
Package ‘QuasR’
October 9, 2015

Type Package

Title Quantify and Annotate Short Reads in R

Version 1.8.4

Date 2015-08-14

Author Anita Lerch, Dimos Gaiditzis and Michael Stadler

Maintainer Michael Stadler <michael.stadler@fmi.ch>

Depends parallel, GenomicRanges (>= 1.13.3), Rbowtie

Imports methods, zlibbioc, BiocGenerics, S4Vectors, IRanges,
BiocInstaller, Biobase, Biostrings, BSgenome, Rsamtools (>=
1.19.38), GenomicFeatures (>= 1.17.13), ShortRead (>= 1.19.1),
GenomicAlignments, BiocParallel, GenomeInfoDb

Suggests rtracklayer, Gviz, RUnit, BiocStyle

LinkingTo Rsamtools

Description This package provides a framework for the quantification
and analysis of Short Reads. It covers a complete workflow
starting from raw sequence reads, over creation of alignments
and quality control plots, to the quantification of genomic
regions of interest.

License GPL-2

biocViews Genetics, Preprocessing, Sequencing, ChIPSeq, RNASeq,
MethylSeq, Coverage, Alignment, QualityControl

Archs x64

NeedsCompilation yes

R topics documented:
QuasR-package . 2
alignmentStats . 2
preprocessReads . 3
qAlign . 6
qCount . 10

1

2 alignmentStats

qExportWig . 15
qMeth . 17
qProfile . 20
qProject-class . 23
qQCReport . 25

Index 28

QuasR-package Quantify and Annotate Short Reads in R

Description

This package provides a pipeline for the quantification and analysis of Short Reads.

Details

See packageDescription(’QuasR’) for package details.

Author(s)

Anita Lerch, Dimos Gaidatzis and Michael Stadler

See Also

qAlign, qCount, qProfile, qMeth, qQCReport

Examples

Not run:
see qCount, qMeth and qProfile manual pages for examples
example(qCount)
example(qMeth)
example(qProfile)

End(Not run)

alignmentStats Get statistics on alignments

Description

Get statistics on alignments from bam file or qProjec object.

Usage

alignmentStats(x, collapseBySample=TRUE)

preprocessReads 3

Arguments

x the source of alignment bam files, one of:

• a character vector with bam files
• a qProject object

collapseBySample

If TRUE and x is a qProject object, sum counts for bam files with identical
sample names.

Details

Internally, alignmentStats queries the bam index files similar to ’idxstats’ from samtools.

If x is a qProject object, the auxiliary bam files will not contain any unmapped reads, and the
corresponding unmapped counts are calculated by subtracting auxiliary mapped counts from the
total reads. The latter correspond to the unmapped counts from the corresponding genome bam
files.

Value

A matrix with one row per bam file and three columns ("seqlength", "mapped" and "unmapped").

Author(s)

Anita Lerch, Dimos Gaidatzis and Michael Stadler

See Also

qProject,

Examples

Not run:
see qProject manual page for an example
example(qProject)

End(Not run)

preprocessReads Preprocess Short Reads

Description

Truncate sequences, remove parts matching to adapters and filter out low quality or low complexity
sequences from (compressed) ’fasta’ or ’fastq’ files.

4 preprocessReads

Usage

preprocessReads(filename, outputFilename=NULL,
filenameMate=NULL, outputFilenameMate=NULL,
truncateStartBases=NULL, truncateEndBases=NULL,
Lpattern="", Rpattern="",

max.Lmismatch=rep(0:2, c(6,3,100)), max.Rmismatch=rep(0:2, c(6,3,100)),
with.Lindels=FALSE, with.Rindels=FALSE,
minLength=14L, nBases=2L, complexity=NULL,
nrec=1000000L, clObj=NULL)

Arguments

filename the name(s) of the input sequence file(s).

outputFilename the name(s) of the output sequence file(s).

filenameMate for paired-end experiments, the name(s) of the input sequence file(s) containing
the second read (mate) of each pair.

outputFilenameMate

for paired-end experiments, the name(s) of the output sequence file(s) containing
the second read (mate) of each pair.

truncateStartBases

integer(1): the number of bases to be truncated (removed) from the begining of
each sequence.

truncateEndBases

integer(1): the number of bases to be truncated (removed) from the end of each
sequence.

Lpattern character(1): the left (5’-end) adapter sequence.

Rpattern character(1): the right (3’-end) adapter sequence.

max.Lmismatch mismatch tolerance when searching for matches of Lpattern (see ‘Details’).

max.Rmismatch mismatch tolerance when searching for matches of Rpattern (see ‘Details’).

with.Lindels if TRUE, indels are allowed in the alignments of the suffixes of Lpattern with
the subject, at its beginning (see ‘Details’).

with.Rindels same as with.Lindels but for alignments of the prefixes of Rpattern with the
subject, at its end (see ‘Details’).

minLength integer(1): the minimal allowed sequence length.

nBases integer(1): the maximal number of Ns allowed per sequence.

complexity NULL (default) or numeric(1): If not NULL, the minimal sequence complexity,
as a fraction of the average complexity in the human genome (~3.9bits). For
example, complexity = 0.5 will filter out sequences that do not have at least
half the complexity of the human genome. See ‘Details’ on how the complexity
is calculated.

nrec integer(1): the number of sequence records to read at a time.

clObj a cluster object to be used for parallel processing of multiple files (see ‘Details’).

preprocessReads 5

Details

Sequence files can be in fasta or fastq format, and can be compressed by either gzip, bzip2 or xz
(extensions .gz, .bz2 or .xz). Multiple files can be processed by a single call to preprocessReads;
in that case all sequence file vectors must have identical lengths.

nrec can be used to limit the memory usage when processing large input files. preprocessReads
iteratively loads chunks of nrec sequences from the input until all data been processed.

Sequence pairs from paired-end experiments can be processed by specifying pairs of input and
output files (filenameMate and outputFilenameMate arguments). In that case, it is assumed that
pairs appear in the same order in the two input files, and only pairs in which both reads pass all
filtering criteria are written to the output files, maintaining the consistent ordering.

If output files are compressed, the processed sequences are first written to temporary files (created
in the same directory as the final output file), and the output files are generated at the end by
compressing the temporary files.

For the trimming of left and/or right flanking sequences (adapters) from sequence reads, the trimLRPatterns
function from package Biostrings is used, and the arguments Lpattern, Rpattern, max.Lmismatch,
max.Rmismatch, with.Lindels and with.Rindels are used in the call to trimLRPatterns. Lfixed
and Rfixed arguments of trimLRPatterns are set to TRUE, thus only fixed patterns (without IUPAC
codes for ambigous bases) can be used. Currently, trimming of adapters is only supported for single
read experiments.

Sequence complexity (H) is calculated based on the dinucleotide composition using the formula
(Shannon entropy):

H = −
∑
i

fi log2 fi,

where fi is the fraction of dinucleotide i from all dinucleotides in the sequence. Sequence reads that
fulfill the condition H/Hr ≥ c are retained (not filtered out), where Hr = 3.908 is the reference
complexity in bits obtained from the human genome, and c is the value given to the argument
complexity.

If an object that inherits from class cluster is provided to the clObj argument, for example an
object returned by makeCluster from package parallel, multiple files will be processed in parallel
using clusterMap from package parallel.

Value

A matrix with summary statistics on the processed sequences, containing:

• One column per input file (or pair of input files for paired-end experiments).

• The number of sequences or sequence pairs in rows:

– totalSequences - the total number in the input
– matchTo5pAdaptor - matching to Lpattern

– matchTo3pAdaptor - matching to Rpattern

– tooShort - shorter than minLength

– tooManyN - more than nBases Ns
– lowComplexity - relative complexity below complexity

– totalPassed - the number of sequences/sequence pairs that pass all filtering criteria and
were written to the output file(s).

6 qAlign

Author(s)

Anita Lerch, Dimos Gaidatzis and Michael Stadler

See Also

trimLRPatterns from package Biostrings, makeCluster from package parallel

Examples

sample files
infiles <- system.file(package="QuasR", "extdata",

c("rna_1_1.fq.bz2","rna_1_2.fq.bz2"))
outfiles <- paste(tempfile(pattern=c("output_1_","output_2_")),".fastq",sep="")

single read example
preprocessReads(infiles, outfiles, nBases=0, complexity=0.6)
unlink(outfiles)

paired-end example
preprocessReads(filename=infiles[1],

outputFilename=outfiles[1],
filenameMate=infiles[2],
outputFilenameMate=outfiles[2],
nBases=0, complexity=0.6)

unlink(outfiles)

qAlign Align reads

Description

Create read alignments against reference genome and optional auxiliary targets if not yet existing.
If necessary, also build target indices for the aligner.

Usage

qAlign(sampleFile,
genome,
auxiliaryFile=NULL,
aligner="Rbowtie",
maxHits=1,
paired=NULL,
splicedAlignment=FALSE,
snpFile=NULL,
bisulfite="no",
alignmentParameter=NULL,
projectName="qProject",
alignmentsDir=NULL,

qAlign 7

lib.loc=NULL,
cacheDir=NULL,
clObj=NULL,
checkOnly=FALSE)

Arguments

sampleFile the name of a text file listing input sequence files and sample names (see ‘De-
tails’).

genome the reference genome for primary alignments, one of:

• a string referring to a “BSgenome” package (e.g. “"BSgenome.Hsapiens.UCSC.hg19"”),
which will be downloaded automatically from Bioconductor if not present

• the name of a fasta sequence file containing one or several sequences (chro-
mosomes) to be used as a reference. The aligner index will be created when
neccessary and stored in a default location (see ‘Details’).

auxiliaryFile the name of a text file listing sequences to be used as additional targets for align-
ment of reads not mapping to the reference genome (see ‘Details’).

aligner selects the aligner program to be used for aligning the reads. Currently, only
“Rbowtie” is supported, which is an R wrapper package for ‘bowtie’ and ‘SpliceMap’
(see Rbowtie package).

maxHits sets the maximal number of allowed mapping positions per read (default: 1). If
a read produces more than maxHits alignments, no alignments will be reported
for it. In case of a multi-mapping read, a single alignment is randomly selected

paired defines the type of paired-end library and can be set to one of no (single read
experiment, default), fr (fw/rev), ff (fw/fw) or rf (rev/fw).

splicedAlignment

if TRUE, reads will be aligned by SpliceMap to produce spliced alignments
(without using a database of known exon-exon junctions). Using splicedAlign-
ment=TRUE will increase alignment times roughly by a factor of ten. The op-
tion can only be used for reads with a minimal length of 50nt; SpliceMap ignores
reads that are shorter. Such short reads will not be contained in the BAM file,
neither as mapped or unmapped reads.

snpFile the name of a text file listing single nucleotide polymorphisms to be used for
allele-specific alignment and quantification (see ‘Details’).

bisulfite for bisulfite-converted samples (Bis-seq), the type of bisulfite library (“dir” for
directional libraries, “undir” for undirectional libraries).

alignmentParameter

a optional string containing command line parameters to be used for the aligner,
to overrule the default alignment parameters used by QuasR. Please use with
caution; some alignment parameters may break assumptions made by QuasR.
Default parameters are listed in ‘Details’.

projectName an optional name for the alignment project.

alignmentsDir the directory to be used for storing alignments (bam files). If set to NULL (de-
fault), bam files will be generated at the location of the input sequence files.

8 qAlign

lib.loc can be used to change the default library path of R. The library path is used
by QuasR to store aligner index packages created from BSgenome reference
genomes, or to install newly downloaded BSgenome packages.

cacheDir specifies the location to store (potentially huge) temporary files. If set to NULL
(default), the temporary directory of the current R session as returned by tempdir()
will be used.

clObj a cluster object, created by the package parallel, to enable parallel processing
and speed up the alignment process.

checkOnly if TRUE, prevents the automatic creation of alignments or aligner indices. This
allows to quickly check for missing alignment files without starting the poten-
tially long process of their creation. In the case of missing alignments or indices,
an exception is thrown.

Details

Before generating new alignments, qAlign looks for previously generated alignments as well as
for an aligner index. If no aligner index exists, it will be automatically created and stored in the
same directory as the provided fasta file, or as an R package in the case of a BSgenome reference.
The name of this R package will be the same as the BSgenome package name, with an additional
suffix from the aligner (e.g. BSgenome.Hsapiens.UCSC.hg19.Rbowtie). The generated bam files
contain both aligned und unaligned reads. For paired-end samples, by default no alignments will be
reported for read pairs where only one of the reads could be aligned.

sampleFile is a tab-delimited text file listing all the input sequences to be included in a given
analysis. The file has either two (single-end) or three columns (paired-end). The first row contains
the column names, and additional rows contain relative or absolute path and name of input sequence
file(s), as well as the according sample name. Three input file formats are supported (fastq, fasta
and bam). All input files in one sampleFile need to be in the same format, and are recognized by
their extension (.fq, .fastq, .fa, .fasta, .fna, .bam), in raw or compressed form (e.g. .fastq.gz). If bam
files are provided, then no alignments are generated by qAlign, and the alignments contained in the
bam files will be used instead.

The column names in sampleFile have to match to the ones in the examples below, for a single-
read experiment:

FileName SampleName
chip_1_1.fq.bz2 Sample1
chip_2_1.fq.bz2 Sample2

and for a paired-end experiment:

FileName1 FileName2 SampleName
rna_1_1.fq.bz2 rna_1_2.fq.bz2 Sample1
rna_2_1.fq.bz2 rna_2_2.fq.bz2 Sample2

The “SampleName” column is the human-readable name for each sample that will be used as sample
labels. Multiple sequence files may be associated to the same sample name, which instructs QuasR
to combine those files.

qAlign 9

auxiliaryFile is a tab-delimited text file listing one or several additional target sequence files in
fasta format. Reads that do not map against the reference genome will be aligned against each of
these target sequence files. The first row contains the column names which have to match to the
ones in the example below:

FileName AuxName
NC_001422.1.fa phiX174

snpFile is a tab-delimited text file without a header and contains four columns with chromosome
name, position, reference allele and alternative allele, as in the example below:

chr1 8596 G A
chr1 18443 G A
chr1 18981 C T
chr1 19341 G A

The reference and alternative alleles will be injected into the reference genome, resulting in two
separate genomes. All reads will be aligned separately to both of these genomes, and the alignments
will be combined, only retaining the best alignment for each read. In the final alignment, each read
will be marked with a tag that classifies it into reference (R), alternative (A) or unknown (U), if the
reads maps equally well to both genomes.

If bisulfite is set to “dir” or “undir”, reads will be C-to-T converted and aligned to a similarly
converted genome.

If alignmentParameter is NULL (recommended), qAlign will select default parameters that are
suitable for the experiment type. Please note that for bisulfite or allele-specific experiments, each
read is aligned multiple times, and resulting alignments need to be combined. This requires special
settings for the alignment parameters that are not recommended to be changed. For ‘simple’ experi-
ments (neither bisulfite, allele-specific, nor spliced), alignments are generated using the parameters
-m maxHits --best --strata. This will align reads with up to “maxHits” best hits in the
genome and selects one of them randomly.

Value

A qProject object.

Author(s)

Anita Lerch, Dimos Gaidatzis and Michael Stadler

See Also

qProject, makeCluster from package parallel, Rbowtie package

Examples

Not run:
see qCount, qMeth and qProfile manual pages for examples
example(qCount)

10 qCount

example(qMeth)
example(qProfile)

End(Not run)

qCount Quantify alignments

Description

Quantify alignments from sequencing data.

Usage

qCount(proj,
query,
reportLevel=c(NULL, "gene", "exon","promoter","junction"),
selectReadPosition=c("start", "end"),
shift=0L,
orientation=c("any", "same", "opposite"),
useRead=c("any", "first", "last"),
auxiliaryName=NULL,
mask=NULL,
collapseBySample=TRUE,
includeSpliced=TRUE,
mapqMin=0L,
mapqMax=255L,
maxInsertSize=500L,
clObj=NULL)

Arguments

proj a qProject object representing a sequencing experiment as returned by qAlign

query an object of type GRanges, GRangesList or TxDb with the regions to be quanti-
fied. The type of query will determine the mode of quantification (see ‘Details’).
For reportLevel="junction", query is ignored and can also be NULL.

reportLevel level of quantification (query of type TxDb or NULL), one of

• gene (default): one value per gene
• exon: one value per exon
• promoter: one value per promoter
• junction: one count per detected exon-exon junction (query will be ig-

nored in this case)
selectReadPosition

defines the part of the alignment that has to be contained within a query region
to produce an overlap (see Details). Possible values are:

• start (default): start of the alignment

qCount 11

• end: end of the alignment

shift controls the shifting alignments towards their 3’-end before quantification. shift
can be one of:

• an “integer” vector of the same length as the number of alignment files
• a single “integer” value
• the character string "halfInsert" (only available for paired-end experi-

ments)

The default of 0 will not shift any alignments.

orientation sets the required orientation of the alignments relative to the query region in
order to be counted, one of:

• any (default): count alignment on the same and opposite strand
• same : count only alignment on the same strand
• opposite : count only alignment on the opposite strand

useRead For paired-end experiments, selects the read mate whose alignments should be
counted, one of:

• any (default): count all alignments
• first : count only alignments from the first read
• last : count only alignments from the last read

auxiliaryName which bam files to use in an experiments with auxiliary alignments (see Details).

mask If not NULL, a GRanges object with reference regions to be masked, i.e. excluded
from the quantification, such as unmappable or highly repetitive regions (see
Details).

collapseBySample

if TRUE (the default), sum alignment counts from bam files with the same sample
name.

includeSpliced if TRUE (the default), include spliced alignments when counting. A spliced align-
ment is defined as an alignment with a gap in the read of at least 60 bases.

mapqMin minimal mapping quality of alignments to be included when counting (mapping
quality must be greater than or equal to mapqMin). Valid values are between 0
and 255. The default (0) will include all alignments.

mapqMax maximal mapping quality of alignments to be included when counting (mapping
quality must be less than or equal to mapqMax). Valid values are between 0 and
255. The default (255) will include all alignments.

maxInsertSize Maximal fragment size of the paired-end experiment. This parameter is used if
shift="halfInsert" and will ensure that query regions are made wide enough
to emcompass all alignment pairs whose mid falls into the query region. The
default value is 500 bases.

clObj a cluster object to be used for parallel processing (see ‘Details’).

Details

qCount is used to count alignments in each sample from a qProject object. The features to be
quantified, together with the mode of quantification, are specified by the query argument, which is
one of:

12 qCount

• GRanges: Overlapping alignments are counted separately for each coordinate region. If multi-
ple regions have identical names, their counts will be summed, counting each alignment only
once even if it overlaps more than one of these regions. Alignments may be counted more
than once if they overlap multiple regions that have different names. This mode is for example
used to quantify ChIP-seq alignments in promoter regions, or gene expression levels in an
RNA-seq experiment (using a query with exon regions named by gene).

• GRangesList: Alignments are counted and summed for each list element in query if they
overlap with any of the regions contained in the list element. The order of the list elements
defines a hierarchy for quantification: Alignment will only be counted for the first element
(the one with the lowest index in query) that they overlap, but not for any potential further
list elements containing overlapping regions. This mode can be used to hierarchically and
uniquely count (assign) each alignment to a one of several groups of regions (the elements
in query), for example to estimate the fractions of different classes of RNA in an RNA-seq
experiment (rRNA, tRNA, snRNA, snoRNA, mRNA, etc.)

• TxDb: Used to extract regions from annotation and report alignment counts depending on
the value of reportLevel. If reportLevel="exon", alignments overlapping each exon in
query are counted. If reportLevel="gene", alignment counts for all exons of a gene will
be summed, counting each alignment only once even if it overlaps multiple annotated exons
of a gene. These are useful to calculate exon or gene expression levels in RNA-seq experi-
ments based on the annotation in a TranscriptDB object. If reportLevel="promoter", the
promoters function from package GenomicFeatures is used with default arguments to ex-
tract promoter regions around transcript start sites, e.g. to quantify alignments inf a ChIP-seq
experiment.

• any of the above or NULL for reportLevel="junction": The query argument is ignored if
reportLevel is set to "junction", and qCount will count the number of alignments sup-
porting each exon-exon junction detected in any of the samples in proj. The arguments
selectReadPosition, shift, orientation, useRead and mask will have no effect in this
quantification mode.

The additional arguments allow to fine-tune the quantification:

selectReadPosition defines the part of the alignment that has to be contained within a query
region for an overlap. The values start (default) and end refer to the biological start (5’-end) and
end (3’-end) of the alignment. For example, the start of an alignment on the plus strand is its
leftmost (lowest) base, and the end of an alignment on the minus strand is also the leftmost base.

shift allows on-the-fly shifting of alignments towards their 3’-end prior to overlap determination
and counting. This can be helpful to increase resolution of ChIP-seq experiments by moving align-
ments by half the immuno-precipitated fragment size towards the middle of fragments. shift is
either an “integer” vector with one value per alignment file in proj, or a single “integer” value,
in which case all alignment files will be shifted by the same value. For paired-end experiments, it
can be alternatively set to "halfInsert", which will estimate the true fragment size from the distance
between aligned read pairs and shift the alignments accordingly.

orientation controls the interpretation of alignment strand when counting, relative to the strand
of the query region. any will count all overlapping alignments, irrespective of the alignment strand
(e.g. used in an unstranded RNA-seq experiment). same will only count the alignments on the same
strand as the query region (e.g. in a stranded RNA-seq experiment), and opposite will only count
the alignments on the opposite strand from the query region (e.g. to quantify anti-sense transcription
in a stranded RNA-seq experiment).

qCount 13

includeSpliced can be used to include or exclude spliced alignments. mapqMin and mapqMax
allow to select alignments based on their mapping qualities. mapqMin and mapqMax can take integer
values between 0 and 255 and equal to −10log10Pr(mapping position is wrong), rounded to the
nearest integer. A value 255 indicates that the mapping quality is not available.

In paired-end experiments, useRead allows to quantify either all alignments (useRead="any"), or
only the first (useRead="first") or last (useRead="last") read from a read pair or read group.
Note that for useRead="any" (the default), an alignment pair that is fully contained within a query
region will contribute two counts to the value of that region.

auxiliaryName selects the reference sequence for which alignments should be quantified. NULL
(the default) will select alignments against the genome. If set to a character string that matches
one of the auxiliary target names (as specified in the auxiliaryFile argument of qAlign), the
corresponding alignments will be counted.

mask can be used to specify a GRanges object with regions in the reference sequence to be excluded
from quantification. The regions will be considered unstranded (strand="*"). Alignments that
overlap with a region in mask will not be counted. Masking may reduce the effective width of query
regions reported by qCount, even down to zero for regions that are fully contained in mask.

If clObj is set to an object that inherits from class cluster, for example an object returned by
makeCluster from package parallel, the quantification task is split into multiple chunks and pro-
cessed in parallel using clusterMap. Currently, not all tasks will be efficiently parallelized: For
example, a single query region and a single (group of) bam files will not be split into multiple
chunks.

Value

A matrix with effective query regions width in the first column, and alignment counts in subsequent
columns, or a GRanges object if reportLevel="junction".

The effective query region width returned as first column in the matrix is calculated by the number
of unique, non-masked bases in the reference sequence that contributed to the count of this query
name (irrespective if the bases were covered by alignments or not). An effective width of zero
indicates that the region was fully masked and will have zero counts in all samples.

The alignment counts in the matrix are contained from column two onwards. For projects with
allele-specific quantification, i.e. if a file with single nucleotide polymorphisms was supplied to the
snpFile argument of qAlign, there will be three columns per bam file (number of alignments for
Reference, Unknown and Alternative genotypes, with suffixed _R, _U and _A). Otherwise there is
a single columns per bam file.

If collapseBySample=TRUE, groups of bam files with identical sample name are combined by
summing their alignment counts.

For reportLevel="junction", the return value is a GRanges object. The start and end coordinates
correspond to the first and last base in each detected intron. Plus- and minus-strand alignments
are quantified separately, so that in an unstranded RNA-seq experiment, the same intron may be
represented twice; once for each strand. The counts for each sample are contained in the mcols of
the GRanges object.

Author(s)

Anita Lerch, Dimos Gaidatzis and Michael Stadler

14 qCount

See Also

qAlign, qProject, makeCluster from package parallel

Examples

library(GenomicRanges)
library(Biostrings)
library(Rsamtools)

copy example data to current working directory
file.copy(system.file(package="QuasR", "extdata"), ".", recursive=TRUE)

load genome sequence
genomeFile <- "extdata/hg19sub.fa"
gseq <- readDNAStringSet(genomeFile)
chrRegions <- GRanges(names(gseq), IRanges(start=1,width=width(gseq),names=names(gseq)))

create alignments (paired-end experiment)
sampleFile <- "extdata/samples_rna_paired.txt"
proj <- qAlign(sampleFile, genomeFile, splicedAlignment=TRUE)

count reads using a "GRanges" query
qCount(proj, query=chrRegions)
qCount(proj, query=chrRegions, useRead="first")

hierarchical counting using a "GRangesList" query
library(rtracklayer)
annotationFile <- "extdata/hg19sub_annotation.gtf"
gtfRegions <- import.gff(annotationFile, format="gtf", asRangedData=FALSE,

feature.type="exon")
names(gtfRegions) <- mcols(gtfRegions)$source
gtfRegionList <- split(gtfRegions, names(gtfRegions))
names(gtfRegionList)

res3 <- qCount(proj, gtfRegionList)
res3

gene expression levels using a "TxDb" query
library("GenomicFeatures")
genomeRegion <- scanFaIndex(genomeFile)
chrominfo <- data.frame(chrom=as.character(seqnames(genomeRegion)),

length=end(genomeRegion),
is_circular=rep(FALSE, length(genomeRegion)))

txdb <- makeTxDbFromGFF(annotationFile,
format="gtf",
exonRankAttributeName="exon_number",
gffGeneIdAttributeName="gene_name",

qExportWig 15

chrominfo=chrominfo,
dataSource="Ensembl modified",
species="Homo sapiens")

res4 <- qCount(proj, txdb, reportLevel="gene")
res4

exon-exon junctions
res5 <- qCount(proj, NULL, reportLevel="junction")
res5

qExportWig QuasR wig file export

Description

Create a fixed-step wig file from the alignments in the genomic bam files of the ‘QuasR’ project.

Usage

qExportWig(proj, file=NULL, collapseBySample=TRUE, binsize=100L,
shift=0L, strand=c("*","+","-"), scaling=TRUE,
tracknames=NULL, log2p1=FALSE,
colors=c("#1B9E77", "#D95F02", "#7570B3", "#E7298A",

"#66A61E", "#E6AB02", "#A6761D", "#666666"),
mapqMin=0L, mapqMax=255L)

Arguments

proj A qProject object as returned by qAlign.

file A character vector with the name(s) for the wig file(s) to be generated. Either
NULL or a vector of the same length as the number of bam files (for collapseBySample=FALSE)
or the number of unique sample names (for collapseBySample=TRUE) in proj.
If NULL, the wig file names are generated from the names of the genomic bam
files or unique sample names with an added “.wig.gz” extension.

collapseBySample

If TRUE, genomic bam files with identical sample name will be combined (summed)
into a single track.

binsize a numerical value defining the bin and step size for the wig file(s). binsize will
be coerced to integer().

shift Either a vector or a scalar value defining the read shift (e.g. half of fragment
length, see ‘Details’). If length(shift)>1, the length must match the number
of bam files in ‘proj’, and the i-th sample will be converted to wig using the value
in shift[i]. shift will be coerced to integer(). For paired-end alignments,
shift will be ignored, and a warning will be issued if it is set to a non-zero
value (see ‘Details’).

strand Only count alignments of strand. The default (“*”) will count all alignments.

16 qExportWig

scaling If TRUE or a numerical value, the output values in the wig file(s) will be linearly
scaled by the total number of aligned reads per sample to improve comparability
(see ‘Details’).

tracknames A character vector with the names of the tracks to appear in the track header. If
NULL, the sample names in proj will be used.

log2p1 If TRUE, the number of alignments x per bin will be transformed using the for-
mula log2(x+1).

colors A character vector with R color names to be used for the tracks.

mapqMin minimal mapping quality of alignments to be included (mapping quality must
be greater than or equal to mapqMin). Valid values are between 0 and 255. The
default (0) will include all alignments.

mapqMax maximal mapping quality of alignments to be included (mapping quality must
be less than or equal to mapqMax). Valid values are between 0 and 255. The
default (255) will include all alignments.

Details

qExportWig() uses the genome bam files in proj as input to create wig files with the number of
alignments (pairs) per window of binsize nucleotides. By default (collapseBySample=TRUE),
one file per unique sample will be created. If collapseBySample=FALSE, one file per genomic
bam file will be created. See http://genome.ucsc.edu/goldenPath/help/wiggle.html for the
definition of the wig format.

The genome is tiled with sequential windows of length binsize, and alignments in the bam file
are assigned to these windows: Single read alignments are assigned according to their 5’-end co-
ordinate shifted by shift towards the 3’-end (assuming that the 5’-end is the leftmost coordinate
for plus-strand alignments, and the rightmost coordinate for minus-strand alignments). Paired-end
alignments are assigned according to the base in the middle between the leftmost and rightmost
coordinates of the aligned pair of reads. Each pair of reads is only counted once, and not properly
paired alignments are ignored.

For scaling=TRUE, the number of alignments per bin n for the sample i are linearly scaled to the
mean total number of alignments over all samples in proj according to: ns = n/N [i] ∗mean(N)
where ns is the scaled number of alignments in the bin and N is a vector with the total number of
alignments for each sample. Alternatively, if scaling is set to a positive numerical value s, this value
is used instead of mean(N), and values are scaled according to: ns = n/N [i] ∗ s.

mapqMin and mapqMax allow to select alignments based on their mapping qualities. mapqMin and
mapqMax can take integer values between 0 and 255 and equal to −10log10Pr(mapping position is wrong),
rounded to the nearest integer. A value 255 indicates that the mapping quality is not available.

If file ends with ‘.gz’, the resulting wig file will be compressed using gzip and is suitable for
uploading as a custom track to your favorite genome browser (e.g. UCSC or Ensembl).

Value

(invisible) The file name of the generated wig file(s).

Author(s)

Anita Lerch, Dimos Gaidatzis and Michael Stadler

http://genome.ucsc.edu/goldenPath/help/wiggle.html

qMeth 17

See Also

qProject, qAlign

Examples

copy example data to current working directory
file.copy(system.file(package="QuasR", "extdata"), ".", recursive=TRUE)

create alignments
sampleFile <- "extdata/samples_chip_single.txt"
genomeFile <- "extdata/hg19sub.fa"
proj <- qAlign(sampleFile, genomeFile)

export wiggle file
qExportWig(proj, binsize=100L, shift=0L, scaling=TRUE)

qMeth Quantify DNA methylation

Description

Quantify methylation of cytosines from bisulfite sequencing data.

Usage

qMeth(proj, query=NULL, reportLevel=c("C","alignment"),
mode=c("CpGcomb","CpG","allC","var"),
collapseBySample=TRUE, collapseByQueryRegion=FALSE,
asGRanges=TRUE, mask=NULL, reference="genome",
keepZero=TRUE, mapqMin=0L, mapqMax=255L, clObj=NULL)

Arguments

proj a qProject object from a bisulfite sequencing experiment

query a GRanges object with the regions to be quantified. If NULL, all available target
sequences (e.g. the whole genome) will be analyzed. Available target sequences
are extracted from the header of the first bam file.

reportLevel report results combined for C’s (reportLevel=“C”, the default) or individually
for single alignments (reportLevel=“alignment”). The latter imposes further
restrictions on some arguments (see ‘Details’).

mode cytosine quantification mode, one of:

• CpGcomb : only C’s in CpG context (strands combined)
• CpG : only C’s in CpG context (strands separate)
• allC : all C’s (strands separate)
• var : variant detection (all C’s, strands separate)

CpGcomb is the default.

18 qMeth

collapseBySample

if TRUE, combine (sum) counts from bamfiles with the same sample name.
collapseByQueryRegion

if TRUE, combine (sum) counts for all cytosines contained in the same query
region.

asGRanges if TRUE, return results as a GRanges object; if FALSE, the results are returned as
a data.frame.

mask an optional GRanges object with genomic regions to be masked, i.e. excluded
from the analysis (e.g. unmappable regions).

reference source of bam files; can be either “genome” (then the alignments against the
genome are used) or the name of an auxiliary target sequence (then alignments
against this target sequence will be used). The auxiliary name must correspond
to the name contained in the auxiliary file refered by the auxiliaryFile argu-
ment of qAlign.

keepZero if FALSE, only cytosines covered by at least one alignment will be returned;
keepZero must be TRUE if multiple samples have the same sample name and
collapseBySample is TRUE.

mapqMin minimal mapping quality of alignments to be included when counting (mapping
quality must be greater than or equal to mapqMin). Valid values are between 0
and 255. The default (0) will include all alignments.

mapqMax maximal mapping quality of alignments to be included when counting (mapping
quality must be less than or equal to mapqMax). Valid values are between 0 and
255. The default (255) will include all alignments.

clObj a cluster object to be used for parallel processing of multiple files (see ‘Details’).

Details

qMeth can be used on a qProject object from a bisulfite sequencing experiment (sequencing of
bisulfite-converted DNA), such as the one returned by qAlign when its parameter bisulfite is set
to a different value than “no”.

qMeth quantifies DNA methylation by counting total and methylated events for individual cytosines,
using the alignments that have been generated in converted (three-letter) sequence space for example
by qAlign. A methylated event corresponds to a C/C match in the alignment, an unmethylated event
to a T/C mismatch (or G/G matches and A/G mismatches on the opposite strand). For paired-end
samples, the part of the left fragment alignment that overlaps with the right fragment alignment is
ignored, preventing the use of redundant information coming from the same molecule.

Both directed (bisulfite=“dir”) and undirected (bisulfite=“undir”) experimental protocols are
supported by qAlign and qMeth.

By default, results are returned per C nucleotide. If reportLevel=“alignment”, results are reported
separately for individual alignments. In that case, query has to be a GRanges object with ex-
actly one region, mode has to be either “CpG” or “allC”, the arguments collapseByQueryRegion,
asGRanges, mask and keepZero have no effect and allele-specific projects are treated in the same
way as normal (non-allele specific) projects.

Using the parameter mode, quantification can be limited to cytosines in CpG context, and counts
obtained for the two cytosines on opposite strands within a single CpG can be combined (summed).

qMeth 19

The quantification of methylation for all cytosines in the query region(s) (mode=“allC”) should be
done with care, especially for large query regions, as the return value may require a large amount
of memory.

If mode is set to “var”, qMeth only counts reads from the strand opposite of the cytosine and reports
total and matching alignments. For a position identical to the reference sequence, only matches (and
very few sequencing errors) are expected, independent on the methylation state of the cytosine. A
reduced fraction of alignments matching the reference are indicative of sequence variations in the
sequenced sample.

mapqMin and mapqMax allow to select alignments based on their mapping qualities. mapqMin and
mapqMax can take integer values between 0 and 255 and equal to −10log10Pr(mapping position is wrong),
rounded to the nearest integer. A value 255 indicates that the mapping quality is not available.

If an object that inherits from class cluster is provided to the clObj argument, for example an
object returned by makeCluster from package parallel, the quantification task is split into multiple
chunks and processed in parallel using clusterApplyLB from package parallel. Not all tasks will
be efficiently parallelized: For example, a single query region and a single (group of) bam files will
not be split into multiple chunks.

Value

For reportLevel=“C”, a GRanges object if asGRanges=TRUE, otherwise a data.frame.

Each row contains the coordinates of individual cytosines for collapseByQueryRegion=FALSE or
query regions for collapseByQueryRegion=TRUE.

In addition to the coordinates columns (or seqnames, ranges and strand slots for GRanges ob-
jects), each row contains per bam file:

Two values (total and methylated events, with suffixes _T and _M), or if the qProject object was
created including a SNP table, six values (total and methylated events for Reference, Unknown and
Alternative genotypes, with suffixed _TR, _TU, _TA, _MR, _MU and _MA). In the latter case, C’s
or CpG’s that overlap with SNPs in the table are removed.

If collapseBySample=TRUE, groups of bam files with identical sample name are combined (summed)
and will be represented by a single set of total and methylated count columns.

If mode=“var”, the _T and _M columns correspond to total and matching alignments overlapping
the guanine paired to the cytosine.

For reportLevel=“alignment”, a list with one element per bam file or sample (depending on
collapseBySample). Each list element is another list with the elements:

• aid: character vector with unique alignment identifiers

• Cid: integer vector with genomic coordinate of C base

• strand: character vector with the strand of the C base

• meth: integer vector with methylation state for alignment and C defined by aid and Cid. The
values are 1 for methylated or 0 for unmethylated states.

Author(s)

Anita Lerch, Dimos Gaidatzis and Michael Stadler

20 qProfile

See Also

qAlign, makeCluster from package parallel

Examples

copy example data to current working directory
file.copy(system.file(package="QuasR", "extdata"), ".", recursive=TRUE)

create alignments
sampleFile <- "extdata/samples_bis_single.txt"
genomeFile <- "extdata/hg19sub.fa"
proj <- qAlign(sampleFile, genomeFile, bisulfite="dir")
proj

calculate methylation states
meth <- qMeth(proj, mode="CpGcomb")
meth

qProfile Quantify alignments by relative position

Description

Quantify alignments from sequencing data, relative to their position in query regions.

Usage

qProfile(proj,
query,
upstream=1000,
downstream=upstream,
selectReadPosition=c("start", "end"),
shift=0L,
orientation=c("any", "same", "opposite"),
useRead=c("any", "first", "last"),
auxiliaryName=NULL,
mask=NULL,
collapseBySample=TRUE,
includeSpliced=TRUE,
mapqMin=0L,
mapqMax=255L,
maxInsertSize=500L,
clObj=NULL)

qProfile 21

Arguments

proj a qProject object representing a sequencing experiment as returned by qAlign

query an object of type GRanges with the regions to be profiled. All regions in query
will be anchored at their biological start position (start(query) for regions on
strand “+” or “*”, end(query) for regions on strand “-”). This position will
become position zero in the return value.

upstream An “integer” vector of length one or the same length as query indicating the
number of bases upstream of the anchor position to include in the profile.

downstream An “integer” vector of length one or the same length as query indicating the
number of bases downstream of the anchor position to include in the profile.

selectReadPosition

defines the part of the alignment that has to be contained within a query region
to produce an overlap (see Details), and that is used to calculate the relative
position within the query region. Possible values are:

• start (default): start of the alignment
• end: end of the alignment

shift controls the shifting alignments towards their 3’-end before quantification. shift
can be one of:

• an “integer” vector of the same length as the number of alignment files
• a single “integer” value
• the character string "halfInsert" (only available for paired-end experi-

ments)

The default of 0 will not shift any alignments.

orientation sets the required orientation of the alignments relative to the query region in
order to be counted, one of:

• any (default): count alignment on the same and opposite strand
• same : count only alignment on the same strand
• opposite : count only alignment on the opposite strand

useRead For paired-end experiments, selects the read mate whose alignments should be
counted, one of:

• any (default): count all alignments
• first : count only alignments from the first read
• last : count only alignments from the last read

auxiliaryName which bam files to use in an experiments with auxiliary alignments (see Details).

mask If not NULL, a GRanges object with reference regions to be masked, i.e. excluded
from the quantification, such as unmappable or highly repetitive regions (see
Details).

collapseBySample

if TRUE (the default), sum alignment counts from bam files with the same sample
name.

includeSpliced if TRUE (the default), include spliced alignments when counting. A spliced align-
ment is defined as an alignment with a gap in the read of at least 60 bases.

22 qProfile

mapqMin minimal mapping quality of alignments to be included when counting (mapping
quality must be greater than or equal to mapqMin). Valid values are between 0
and 255. The default (0) will include all alignments.

mapqMax maximal mapping quality of alignments to be included when counting (mapping
quality must be less than or equal to mapqMax). Valid values are between 0 and
255. The default (255) will include all alignments.

maxInsertSize Maximal fragment size of the paired-end experiment. This parameter is used if
shift="halfInsert" and will ensure that query regions are made wide enough
to emcompass all alignment pairs whose mid falls into the query region. The
default value is 500 bases.

clObj a cluster object to be used for parallel processing (see ‘Details’).

Details

qProfile is used to count alignments in each sample from a qProject object, relative to their
position in query regions.

Most arguments are identical to the ones of qCount.

The query argument is a GRanges object that defines the regions for the profile. All regions in
query will be aligned to one another at their anchor position, which corresponds to their biological
start position (start(query) for regions on strand “+” or “*”, end(query) for regions on strand
“-”).

This anchor position will be extended (with regard to strand) by the number of bases specified by
upstream and downstream. In the return value, the anchor position will be at position zero.

Regions with identical names in names{query} will be summed, and profiles will be padded with
zeros to accomodate the length of all profiles (max(upstream)+max(downstream)+1).

Value

A list of matrices with length(unique(names(query))) rows with profile names, and max(upstream)+max(downstream)+1
columns indicating relative position.

The first list element is called “coverage” and contains, for each profile and relative position, the
number of overlapping regions that contributed to the profile.

Subsequent list elements contain the alignment counts for individual sequence files (collapseBySample=FALSE)
or samples (collapseBySample=TRUE) in proj.

For projects with allele-specific quantification, i.e. if a file with single nucleotide polymorphisms
was supplied to the snpFile argument of qAlign, there will be three rows instead of one row
with counts per unique region name, with numbers of alignments for Reference, Unknown and
Alternative genotypes (suffixed _R, _U and _A).

Author(s)

Anita Lerch, Dimos Gaidatzis and Michael Stadler

See Also

qCount, qAlign, qProject, makeCluster from package parallel

qProject-class 23

Examples

copy example data to current working directory
file.copy(system.file(package="QuasR", "extdata"), ".", recursive=TRUE)

create alignments (single-end experiment)
genomeFile <- "extdata/hg19sub.fa"
sampleFile <- "extdata/samples_chip_single.txt"
proj <- qAlign(sampleFile, genomeFile)

load transcript start site coordinates
library(rtracklayer)
annotationFile <- "extdata/hg19sub_annotation.gtf"
tssRegions <- import.gff(annotationFile, format="gtf",

asRangedData=FALSE,
feature.type="start_codon")

obtain a combined TSS profile
pr1 <- qProfile(proj, tssRegions)
lapply(pr1, dim)
lapply(pr1, "[", , 1:5)

prComb <- do.call("+", lapply(pr1[-1], function(x) x/pr1[[1]]))
barplot(prComb, xlab="Position", ylab="Mean no. of alignments")

obtain TSS profiles for individual regions
names(tssRegions) <- mcols(tssRegions)$transcript_id
pr2 <- qProfile(proj, tssRegions)
lapply(pr2, dim)
lapply(pr2, "[", 1:3, 1:5)

qProject-class qProject objects

Description

The qProject class is a container for the meta-data (e.g. sample names, paths and names of sequence
and alignment files) associated with a high-throughput sequencing experiment analyzed with QuasR.

Details

The qProject class is returned by qAlign and stores all information on a high-throughput sequenc-
ing experiment analyzed with QuasR. qProject objects can be conveniently passed to ‘q’-functions
(function name starting with the letter ‘q’). The information is stored in the following slots:

reads a ’data.frame’ with sequence read files.

reads_md5subsum a ’data.frame’ with fingerprints for sequence read files.

alignments a ’data.frame’ with alignment files.

samplesFormat a ’character(1)’ specifying the format of input files.

24 qProject-class

genome a ’character(1)’ specifying the reference genome.

genomeFormat a ’character(1)’ specifying the format of the reference genome.

aux a ’data.frame’ with auxiliary reference sequence files.

auxAlignments a ’data.frame’ with alignment files for auxiliary reference sequence files.

aligner a ’character(1)’ specifying the aligner.

maxHits a ’numeric(1)’ specifying the maximum number of alignments per sequence.

paired a ’character(1)’ specifying the paired-type; one of "no", "fr", "rf", "ff".

splicedAlignment a ’logical(1)’; TRUE when performing spliced-alignments.

snpFile a ’character(1)’ with a file name containing SNP information.

bisulfite a ’character(1)’ defining the bisulfite type; one of "no", "dir", "undir".

alignmentParameter a ’character(1)’ with aligner command line parameters.

projectName a ’character(1)’ with the project name.

alignmentsDir a ’character(1)’ with the directory to be used to store alignment files.

lib.loc a ’character(1)’ with the library directory to use for installing of alignment index pack-
ages.

cacheDir a ’character(1)’ with a directory to use for temporary files.

alnModeID a ’character(1)’ used internally to indicate the alignment mode.

Accessors

In the following code snippets, x is a qProject object.

length(x): Gets the number of input files.

genome(x): Gets the reference genome as a ’character(1)’. The type of genome is stored as an at-
tribute in attr(genome(x),"genomeFormat"): "BSgenome" indicates that genome(x) refers
to the name of a BSgenome package, "file" indicates that it contains the path and filename of
a genome in FASTA format.

auxiliaries(x): Gets a data.frame with auxiliary target sequences, with one row per auxiliary
target, and columns "FileName" and "AuxName".

alignments(x): Gets a list with two elements "genome" and "aux". alignments(x)$genome
contains a data.frame with length(x) rows and the columns "FileName" (containing the
path to bam files with genomic alignments) and "SampleName". alignments(x)$aux con-
tains a data.frame with one row per auxiliary target sequence (with auxiliary names as row
names), and length(x) columns.

Subsetting

In the following code snippets, x is a qProject object.

x[i]: Get qProject object instance with i input files, where i can be an NA-free logical, numeric,
or character vector.

Author(s)

Anita Lerch, Dimos Gaidatzis and Michael Stadler

qQCReport 25

See Also

qAlign

Examples

copy example data to current working directory
file.copy(system.file(package="QuasR", "extdata"), ".", recursive=TRUE)

create alignments
sampleFile <- "extdata/samples_chip_single.txt"
genomeFile <- "extdata/hg19sub.fa"
auxFile <- "extdata/auxiliaries.txt"

proj <- qAlign(sampleFile, genomeFile, auxiliaryFile=auxFile)
proj

alignment statistics using a qProject
alignmentStats(proj)

alignment statistics using bam files
alignmentStats(alignments(proj)$genome$FileName)
alignmentStats(unlist(alignments(proj)$aux))

qQCReport QuasR Quality Control Report

Description

Generate quality control plots for a qProject object or a vector of fasta/fastq/bam files. The avail-
able plot vary depending on the types of available input (fasta, fastq or bam files).

Usage

qQCReport(input, pdfFilename=NULL, chunkSize=1e6L, clObj=NULL, ...)

Arguments

input A vector of files or a qProject object as returned by qAlign

pdfFilename The path and name of a pdf file to store the report. If NULL, the quality control
plots will be generated in separate plotting windows on the standard graphical
device.

chunkSize The number of sequences, sequence pairs (for paired-end data) or alignments
that will be sampled from each data file to collect quality statistics

clObj a cluster object to be used for parallel processing of multiple input files.

... additional arguments that will be passed to the functions generating the individ-
ual quality control plots, see ‘Details’.

26 qQCReport

Details

This function generates quality control plots for all input files or the sequence and alignment files
contained in a qProject object, allowing assessment of the quality of a sequencing experiment.
qQCReport uses functionality from the ShortRead package to collect quality data, and visualizes
the results similarly as the ‘FastQC’ quality control tool from Simon Andrews (see ‘References’
below). It is recommended to create PDF reports (pdfFilename argument), for which the plot
layouts have been optimised.

Some plots will only be generated if the necessary information is available (e.g. base qualities in
fastq sequence files).

The currently available plot types are:

Quality score boxplot shows the distribution of base quality values as a box plot for each position
in the input sequence. The background color (green, orange or red) indicates ranges of high,
intermediate and low qualtities. The plot is available for fastq only (bam files may contain
base quality information, which is however not used here because reads contained in the bam
file, e.g. aligned reads, may not be a representative subsample of all sequenced reads).

Nucleotide frequency plot shows the frequency of A, C, G, T and N bases by position in the read.
The plot is always available.

Duplication level plot shows for each sample the fraction of reads observed at different duplication
levels (e.g. once, two-times, three-times, etc.). In addition, the most frequent sequences
are listed. The plot is available for fasta or fastq files, but not for bam files, again because
contained reads may not be representative for the experiment.

Mapping statistics shows fractions of reads that were (un)mappable to the reference genome. This
plot is available for bam input.

Library complexity shows fractions of unique read(-pair) alignment positions, as a measure of the
complexity in the sequencing library. Please note that this measure is not independent from
the total number of reads in a library, and is best compared between libraries of similar sizes.
This plot is available for bam input.

Mismatch frequency shows the frequency and position (relative to the read sequence) of mis-
matches in the alignments against the reference genome. The plot is available for bam input.

Mismatch types shows the frequency of read bases that caused mismatches in the alignments to the
reference genome, separately for each genome base. This plot is available for bam input.

Fragment size shows the distribution of fragment sizes inferred from aligned read pairs. This plot
is available for paired-end bam input.

One approach to assess the quality of a sample is to compare its control plots to the ones from other
samples and search for relative differences. Special quality measures are expected for certain types
of experiments: A genomic re-sequencing sample with an overrepresentation of T bases may be
suspicious, while such a nucleotide bias is normal for a directed bisulfite-sequencing sample.

Additional arguments can be passed to the internal functions that generate the individual quality
control plots using ...{}:

lmat: a matrix (e.g. matrix(1:12, ncol=2)) used by an internal call to the layout function to
specify the positioning of multiple plot panels on a device page. Individual panels correspond
to different samples.

breaks: a numerical vector (e.g. c(1:10)) defining the bins used by the ‘Duplication level’ plot.

qQCReport 27

Value

The function is called for its side effect of generating quality control plots. It invisibly returns a list
with components that contain the data used to generate each of the QC plots. Available components
are (depending on input data, see ‘Details’ above):

• qualByCycle: quality score boxplot

• nuclByCycle: nucleotide frequency plot

• duplicated: duplication level plot

• mappings: mapping statistics barplot

• uniqueness: library complexity barplot

• errorsByCycle: mismatch frequency plot

• mismatchTypes: mismatch type plot

• fragDistribution: fragment size distribution plot

Author(s)

Anita Lerch, Dimos Gaidatzis and Michael Stadler

References

FastQC quality control tool at http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc/

See Also

qProject, qAlign, ShortRead package

Examples

copy example data to current working directory
file.copy(system.file(package="QuasR", "extdata"), ".", recursive=TRUE)

create alignments
sampleFile <- "extdata/samples_chip_single.txt"
genomeFile <- "extdata/hg19sub.fa"

proj <- qAlign(sampleFile, genomeFile)

create quality control report
qQCReport(proj, pdfFilename="qc_report.pdf")

http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc/

Index

∗Topic methods
qQCReport, 25

∗Topic misc
alignmentStats, 2
preprocessReads, 3
qAlign, 6
qCount, 10
qMeth, 17
qProfile, 20

∗Topic package
QuasR-package, 2

∗Topic utilites
qExportWig, 15

∗Topic utilities
alignmentStats, 2
preprocessReads, 3
qAlign, 6
qCount, 10
qMeth, 17
qProfile, 20

[,qProject,ANY,ANY-method
(qProject-class), 23

alignments (qProject-class), 23
alignments,qProject-method

(qProject-class), 23
alignmentStats, 2
auxiliaries (qProject-class), 23
auxiliaries,qProject-method

(qProject-class), 23

class:qProject (qProject-class), 23
clusterApplyLB, 19
clusterMap, 5, 13

genome,qProject-method
(qProject-class), 23

GRanges, 10–13, 21, 22
GRangesList, 10, 12

length,qProject-method
(qProject-class), 23

makeCluster, 5, 6, 9, 13, 14, 19, 20, 22

parallel, 8
preprocessReads, 3

qAlign, 2, 6, 10, 13, 14, 17, 18, 20–23, 25, 27
qCount, 2, 10, 22
qExportWig, 15
qMeth, 2, 17
qProfile, 2, 20
qProject, 3, 9, 10, 14, 17, 21, 22, 27
qProject (qProject-class), 23
qProject-class, 23
qQCReport, 2, 25
QuasR (QuasR-package), 2
QuasR-package, 2

Rbowtie, 7, 9

ShortRead, 27
show,qProject-method (qProject-class),

23

trimLRPatterns, 5, 6
TxDb, 10, 12

28

	QuasR-package
	alignmentStats
	preprocessReads
	qAlign
	qCount
	qExportWig
	qMeth
	qProfile
	qProject-class
	qQCReport
	Index

