

... Parameters that get passed on to the lp function of locfit. Most relevant are
nn and h.

save.model a logical value specifying whether the values of the fitted adjustment functions
should be returned in the slot rowcol.effects of the returned object.
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Details

This function is typically not called directly, but rather indirectly from normalizePlates function.
The normalization is performed separately for each replicate and channel.

Value

An object of class cellHTS with normalized data stored in slot assayData. Furthermore, if save.model=TRUE,
it will contain a slot rowcol.effects, a 3D array with the same dimension as Data(object).

Moreover, the processing status of the cellHTS object is updated in the slot state to object@state[["normalized"]]=TRUE.

Author(s)

Ligia Bras <ligia@ebi.ac.uk>

See Also

medpolish, locfit, plotSpatialEffects, normalizePlates, summarizeChannels, plateEffects

Examples

data(KcViabSmall)
x <- KcViabSmall
xs <- spatialNormalization(x, save.model = TRUE, h=3)

## Calling spatialNormalization function from "normalizePlates":
xopt <- normalizePlates(x, varianceAdjust="none", save.model = TRUE)
all(xs@rowcol.effects == xopt@rowcol.effects, na.rm=TRUE)

state Retrieve the state of a cellHTS object.

Description

This generic function accesses the state of an object derived from the cellHTS class.

Usage

state(object)

Arguments

object an object of class cellHTS.

Value

state returns a logical vector corresponding to the contents of slot state of object.
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Author(s)

Ligia Bras <ligia@ebi.ac.uk>

See Also

cellHTS

summarizeChannels Summarization of dual-channel data

Description

Combines plate intensities (raw or already corrected in a per-plate fashion) from multi-channel data
stored in slot assayData of a cellHTS instance by applying the function defined in fun.

Usage

summarizeChannels(object,
fun = function(r1, r2, thresh=-Inf) ifelse(r1>thresh, r2/r1, as.numeric(NA)))

Arguments

object an object of class cellHTS that has been configured. See details.

fun a user-defined function for the multi channel summarization. fun takes as many
numeric vectors as there are channels, names r1, r2, etc., and returns a single
numeric vector of the same length. The default is to take the ratio between the
second and first channels, with a threshold on r1 shown above in the Usage
section that should be set by the user.

Details

For each plate and replicate of a multi-color experiment, the function defined in fun is applied to
relate the intensity values in the respective channels of the cellHTS object. The default is to take
the ratio between the second and first channels, with a threshold on r1 (see the Usage section).
This threshold should be adjusted by the user according to the data. For an example, see the Ex-
amples section. This function uses the content of slot assayData of object and can be applied
either to raw data or after per-plate correction of the intensity values in each channel using func-
tion normalizePlates. This choice depends on channel summarization method that one intends to
apply (i.e., the function given by argument fun).

Value

An object of class cellHTS with the summarized multi-channel intensities stored in slot assayData.
This is an object of class assayData containing one matrix with the summarized channel data
(dimensions nrFeatures x nrSamples).
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Author(s)

Ligia Bras <ligia@ebi.ac.uk>, Wolfgang Huber <huber@ebi.ac.uk>

References

Boutros, M., Bras, L.P. and Huber, W. (2006) Analysis of cell-based RNAi screens, Genome Biology
7, R66.

See Also

normalizePlates, scoreReplicates, summarizeReplicates.

Examples

data(dualCh)
x <- dualCh
table(wellAnno(x))

## Define the controls for the different channels:
negControls=vector("character", length=dim(Data(x))[3])

## channel 1 - gene A
## case-insensitive and match the empty string at the beginning and end of a line (to distinguish between "geneA" and "geneAB", for example, although this is not a problem for the well annotation in this example)

negControls[1]= "(?i)^geneA$"
## channel 2 - gene A and geneB
negControls[2]= "(?i)^geneA$|^geneB$"
posControls = vector("character", length=dim(Data(x))[3])
## channel 1 - no controls
## channel 2 - geneC and geneD
posControls[2]="(?i)^geneC$|^geneD$"

## Not run:
writeReport(cellHTSlist=list("raw"=x), map=TRUE, plotPlateArgs=TRUE, posControls=posControls, negControls=negControls)

## End(Not run)
## In this example, we first normalize each channel separately by
## plate median scaling (no variance adjustment), since we need to make the measurements
## comparable across plates for the next step of channel summarization:

xn = normalizePlates(x, scale="multiplicative", log=FALSE, method="median", varianceAdjust="none")
## Then, we define a low intensity threshold for the measurements in the constitutive channel R1,
## which will be set to the 5% quantile of the overall plate median corrected intensities in R1,
## and take the ratio R2/R1.

xn = summarizeChannels(xn, fun = function(r1, r2,
thresh=quantile(r1, probs=0.05, na.rm=TRUE)) ifelse(r1>thresh, r2/r1, as.numeric(NA)))

## After channel summarization, we take the log2 and apply plate median normalization,
## and opt to not adjust the variance:
xn = normalizePlates(xn, scale="multiplicative", log=TRUE, method="median", varianceAdjust="none")
## Define the controls for the normalized and summarized intensities (only one channel):
negControls = vector("character", length=dim(Data(xn))[3])
## For the single channel, the negative controls are geneA and geneB
negControls[1]= "(?i)^geneA$|^geneB$"
posControls = vector("character", length=dim(Data(xn))[3])
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## For the single channel, the negative controls are geneC and geneD
posControls[1]="(?i)^geneC$|^geneD$"

## Not run:
writeReport(cellHTSlist=list("raw"=x, "normalized"=xn), force=TRUE, map=TRUE, plotPlateArgs=list(xrange=c(-3,3)),

posControls=posControls, negControls=negControls)

## End(Not run)

## Another option could be to just take the log2 of the ratio between R2 and R1 raw intensities:
xn1 = summarizeChannels(x, fun = function(r1, r2) log2(r2/r1))

summarizeReplicates Summarize between scored replicate values given in a cellHTS object
to obtain a single value for each probe

Description

This function summarizes the replicate values stored in slot assayData of a cellHTS object and
calculates a single score for each probe. Data are stored in slot assayData overridding its current
content.

This function is implemented for single- and multi-channel data.

Usage

summarizeReplicates(object, summary ="min")

Arguments

object an object of class cellHTS that has already been normalized and scored (see
details).

summary a character string indicating how to summarize between replicate measurements.
One of "min" (default), "mean", "median", "max", "rms", "closestToZero", or
"FurthestFromZero" can be used (see details).

Details

A single value per probe is calculated by summarizing between scored replicates stored in the slot
assayData of object. The summary is performed as follows:

• If summary="mean", the average of replicate values is considered;

• If summary="median", the median of replicate values is considered;

• If summary="max", the maximum of replicate intensities is taken;

• If summary="min", the minimum is considered, instead;

• If summary="rms", the square root of the mean squared value of the replicates (root mean
square) is taken as a summary function;
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• If summary="closestToZero", the value closest to zero is taken as a summary (useful when
both sides of the distribution of z-score values are of interest);

• If summary="furthestFromZero", the value furthest from zero is taken as a summary (useful
when both sides of the distribution of z-score values are of interest).

Value

The cellHTS object with the summarized scored values stored in slot assayData. This is an object
of class assayData corresponding to matrices of dimensions Features x 1 for each channel. More-
over, the processing status of the cellHTS object is updated in the slot state to object@state[["scored"]]= TRUE.

Author(s)

W. Huber <huber@ebi.ac.uk>, Ligia Bras <ligia@ebi.ac.uk>

References

Boutros, M., Bras, L.P. and Huber, W. (2006) Analysis of cell-based RNAi screens, Genome Biology
7, R66.

See Also

normalizePlates, summarizeChannels, scoreReplicates, imageScreen.

Examples

data(KcViabSmall)
# normalize
x <- normalizePlates(KcViabSmall, scale="multiplicative", method="median", varianceAdjust="none")
# score the replicates
x <- scoreReplicates(x, sign="-", method="zscore")
# summarize the replicates (conservative approach: take the minimum value between replicates)
x <- summarizeReplicates(x, summary="min")

templateDescriptionFile

Creates a template description file for an RNAi experiment

Description

This function creates a template description file for an RNAi experiment with default entries com-
pliant with MIAME class and with additional entries specific for a cellHTS object.

Usage

templateDescriptionFile(filename="Description.txt", path, force=FALSE)
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Arguments

filename the name of the output file. Default is "Description.txt".

path a character of length 1 indicating the path in which to create the screen descrip-
tion file. By default, it can extract the path from filename.

force a logical value, determines the behaviour of the function if file filename exists.
If force is TRUE, the function overwrites filename, otherwise it casts an error.

Details

This function can be called to generate a template file for the RNAi experiment. This file contains
the fields that are compliant with the MIAME class and also additional entries specific for the cellHTS
class, which should be edited and completed by the user.

This file, which we call Screen description file, is required to configure the cellHTS object via
function configure. It is intended to contain general information about the screen, such as its title,
its goal, when and how it was performed, which organism, which library, type of assay, references,
and any other information that is pertinent to the biological interpretation of the experiments.

Value

The function returns a character with the full path and name of the file that was created.

Author(s)

Ligia Bras <ligia@ebi.ac.uk>

See Also

configure

Examples

out <- templateDescriptionFile("Description.txt", path=tempdir())
out
readLines(out)

updateCellHTS Update old serialized cellHTS objects.

Description

During the development of the cellHTS2 package, the definition of the cellHTS object hasd changes.
This function can be used to update old serialized cellHTS objects.

Usage

updateCellHTS(object)
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Arguments

object The cellHTS object to update.

Value

An updated cellHTS object.

Author(s)

Florian Hahne

See Also

convertOldCellHTS

Examples

data(KcViabSmall)
updateCellHTS(KcViabSmall)

wellAnno Access the annotation from a cellHTS object.

Description

These generic functions access the annotation data stored in the featureData slot of an object of
class cellHTS.

Usage

wellAnno(object)
geneAnno(object)

Arguments

object Object derived from class cellHTS.

Value

wellAnno returns a factor of length equal to the total number of features (number of plates x num-
ber of wells per plate) indicating the contents of the wells. Corresponds to fData(object)[,"controlStatus"].

geneAnno returns a vector of the same length as the number of features in object (number of plates
x number of wells per plate) containing the gene IDs used in the screen. This corresponds to the
contents of fData(object)[,"GeneID"].

See cellHTS class for details.
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Author(s)

Ligia Bras <ligia@ebi.ac.uk>

References

Boutros, M., Bras, L.P. and Huber, W. (2006) Analysis of cell-based RNAi screens, Genome Biology
7, R66.

See Also

cellHTS

write.tabdel Wrapper to function ’write.table’ used to write data to a tab-delimited
file

Description

Wrapper for the function write.table to write data to a tab-delimited file.

Usage

write.tabdel(...)

Arguments

... arguments that get passed on to the function write.table.

Details

A trivial function, which we have included for convenience.

Value

The name of the file that was written.

Author(s)

Ligia Bras <ligia@ebi.ac.uk>

See Also

write.table
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Examples

data(KcViabSmall)
x <- KcViabSmall
## determine the ratio between each well and the plate median
xraw <- Data(x)
y <- array(as.numeric(NA), dim=dim(xraw))
nrWell <- prod(pdim(x))

for(p in 1:max(plate(x))) {
ind <- (1:nrWell)+nrWell*(p-1)
samples <- (wellAnno(x)[ind]=="sample")

y[ind, ,] <- apply(xraw[ind, , ,drop=FALSE], 2:3, function(w) w/median(w[samples], na.rm=TRUE))
}
y <- signif(y, 4)
out <- y[,,1]
out <- cbind(geneAnno(x), wellAnno(x), out)
colnames(out) <- c("GeneID", "wellAnno",
sprintf("Well/Median_r%d_ch%d", rep(1:dim(y)[2], dim(y)[3]), rep(1:dim(y)[3], each=dim(y)[2])))

write.tabdel(out, file = tempfile())

writeReport Create a directory with HTML pages of linked tables and plots docu-
menting the contents of a cellHTS experiment

Description

Creates a directory with HTML pages of linked tables and plots documenting the contents of the
preprocessing of a cellHTS object.

Usage

writeReport(
raw,
normalized=NULL,
scored=NULL,
cellHTSlist=NULL,
outdir,
force=FALSE,
map=FALSE,
plotPlateArgs=NULL,
imageScreenArgs=NULL,
posControls,
negControls,
mainScriptFile=NA,
gseaModule=NULL,
settings=list())
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Arguments

raw the intitial raw cellHTS object. See details.

normalized a normalized cellHTS object. See details.

scored a scored cellHTS object. See details.

cellHTSlist a list of cellHTS objects. See details. Note: this argument is deprecated. Please
use the separate arguments raw, normalized and scored instead.

outdir a character of length 1 with the name of a directory where to write the report
HTML file and images. If the directory does not exist, it is created. If it exists
and is not empty, then the behaviour depends on the value of force. If outdir is
missing, it is set to file.path(getwd(), name(cellHTSlist[['xraw']])),
i.e. a directory with the name of the cellHTS object(s) in the current working
path.

force a logical value, determines the behaviour of the function if outdir exists and
is not empty. If force is TRUE, the function overwrites (removes and recreates)
outdir, otherwise it casts an error.

map a logical value indicating whether tooltips with the annotation should be added
to the plate plots and image screen. Default value is FALSE. NOTE: This argu-
ment is deprecated and will go away in the next release. Please see settings to
learn how to control the output of writeReport.

plotPlateArgs either a list with parameters for the plate plots of the per plate quality report
pages, or a logical scalar with values FALSE or TRUE. If FALSE or NULL, the plate
plots are omitted, this option is here because the production of the plate plots
takes a long time. See details. NOTE: This argument is deprecated and will go
away in the next release. Please see settings to learn how to control the output
of writeReport.

imageScreenArgs

a list with parameters for the function imageScreen. See details. NOTE: This
argument is deprecated and will go away in the next release. Please see settings
to learn how to control the output of writeReport.

posControls a list or vector of regular expressions specifying the name of the positive con-
trols. See details.

negControls a vector of regular expressions specifying the name of the negative controls. See
details.

mainScriptFile The path to the R script generating the current report. We strongly advice to
store this script in the compendium for future reference.

gseaModule Add the output of a gene set enrichment analysis to the report. This is totally
experimental at this time.

settings A named list of settings controlling the output of writeReport. Please see
settings for details.

Details

The function has to be called with the mandatory argument raw corresponding to an unnormal-
ized cellHTS object (i.e. state(cellHTSlist[["raw"]])["normalized"]=FALSE). Additional
optional arguments are:
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• "normalized": a cellHTS object containing normalized data (i.e. state(cellHTSlist[["normalized"]])["normalized"]=TRUE
and state(cellHTSlist[["normalized"]])["scored"]=FALSE).

• "scored": a cellHTS object containing data scored data (i.e. state(cellHTSlist[["scored"]])["scored"]=TRUE).
If this component is available, then cellHTSlist[["normalized"]] should also be given.

All of the above arguments have to be cellHTS objects containing data from the same experiment,
but in different preprocessing stages.

The cellHTS argument is deprecated and should no be used anymore.

The following elements are recognized for plotPlateArgs and passed on to plotPlate: sdcol,
the color scheme for the standard deviation plate plot, sdrange, the sd range to which the colors are
mapped, xcol, the color scheme for the intensity plate plot, xrange, the intensity range to which
the colors are mapped. If an element is not specified, default values are used. Both sdrange and
xrange can also be provided as functions, which take the values to be plotted by platePlot as a
single argument and has to return a numeric vector of length 2. See its documentation for details.

The following elements are recognized for imageScreenArgs and passed on to imageScreen: ar,
aspect ratio, zrange, range, anno, gene annotation for the image map (if map=TRUE).

From now on, all settings controlling the output of writeReport should either be provided through
the settings argument, or as session-wide parameters set using setSettings. Please see settings
for details.

posControls and negControls should be given as a vector of regular expression patterns spec-
ifying the name of the positive(s) and negative(s) controls, respectivey, as provided in the plate
configuration file (and acccessed via wellAnno(objects)).

If the cellHTS object containing normalized data was provided as argument norm, the length of
posControls and negControls should be equal to the number of channels in this cellHTS object
(dim(Data(cellHTSlist[["normalized"]]))[3]). Otherwise, the length of these vectors should
be equal to the number of channels in the unpreprocessed cellHTS object (i.e., dim(Data(cellHTSlist[["raw"]]))[3]).

By default, if posControls is not given, "pos" will be taken as the name for the wells containing
positive controls. Similarly, if negControls is missing, by default "neg" will be considered as the
name used to annotate the negative controls. The content of posControls and negControls will be
passed to regexpr for pattern matching within the well annotation given in column controlStatus
of the featureData slot of the cellHTS object. If no controls are available for a given channel, use
"" or NA for that channel. For example, posControls = c("", "(?i)^diap$") means that channel
1 has no positive controls, while "diap" is the positive control for channel 2.

The arguments posControls and negControls are particularly useful in multi-channel data since
the controls might be reporter-specific, or after normalizing multi-channel data.

In the case of a two-way assay, where two types of "positive" controls are used in the screen ("acti-
vators" and "inhibitors"), posControls should be defined as a list with two components (called act
and inh), each of which should be vectors of regular expressions of the same length as the current
number of reporters (as explained above).

By default, tooltips doing the mapping between the probe annotation and the plate wells are not
added to the plate plots and to the overall screen plot. If any of the cellHTS objects in cellHTSlist
is annotated, the probe annotation uses the information contained either in column GeneSymbol or
column GeneID (if the former is missing) of the featureData slot of the annotated cellHTS object.
Otherwise, the mapping simply uses the well identifiers.
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Value

The function is called for its side-effect. It returns a character with the full path and name of the
report index file, this is an HTML file which can be read by a web browser.

Author(s)

Florian Hahne <florian.hahne@novartis.com>, Ligia P. Bras <ligia@ebi.ac.uk>, Wolfgang
Huber <huber@ebi.ac.uk>, Gabor Bakos

References

Boutros, M., Bras, L.P. and Huber, W. (2006) Analysis of cell-based RNAi screens, Genome Biology
7, R66.

See Also

plotPlate, imageScreen

Examples

data(KcViabSmall)
pCtrls <- c("pos")
nCtrls <- c("neg")

## Not run:
## or for safety reasons (not a problem for the current well annotation, however)
pCtrls <- c("^pos$")
nCtrls <- c("^neg$")
writeReport(raw=KcViabSmall, posControls=pCtrls, negControls=nCtrls)
## same as
## writeReport(raw=KcViabSmall)
xn <- normalizePlates(KcViabSmall, scale="multiplicative", log=FALSE, method="median")
xsc <- scoreReplicates(xn, sign="-", method="zscore")
xsc <- summarizeReplicates(xsc, summary="min")
## to turn on the tooltips in the plate plots and in the image screen plot:
writeReport(raw=KcViabSmall, normalized=xn, scored=xsc, force=TRUE, map=TRUE, plotPlateArgs = TRUE, imageScreenArgs=list(zrange=c(-4,4)))

## End(Not run)

writeTab Write the data from a cellHTS object to a tab-delimited file

Description

Write the data from a cellHTS object to a tab-delimited file.

Usage

## S4 method for signature 'cellHTS'
writeTab(object, file=paste(name(object), "txt", sep="."))
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Arguments

object a cellHTS object.

file the name of the output file.

Details

This function is a wrapper for function write.table to write the contents of assayData slot of
a cellHTS object to a tab-delimited file. If the object is already annotated, the probe information
(fData(object)@GeneID) is also added.

Value

The name of the file that was written.

Author(s)

Wolfgang Huber <huber@ebi.ac.uk>, Ligia P. Bras <ligia@ebi.ac.uk>

See Also

cellHTS

Examples

data(KcViabSmall)
writeTab(KcViabSmall, file=tempfile())
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