Package ‘ChlIPpeakAnno’

October 8, 2015

Type Package

Title Batch annotation of the peaks identified from either ChIP-seq,
ChIP-chip experiments or any experiments resulted in large
number of chromosome ranges.

Version 3.2.2
Date 2015-03-12

Author Lihua Julie Zhu, Jianhong Ou, Herve Pages, Claude Gazin,
Nathan Lawson, Ryan Thompson, Simon Lin, David Lapointe and
Michael Green

Maintainer
Lihua Julie Zhu <julie.zhu@umassmed.edu>, Jianhong Ou <Jianhong.ou@umassmed.edu>

Depends R (>=2.10), grid, VennDiagram, biomaRt, IRanges, Biostrings,
GenomicRanges

Imports BiocGenerics (>= 0.1.0), GO.db, BSgenome, GenomicFeatures,
AnnotationDbi, limma, multtest, RBGL, graph, Bioclnstaller,
stats

Suggests reactome.db, BSgenome.Ecoli. NCBI.20080805, org.Ce.eg.db,
org.Hs.eg.db, BSgenome.Celegans.UCSC.cel0,
BSgenome.Drerio.UCSC.danRer7,
TxDb.Hsapiens.UCSC.hg19.knownGene,
TxDb.Hsapiens.UCSC.hg38.knownGene, gplots, RUnit, BiocStyle,
rtracklayer

Description The package includes functions to retrieve the sequences
around the peak, obtain enriched Gene Ontology (GO) terms, find
the nearest gene, exon, miRNA or custom features such as most
conserved elements and other transcription factor binding sites
supplied by users. Starting 2.0.5, new functions have been
added for finding the peaks with bi-directional promoters with
summary statistics (peaksNearBDP), for summarizing the
occurrence of motifs in peaks (summarizePatternInPeaks) and for
adding other IDs to annotated peaks or enrichedGO (addGenelDs).
This package leverages the biomaRt, IRanges, Biostrings,
BSgenome, GO.db, multtest and stat packages

1

2 R topics documented:

License GPL (>=2)
LazyLoad yes
biocViews Annotation, ChIPSeq, ChIPchip

NeedsCompilation no

R topics documented:

ChIPpeakAnno-package e 3
addAnCestors e 4
addGenelIDs e 5
annotatedPeako 7
annotatePeakInBatch oL o 8
assignChromosomeRegion 11
BED2RangedData. e e e 13
binOverFeature e 14
ChIPpeakAnno-deprecated 15
condenseMatrixByColnames 16
convert2EntrezID 17
countPatternInSeqs L. 18
egOrgMap e e 19
enrichedGO L e 19
ExonPlusUtrhuman.GRCh37 21
findOverlappingPeaks 22
findOverlapsOfPeaks e 24
findVennCounts 25
getAllPeakSequence 26
GEtANNOLAtIONl e e e e 27
getEnrichedGOo 28
getEnrichedPATH 30
getVennCounts 32
GFF2RangedData e 33
makeVennDiagram 34
myPeakList 36
Peaks.Stel2.Replicatel o 37
Peaks.Stel2.Replicate2 37
Peaks.Stel2.Replicate3 L 38
peaksNearBDP 39
summarizePatternInPeaks L L L 41
toGRanges e 42
translatePattern L. L. e e e 43
TSS.human.GRCh37 e 44
TSS.human.GRCh38 44
TSS.human.NCBI36 45
TSS.mouse. GRCm38 e 46
TSS.mouse. NCBIM37 e 46
TSSratRGSC3.4 o e 47

TSS.rat.Rnor 5.0 e 48

ChIPpeakAnno-package 3

TSS.zebrafish.Zv8 e 48
TSS.zebrafish.ZvO e 49
write2FASTA e 50
Index 51

ChIPpeakAnno-package Batch annotation of the peaks identified from either ChIP-seq or ChIP-
chip experiments.

Description

The package includes functions to retrieve the sequences around the peak, obtain enriched Gene On-
tology (GO) terms, find the nearest gene, exon, miRNA or custom features such as most conserved
elements and other transcription factor binding sites leveraging biomaRt, IRanges, Biostrings, BSgenome,
GO.db, hypergeometric test phyper and multtest package.

Details
Package: ChIPpeakAnno
Type: Package
Version: 3.0.0
Date: 2014-10-24
License: LGPL
LazyLoad: yes

Author(s)

Lihua Julie Zhu, Jianhong Ou, Herve Pages, Claude Gazin, Nathan Lawson, Simon Lin, David
Lapointe and Michael Green

Maintainer: Jianhong Ou <jianhong.ou@umassmed.edu>, Lihua Julie Zhu <julie.zhu @umassmed.edu>

References

1. Y. Benjamini and Y. Hochberg (1995). Controlling the false discovery rate: a practical and pow-
erful approach to multiple testing. J. R. Statist. Soc. B. Vol. 57: 289-300.

2. Y. Benjamini and D. Yekutieli (2001). The control of the false discovery rate in multiple hypoth-
esis testing under dependency. Annals of Statistics. Accepted.

3. S. Durinck et al. (2005) BioMart and Bioconductor: a powerful link between biological biomarts
and microarray data analysis. Bioinformatics, 21, 3439-3440.

4. S. Dudoit, J. P. Shaffer, and J. C. Boldrick (Submitted). Multiple hypothesis testing in microarray
experiments.

5. Y. Ge, S. Dudoit, and T. P. Speed. Resampling-based multiple testing for microarray data hy-
pothesis, Technical Report #633 of UCB Stat. http://www.stat.berkeley.edu/~gyc

4 addAncestors

6. Y. Hochberg (1988). A sharper Bonferroni procedure for multiple tests of significance, Biometrika.
Vol. 75: 800-802.

7. S. Holm (1979). A simple sequentially rejective multiple test procedure. Scand. J. Statist.. Vol.
6: 65-70.

8. N. L. Johnson,S. Kotz and A. W. Kemp (1992) Univariate Discrete Distributions, Second Edition.
New York: Wiley

9. Zhu LJ. et al. (2010) ChIPpeakAnno: a Bioconductor package to annotate ChIP-seq and ChIP-
chip data. BMC Bioinformatics 2010, 11:237doi:10.1186/1471-2105-11-237.

See Also

getAnnotation, annotatePeakInBatch, getAllPeakSequence, write2FASTA, convert2EntrezID, ad-
dAncestors, getEnrichedGO,BED2RangedData, GFF2RangedData, makeVennDiagram,findOverlappingPeaks,
addGenelDs, peaksNearBDP,summarizePatternInPeaks)

Examples

data(myPeakList)

data(TSS.human.NCBI36)

annotatedPeak <- annotatePeakInBatch(myPeakList[1:6],
AnnotationData=TSS.human.NCBI36)

addAncestors Add GO ids of the ancestors for a given vector of GO ids

Description

Add GO ids of the ancestors for a given vector of GO ids leveraging GO.db package

Usage

addAncestors(go.ids, ontology = c("bp”, "cc", "mf"))

Arguments
go.ids matrix with 4 columns: first column is GO IDs and 4th column is entrez IDs.
ontology bp for biological process, cc for cellular component and mf for molecular func-
tion
Value

a vector of GO IDs containing the input GO IDs with the GO IDs of their ancestors added

Author(s)
Lihua Julie Zhu

addGenelDs 5

Examples
go.ids = cbind(c("G0:0008150", "GO:0005576", "G0O:0003674"),c("ND", "IDA", "ND"),
C(IIBP"y IIBPII’ IIBPII), C(IV—III, II‘IIIy II-III))
addAncestors(go.ids, ontology="bp")

addGenelIDs Add common IDs to annotated peaks such as gene symbol, entrez ID,
ensemble gene id and refseq id.

Description

Add common IDs to annotated peaks such as gene symbol, entrez ID, ensemble gene id and
refseq id leveraging organism annotation dataset! For example, org.Hs.eg.db is the dataset from
orgs.Hs.eg.db package for human, while org.Mm.eg.db is the dataset from the org.Mm.eg.db pack-
age for mouse

Usage

addGeneIDs(annotatedPeak, orgAnn, IDs2Add=c("symbol”),
feature_id_type="ensembl_gene_id", silence=TRUE, mart)

Arguments

annotatedPeak RangedData or GRanges such as data(annotatedPeak) or a vector of feature IDs
orgAnn organism annotation dataset such as org.Hs.eg.db

IDs2Add a vector of annotation identifiers to be added
feature_id_type

type of ID to be annotated

silence TRUE or FALSE. If TRUE, will not show unmapped entrez id for feature ids.
mart mart object, see useMart of biomaRt package for details
Details

One of orgAnn and mart should be assigned.

* When orgAnn is given, parameter feature_id_type should be ensemble_gene_id, entrez_id,
gene_symbol, gene_alias or refseq_id. And parameter IDs2Add can be set to any com-
bination of identifiers such as "accnum", "ensembl”, "ensemblprot”, "ensembltrans”, "en-
trez_id", "enzyme", "genename", "pfam", "pmid", "prosite", "refseq", "symbol", "unigene"
and "uniprot". Some IDs are unique to a organism, such as "omim" for org.Hs.eg.db and
"mgi" for org.Mm.eg.db.

Here is the definition of different IDs :
— accnum: GenBank accession numbers
— ensembl: Ensembl gene accession numbers
— ensemblprot: Ensembl protein accession numbers

ensembltrans: Ensembl transcript accession numbers
entrez_id: entrez gene identifiers
enzyme: EC numbers

genename: gene name

pfam: Pfam identifiers

pmid: PubMed identifiers

prosite: PROSITE identifiers
refseq: RefSeq identifiers

symbol: gene abbreviations
unigene: UniGene cluster identifiers
uniprot: Uniprot accession numbers

omim: OMIM(Mendelian Inheritance in Man) identifiers

mgi: Jackson Laboratory MGI gene accession numbers

addGenelDs

* When mart is used instead of orgAnn, for valid parameter feature_id_type and IDs2Add pa-
rameters, Please refer to getBM in bioMart package. Parameter feature_id_type should be
one valid filter name listed by listFilters(mart) and valid attributes name listed by listAt-
tributes(mart) such as ensemble_gene_id. And parameter IDs2Add should be one or more
valid attributes name listed by listAttributes(mart) such as external_gene_id, entrezgene, wiki-
gene_name, mirbase_transcript_name.

Value

RangedData if the input is a RangedData or dataframe with added IDs if input is a character vector.

Author(s)

Jianhong Ou, Lihua Julie Zhu

References

http://www.bioconductor.org/packages/release/data/annotation/

See Also

getBM, AnnotationDbi

Examples

data(annotatedPeak)
library(org.Hs.eg.db)
addGenelIDs(annotatedPeak[1:6,],orgAnn="org.Hs.eg.db", IDs2Add=c("symbol"”, "omim"))
addGeneIDs(annotatedPeak$feature[1:6],orgAnn="org.Hs.eg.db",IDs2Add=c("symbol”, "genename"))
if(interactive()){
mart <- useMart("ENSEMBL_MART_ENSEMBL", host="www.ensembl.org" 6 dataset="hsapiens_gene_ensembl")

##mart <- useMart(biomart="ensembl”,6 dataset="hsapiens_gene_ensembl")

addGeneIDs(annotatedPeak[1:6,],mart=mart,IDs2Add=c("hgnc_symbol”, "entrezgene"))

}

annotatedPeak 7

annotatedPeak Annotated Peaks

Description

TSS annotated putative STAT 1-binding regions that are identified in un-stimulated cells using ChIP-
seq technology (Robertson et al., 2007)

Usage

data(annotatedPeak)

Format

GRanges with slot start holding the start position of the peak, slot end holding the end position
of the peak, slot names holding the id of the peak, slot strand holding the strands and slot space
holding the chromosome location where the peak is located. In addition, the following variables are
included.

feature id of the feature such as ensembl gene ID

insideFeature upstream: peak resides upstream of the feature; downstream: peak resides down-
stream of the feature; inside: peak resides inside the feature; overlapStart: peak overlaps with
the start of the feature; overlapEnd: peak overlaps with the end of the feature; includeFeature:
peak include the feature entirely

distancetoFeature distance to the nearest feature such as transcription start site
start_position start position of the feature such as gene

end_position end position of the feature such as the gene

Details

obtained by data(TSS.human.GRCh37) data(myPeakList) annotatePeakInBatch (myPeakList, An-
notationData = TSS.human.GRCh37, output="b",,multiple=F)

Examples

data(annotatedPeak)

str(annotatedPeak)

if (interactive()) {

y = annotatedPeak$distancetoFeature[!is.na(annotatedPeak$distancetoFeature)]
hist(as.numeric(as.character(y)), xlab="Distance To Nearest TSS"”, main="", breaks=1000,
ylim=c(@, 50), xlim=c(min(as.numeric(as.character(y)))-100,
max(as.numeric(as.character(y)))+100))

3

8 annotatePeakInBatch

annotatePeakInBatch obtain the distance to the nearest TSS, miRNA, exon et al for a list of
peak intervals

Description

obtain the distance to the nearest TSS, miRNA, exon et al for a list of peak locations leveraging
IRanges and biomaRt package

Usage

annotatePeakInBatch(myPeakList, mart, featureType = c("TSS", "miRNA","Exon"),

AnnotationData,output=c("nearestLocation”, "overlapping"”, "both",
"shortestDistance”, "inside",
"upstream&inside”, "inside&downstream",
"upstream”, "downstream"”,
"upstreamORdownstream”),

multiple=c(TRUE,FALSE),

maxgap=0L, PeaklLocForDistance = c("start”, "middle”, "end"),

FeatureLocForDistance = c("TSS"”, "middle”,"start”, "end","geneEnd"),

select=c("all"”, "first"”,"last”,"arbitrary"),

ignore.strand=TRUE)

Arguments
myPeakList An object of GRanges or RangedData: See example below
mart used if AnnotationData not supplied, a mart object, see useMart of bioMaRt

package for details
featureType used if AnnotationData not supplied, TSS, miRNA or exon

AnnotationData annotation data obtained from getAnnotation or customized annotation of class
RangedData or GRanges containing additional variable: strand (1 or + for plus
strand and -1 or - for minus strand). For example, data(TSS.human.NCBI36),data(TSS.mouse. NCBIM37)
data(TSS.rat. RGSC3.4) and data(TSS.zebrafish.Zv8) . If not supplied, then an-
notation will be obtained from biomaRt automatically using the parameters of
mart and featureType

output nearestLocation (default): will output the nearest features calculated as Peak-
LocForDistance - FeatureLocForDistance; overlapping: will output overlapping
features with maximum gap specified as maxgap between peak range and fea-
ture range; shortestDistance: will output nearest features; both: will output all
the nearest features, in addition, will output any features that overlap the peak
that is not the nearest features. upstream&inside: will output all upstream and
overlapping features with maximum gap. inside&downstream: will output all
downstream and overlapping features with maximum gap. upstream: will output
all upstream features with maximum gap. downstream: will output all down-
stream features with maximum gap. upstreamORdownstream: will output all
upstream features with maximum gap or downstream with maximum gap.

annotatePeakInBatch 9
multiple not applicable when output is nearest. TRUE: output multiple overlapping fea-
tures for each peak. FALSE: output at most one overlapping feature for each
peak. This parameter is kept for backward compatibility, please use select.
maxgap Non-negative integer. Intervals with a separation of maxgap or less are consid-
ered to be overlapping
PeakLocForDistance

Specify the location of peak for calculating distance,i.e., middle means using
middle of the peak to calculate distance to feature, start means using start of
the peak to calculate the distance to feature. To be compatible with previous
version, by default using start

FeatureLocForDistance

select

ignore.strand

Value

Specify the location of feature for calculating distance,i.e., middle means using
middle of the feature to calculate distance of peak to feature, start means using
start of the feature to calculate the distance to feature, TSS means using start
of feature when feature is on plus strand and using end of feature when feature
is on minus strand, geneEnd means using end of feature when feature is on
plus strand and using start of feature when feature is on minus strand. To be
compatible with previous version, by default using TSS

all may return multiple overlapping peaks, first will return the first overlapping
peak, last will return the last overlapping peak and arbitrary will return one of
the overlapping peaks.

When set to TRUE, the strand information is ignored in the annotation.

An object of GRanges or RangedData (depend on what you input) with slot start holding the start
position of the peak, slot end holding the end position of the peak, slot space holding the chromo-
some location where the peak is located, slot rownames holding the id of the peak. In addition, the
following variables are included.

feature id of the feature such as ensembl gene ID

insideFeature upstream: peak resides upstream of the feature; downstream: peak resides down-
stream of the feature; inside: peak resides inside the feature; overlapStart: peak
overlaps with the start of the feature; overlapEnd: peak overlaps with the end of
the feature; includeFeature: peak include the feature entirely

distancetoFeature

start_position

end_position

distance to the nearest feature such as transcription start site. By default, the
distance is calculated as the distance between the start of the binding site and the
TSS that is the gene start for genes located on the forward strand and the gene
end for genes located on the reverse strand. The user can specify the location of
peak and location of feature for calculating this

start position of the feature such as gene

end position of the feature such as the gene

strand 1 or + for positive strand and -1 or - for negative strand where the feature is
located
shortestDistance

The shortest distance from either end of peak to either end the feature.

10 annotatePeakInBatch

fromOverlappingOrNearest
nearest: indicates this feature’s start (feature’s end for features at minus strand)
is closest to the peak start; Overlapping: indicates this feature overlaps with this
peak although it is not the nearest feature start

Author(s)
Lihua Julie Zhu, Jianhong Ou

References

Zhu L.J. et al. (2010) ChIPpeakAnno: a Bioconductor package to annotate ChIP-seq and ChIP-chip
data. BMC Bioinformatics 2010, 11:237d0i:10.1186/1471-2105-11-237

See Also

findOverlappingPeaks, makeVennDiagram, addGenelDs, peaksNearBDP, summarizePatternInPeaks
Examples

#if (interactive()){
example 1: annotate myPeakList (RangedData)
with TSS.human.NCBI36 (RangedData)
data(myPeakList)
data(TSS.human.NCBI36)
annotatedPeak = annotatePeakInBatch(myPeakList[1:6,],
AnnotationData=TSS.human.NCBI36)
annotatedPeak

example 2: you have a list of transcription factor biding sites from
literature and are interested in determining the extent of the overlap
to the list of peaks from your experiment. Prior calling the function
annotatePeakInBatch, need to represent both dataset as RangedData

where start is the start of the binding site, end is the end of the

binding site, names is the name of the binding site, space and strand
are the chromosome name and strand where the binding site is located.

myexp <- GRanges(seqnames=c(6,6,6,6,5,4,4),
IRanges(start=c(1543200,1557200,1563000, 1569800,
167889600,100,1000),
end=c (1555199, 1560599 ,1565199, 1573799,
167893599, 200,1200),
names=c("p1”,"p2","p3","p4","p5","p6", "p7")),
strand="+")
literature <- GRanges(seqnames=c(6,6,6,6,5,4,4),
IRanges(start=c(1549800, 1554400, 1565000, 1569400,
167888600,120,800),
end=c(1550599,1560799,1565399,1571199,
167888999, 140,1400),
names=c("f1","f2","f3","f4" "f5","f6", "f71")),
strand=rep(c("+", "=-"), c(5, 2)))

assignChromosomeRegion 11

#}

annotatedPeakl <- annotatePeakInBatch(myexp,
AnnotationData=literature)
pie(table(annotatedPeakl$insideFeature))
annotatedPeakl
use toGRanges or rtracklayer::import to convert BED or GFF format
to GRanges before calling annotatePeakInBatch
test.bed <- data.frame(space=c("4", "6"),
start=c("100", "1000"),
end=c("200", "1100"),
name=c("peakl1”, "peak2"))
test.GR = toGRanges(test.bed)
annotatePeakInBatch(test.GR, AnnotationData = literature)

assignChromosomeRegion

Summarizing peak distribution over exon, intron, enhancer, proximal
promoter, 5 prime UTR and 3 prime UTR

Description

Summarizing peak distribution over exon, intron, enhancer, proximal promoter, 5 prime UTR and
3 prime UTR

Usage

assignChromosomeRegion(peaks.RD, exon, TSS, utr5, utr3,

proximal.promoter.cutoff=1000L, immediate.downstream.cutoff=1000L,
nucleotidelLevel=FALSE, precedence=NULL, TxDb=NULL)

Arguments

peaks.RD peaks in RangedData or GRanges: See example below

exon exon data obtained from getAnnotation or customized annotation of class Ranged-
Data containing additional variable: strand (1 or + for plus strand and -1 or - for
minus strand). Will not use anymore! use TxDb instead.

TSS TSS data obtained from getAnnotation or customized annotation of class Ranged-
Data containing additional variable: strand (1 or + for plus strand and -1 or - for
minus strand). For example, data(TSS.human.NCBI36),data(TSS.mouse.NCBIM37),
data(TSS.rat. RGSC3.4) and data(TSS.zebrafish.Zv8). Will not use anymore!
use TxDb instead.

utrb 5 prime UTR data obtained from getAnnotation or customized annotation of
class RangedData containing additional variable: strand (1 or + for plus strand
and -1 or - for minus strand). Will not use anymore! use TxDb instead.

utr3 3 prime UTR data obtained from getAnnotation or customized annotation of

class RangedData containing additional variable: strand (1 or + for plus strand
and -1 or - for minus strand). Will not use anymore! use TxDb instead.

12

assignChromosomeRegion

proximal.promoter.cutoff

Specify the cutoff in bases to be classified as proximal promoter region. Peaks
that reside within proximal.promoter.cutoff upstream from or overlap with tran-
scription start site are classified as proximal promoters. Peaks that reside up-
stream over proximal.promoter.cutoff from gene start are classified as enhancers.
The default is 1000 bases.

immediate.downstream.cutoff

nucleotidelLevel

Specify the cutoff in bases to be classified as immediate downstream. Peaks
that reside within immediate.downstream.cutoff downstream of gene end but not
overlap 3 prime UTR are classified as immediate downstream. Peaks that reside
downstream over immediate.downstreatm.cutoff from gene end are classified as
enhancers. The default is 1000 bases.

NucleotideLevel (TRUE or FALSE) to allow both peak centric and nucleotide
centric view. Default=FALSE

precedence If no precedence specified, double count will be enabled, which means that if
a peak overlap with both promoter and 5’UTR, then both promoter and 5’UTR
will be incremented. If a precedence order is specified, for example, if pro-
moter is specified before 5’UTR, then only promoter will be incremented for
the same example. The values could be any conbinations of "Promoters", "im-
mediateDownstream", "fiveUTRs", "threeUTRs", "Exons" and "Introns", De-
fault=NULL

TxDb an object of TxDb

Value

jaccard Jaccard Index

Exons Percent of peaks reside in exon regions.

Introns Percent of peaks reside in intron regions.

fiveUTRs Percent of peaks reside in 5 prime UTR regions.

threeUTRs Percent of peaks reside in 3 prime UTR regions.

Promoter Percent of peaks reside in proximal promoter regions.

ImmediateDownstream

Percent of peaks reside in immediate downstream regions.

Enhancer.Silencer

queryHits

Author(s)

Percent of peaks reside in enhancer/silencer regions.

GRanges of hitted in each regions.

Jianhong Ou, Lihua Julie Zhu

References

Zhu L.J. et al. (2010) ChIPpeakAnno: a Bioconductor package to annotate ChIP-seq and ChIP-chip
data. BMC Bioinformatics 2010, 11:237d0i:10.1186/1471-2105-11-237

BED2RangedData 13

See Also

annotatePeakInBatch, findOverlapsOfPeaks,getEnriched, make VennDiagram,addGenelDs, peaksNearBDP,summarizePatter:

Examples

if (interactive()){
##Display the list of genomes available at UCSC:
#library(rtracklayer)
#ucscGenomes()[, "db"]
Display the list of Tracks supported by makeTranscriptDbFromUCSC()
#supportedUCSCtables()
##Retrieving a full transcript dataset for Human from UCSC
##TranscriptDb <-
#i# makeTranscriptDbFromUCSC(genome="hg19", tablename="ensGene")
if(require(TxDb.Hsapiens.UCSC.hg19.knownGene)){
TxDb <- TxDb.Hsapiens.UCSC.hg19.knownGene
exons <- exons(TxDb, columns=NULL)
fiveUTRs <- unique(unlist(fiveUTRsByTranscript(TxDb)))
Feature.distribution <-
assignChromosomeRegion(exons, nucleotidelLevel=TRUE, TxDb=TxDb)
barplot(Feature.distribution$percentage)
assignChromosomeRegion(fiveUTRs, nucleotidelLevel=FALSE, TxDb=TxDb)
data(myPeakList)
assignChromosomeRegion(myPeaklList, nucleotidelLevel=TRUE,
precedence=c("Promoters”, "immediateDownstream”,
"fiveUTRs", "threeUTRs",
"Exons"”, "Introns"),
TxDb=TxDb)

BED2RangedData convert BED format to RangedData

Description

convert BED format to RangedData

Usage
BED2RangedData(data.BED, header=FALSE, ...)
Arguments
data.BED BED format data frame or BED filename, please refer to http://genome.ucsc.edu/FAQ/FAQformat#format
for details
header TRUE or FALSE, default to FALSE, indicates whether data.BED file has BED
header

any parameter need to be passed into read.delim function

14 binOverFeature

Value

RangedData with slot start holding the start position of the feature, slot end holding the end position
of the feature, slot names holding the id of the feature, slot space holding the chromosome location
where the feature is located. In addition, the following variables are included.

strand 1 for positive strand and -1 for negative strand where the feature is located.
Default to 1 if not present in the BED formated data frame
Note
For converting the peakList in BED format to RangedData before calling annotatePeakInBatch
function
Author(s)
Lihua Julie Zhu

Examples

test.bed = data.frame(cbind(chrom = c("1", "2"), chromStart=c("100", "1000"),
chromEnd=c("200", "1100"), name=c("peak1"”, "peak2")))
test.rangedData = BED2RangedData(test.bed)

binOverFeature peak aggregation over bins from TSS

Description

peak aggregation over bins from feature sites.

Usage
binOverFeature(..., annotationData=GRanges(),

select=c("all"”, "nearest"),
radius=5000L, nbins=50L,
minGeneLen=1L, aroundGene=FALSE, mbins=nbins,
featureSite=c("FeatureStart”, "FeatureEnd”, "bothEnd"),
PeakLocForDistance=c("all"”, "end","start”,"middle"),
FUN=sum, xlab, ylab, main)

Arguments

objects of GRanges to be analyzed
annotationData an object of GRanges for annotation
select annotate the peaks to all features or the nearest one

radius radius of the longest distance to feature site

ChIPpeakAnno-deprecated 15

nbins number of bins

minGenelLen minimal gene length

aroundGene count peaks around features or a give site of the features
mbins if aroundGene set as TRUE, the number of bins intra-feature
featureSite which site of features should be used for distance calculation
PeakLocForDistance

which site of peaks should be used for distance calculation

FUN the function to be used for score calculation
xlab titles for each x axis
ylab titles for each y axis
main overall titles for each plot
Value

an object of data.frame with bin values.

Author(s)

Jianhong Ou

Examples

bed <- system.file("extdata”, "MACS_output.bed”, package="ChIPpeakAnno")
grl <- toGRanges(bed, format="BED", header=FALSE)
data(TSS.human.GRCh37)
binOverFeature(grl, annotationData=TSS.human.GRCh37,

radius=5000, nbins=10, FUN=length)

ChIPpeakAnno-deprecated
Deprecated Functions in Package ChlPpeakAnno

Description

These functions are provided for compatibility with older versions of R only, and may be defunct
as soon as the next release.

Usage

findOverlappingPeaks(Peaks1, Peaks2, maxgap = OL,
minoverlap=1L, multiple = c(TRUE, FALSE),
NameOfPeaks1 = "TF1"”, NameOfPeaks2 = "TF2",
select=c("all"”, "first"”,"last”,"arbitrary"),
annotate = 0, ignore.strand=TRUE,
connectedPeaks=c("min", "merge"), ...)

16

Arguments

Peaks1
Peaks2

maxgap

minoverlap

multiple

NameOfPeaks1
NameOfPeaks?2
select

annotate

ignore.strand

connectedPeaks

Details

condenseMatrixByColnames

RangedData: See example below.
RangedData: See example below.

Non-negative integer. Intervals with a separation of maxgap or less are consid-
ered to be overlapping.

Non-negative integer. Intervals with an overlapping of minoverlap or more are
considered to be overlapping.

TRUE or FALSE: TRUE may return multiple overlapping peaks in Peaks2 for
one peak in Peaks1; FALSE will return at most one overlapping peaks in Peaks2
for one peak in Peaksl. This parameter is kept for backward compatibility,
please use select.

Name of the Peaks1, used for generating column name.
Name of the Peaks2, used for generating column name.

all may return multiple overlapping peaks, first will return the first overlapping
peak, last will return the last overlapping peak and arbitrary will return one of
the overlapping peaks.

Include overlapFeature and shortestDistance in the OverlappingPeaks or not. 1
means yes and 0 means no. Default to 0.

When set to TRUE, the strand information is ignored in the overlap calculations.

If multiple peaks involved in overlapping in several groups, set it to "merge"
will count it as only 1, while set it to "min" will count it as the minimal involved
peaks in any concered groups

Objects of GRanges or RangedData: See also findOverlapsOfPeaks.

findOverlappingPeaks is now deprecated wrappers for findOverlapsOfPeaks

See Also

Deprecated, findOverlapsOfPeaks

condenseMatrixByColnames

condense matrix by colnames

Description

condense matrix by colnames

Usage

condenseMatrixByColnames(mx,iname,sep=";",cnt=FALSE)

convert2EntrezID 17

Arguments

mx a matrix to be condensed

iname the name of the column to be condensed

sep separator for condensed values,default ;

cnt TRUE/FALSE specifying whether adding count column or not?
Value

dataframe of condensed matrix

Author(s)
Jianhong Ou, Lihua Julie Zhu

Examples

a<-matrix(c(rep(rep(1:5,2),2),rep(1:10,2)),ncol=4)
colnames(a)<-c("con.1","con.2","index.1","index.2")
condenseMatrixByColnames(a, "con.1")
condenseMatrixByColnames(a,?2)

convert2EntrezID Convert other common IDs such as ensemble gene id, gene symbol,
refseq id to entrez gene ID.

Description

Convert other common IDs such as ensemble gene id, gene symbol, refseq id to entrez gene ID lever-
aging organism annotation dataset! For example, org.Hs.eg.db is the dataset from orgs.Hs.eg.db
package for human, while org.Mm.eg.db is the dataset from the org.Mm.eg.db package for mouse.

Usage

convert2EntrezID(IDs, orgAnn, ID_type="ensembl_gene_id")

Arguments

IDs a vector of IDs such as ensembl gene ids

orgAnn organism annotation dataset such as org.Hs.eg.db

ID_type type of ID: can be ensemble_gene_id, gene_symbol or refseq_id
Value

vector of entrez ids

18 countPatternInSeqs

Author(s)
Lihua Julie Zhu

Examples

ensemblIDs = c("ENSG0O0@0@115956", "ENSGOQ0Q0Q71082", "ENSG0Q000071054",
"ENSG00000115594", "ENSGO0Q0Q115594", "ENSGO000Q115598", "ENSGO0000170417")
library(org.Hs.eg.db)

entrezIDs = convert2EntrezID(IDs=ensemblIDs, orgAnn="org.Hs.eg.db",
ID_type="ensembl_gene_id")

countPatternInSeqgs Output total number of patterns found in the input sequences

Description

Output total number of patterns found in the input sequences

Usage

countPatternInSeqs(pattern, sequences)

Arguments
pattern DNAstringSet object
sequences a vector of sequences
Value

Total number of occurrence of the pattern in the sequences

Author(s)
Lihua Julie Zhu

See Also

summarizePatternInPeaks, translatePattern

Examples

filepath = system.file("extdata”, "examplePattern.fa", package="ChIPpeakAnno")
dict = readDNAStringSet(filepath = filepath, format="fasta", use.names=TRUE)
sequences = c("ACTGGGGGGGGCCTGGGCCCCCAAAT",

" AAAAAACCCCTTTTGGCCATCCCGGGACGGGCCCAT",

"ATCGAAAATTTCC")
countPatternInSegs(pattern=dict[1], sequences=sequences)
countPatternInSeqs(pattern=dict[2], sequences=sequences)
pattern = DNAStringSet ("ATNGMAA")
countPatternInSegs(pattern=pattern, sequences=sequences)

egOrgMap 19

egOrgMap map organism annotation dataset to specie name or revese.

Description
Give a specie name and return the organism annotation dataset name or give a organism annotation
dataset name then return the specie name.

Usage

egOrgMap (name)

Arguments

name organism annotation dataset or the specie name.

Value

a object of character

Author(s)

Jianhong Ou

Examples

egOrgMap(”org.Hs.eg.db")
egOrgMap("Mus musculus"”)

enrichedGO Enriched Gene Ontology terms used as example

Description

Enriched Gene Ontology terms used as example

Usage

data(enrichedGO)

20

Format
A list of 3 variables.

bp enriched biological process with 9 variables
£0.1d:GO biological process id
go.term:GO biological process term
go.Definition: GO biological process description
Ontology: Ontology branch, i.e. BP for biological process
count.InDataset: count of this GO term in this dataset
count.InGenome: count of this GO term in the genome
pvalue: pvalue from the hypergeometric test
totaltermInDataset: count of all GO terms in this dataset
totaltermInGenome: count of all GO terms in the genome

mf enriched molecular function with the following 9 variables
£0.id:GO molecular function id
go.term:GO molecular function term
go.Definition: GO molecular function description
Ontology: Ontology branch, i.e. MF for molecular function
count.InDataset: count of this GO term in this dataset
count.InGenome: count of this GO term in the genome
pvalue: pvalue from the hypergeometric test
totaltermInDataset: count of all GO terms in this dataset
totaltermInGenome: count of all GO terms in the genome

cc enriched cellular component the following 9 variables
£0.id:GO cellular component id
go.term:GO cellular component term
go.Definition: GO cellular component description
Ontology: Ontology type, i.e. CC for cellular component
count.InDataset: count of this GO term in this dataset
count.InGenome: count of this GO term in the genome
pvalue: pvalue from the hypergeometric test
totaltermInDataset: count of all GO terms in this dataset
totaltermInGenome: count of all GO terms in the genome

Author(s)
Lihua Julie Zhu

Examples

data(enrichedGO)

dim(enrichedGO$mf)
dim(enrichedGO$cc)
dim(enrichedGO$bp)

enrichedGO

ExonPlusUtr.human.GRCh37 21

ExonPlusUtr.human.GRCh37

Gene model with exon, 5° UTR and 3’ UTR information for human
sapiens (GRCh37) obtained from biomaRt

Description

Gene model with exon, 5> UTR and 3’ UTR information for human sapiens (GRCh37) obtained
from biomaRt

Usage

data(ExonPlusUtr.human.GRCh37)

Format

RangedData with slot start holding the start position of the exon, slot end holding the end position
of the exon, slot rownames holding ensembl transcript id and slot space holding the chromosome
location where the gene is located. In addition, the following variables are included.

strand 1 for positive strand and -1 for negative strand

description description of the transcript

ensembl_gene_id gene id

utrb5start 5° UTR start

utrbend 5° UTR end

utr3start 3’ UTR start

utr3end 3’ UTR end

Details

used in the examples Annotation data obtained by: mart = useMart(biomart = "ensembl", dataset
= "hsapiens_gene_ensembl") ExonPlusUtr.human.GRCh37 = getAnnotation(mart=human, feature-
Type="ExonPlusUtr")

Examples

data(ExonPlusUtr.human.GRCh37)
slotNames (ExonPlusUtr.human.GRCh37)

22

findOverlappingPeaks

findOverlappingPeaks Find the overlapping peaks for two peak ranges.

Description

Find the overlapping peaks for two input peak ranges.

Usage

findOverlappingPeaks(Peaks1, Peaks2, maxgap = 0L,

minoverlap=1L, multiple = c(TRUE, FALSE),
NameOfPeaks1 = "TF1", NameOfPeaks2 = "TF2",

select=c("all"”, "first","last”,"arbitrary”), annotate = 0,
ignore.strand=TRUE,
connectedPeaks=c("min", "merge"), ...)
Arguments
Peaks1 RangedData: See example below.
Peaks2 RangedData: See example below.
maxgap Non-negative integer. Intervals with a separation of maxgap or less are consid-

ered to be overlapping.

minoverlap Non-negative integer. Intervals with an overlapping of minoverlap or more are

considered to be overlapping.

multiple TRUE or FALSE: TRUE may return multiple overlapping peaks in Peaks2 for

one peak in Peaks1; FALSE will return at most one overlapping peaks in Peaks2
for one peak in Peaksl. This parameter is kept for backward compatibility,
please use select.

NameOfPeaks1 Name of the Peaks], used for generating column name.

NameOfPeaks2 Name of the Peaks2, used for generating column name.

select all may return multiple overlapping peaks, first will return the first overlapping
peak, last will return the last overlapping peak and arbitrary will return one of
the overlapping peaks.

annotate Include overlapFeature and shortestDistance in the OverlappingPeaks or not. 1

means yes and 0 means no. Default to 0.

ignore.strand When set to TRUE, the strand information is ignored in the overlap calculations.

connectedPeaks If multiple peaks involved in overlapping in several groups, set it to "merge"

Details

will count it as only 1, while set it to "min" will count it as the minimal involved
peaks in any concered groups

Objects of GRanges or RangedData: See also findOverlapsOfPeaks.

Efficiently perform overlap queries with an interval tree implemented in IRanges.

findOverlappingPeaks 23

Value
OverlappingPeaks
a data frame consists of input peaks information with added information: over-
lapFeature (upstream: peak|l resides upstream of the peak2; downstream: peakl
resides downstream of the peak2; inside: peakl resides inside the peak2 en-
tirely; overlapStart: peakl overlaps with the start of the peak2; overlapEnd:
peakl overlaps with the end of the peak2; includeFeature: peakl include the
peak?2 entirely) and shortestDistance (shortest distance between the overlapping
peaks)
MergedPeaks RangedData contains merged overlapping peaks
Author(s)
Lihua Julie Zhu
References

l.Interval tree algorithm from: Cormen, Thomas H.; Leiserson, Charles E.; Rivest, Ronald L.;
Stein, Clifford. Introduction to Algorithms, second edition, MIT Press and McGraw-Hill. ISBN 0-
262-53196-8 2.Zhu L.J. et al. (2010) ChIPpeakAnno: a Bioconductor package to annotate ChIP-seq
and ChIP-chip data. BMC Bioinformatics 2010, 11:237doi:10.1186/1471-2105-11-237

See Also

annotatePeakInBatch, makeVennDiagram

Examples

if (interactive())

{

peaks1 = RangedData(IRanges(start=c(1543200,1557200,1563000,1569800,167889600),
end=c(1555199,1560599,1565199,1573799,167893599) ,names=c("p1","p2", "p3", "p4","p5")),
strand=as.integer(1),space=c(6,6,6,6,5))

peaks2 = RangedData(IRanges(start=c(1549800,1554400,1565000,1569400,167888600),
end=c(1550599,1560799,1565399,1571199,167888999) ,names=c("f1","f2","f3","f4" /"f5")),
strand=as.integer(1),space=c(6,6,6,6,5))

t1 =findOverlappingPeaks(peaks1, peaks2, maxgap=1000,

NameOfPeaks1="TF1", NameOfPeaks2="TF2", select="all"”, annotate=1)

r = t1$0verlappingPeaks

pie(table(r$overlapFeature))

as.data.frame(t1$MergedPeaks)

3

24 findOverlapsOfPeaks

findOverlapsOfPeaks Find the overlapping peaks for two or more peak ranges.

Description

Find the overlapping peaks for two or more (less than five) peak ranges.

Usage
findOverlapsOfPeaks(..., maxgap=0L, minoverlap=1L,
ignore.strand=TRUE, connectedPeaks=c("min”, "merge”, "keepAll"))
Arguments
Objects of GRanges or RangedData: See example below.
maxgap Non-negative integer. Intervals with a separation of maxgap or less are consid-
ered to be overlapping.
minoverlap Non-negative integer. Intervals with an overlapping of minoverlap or more are

considered to be overlapping.
ignore.strand When set to TRUE, the strand information is ignored in the overlap calculations.

connectedPeaks If multiple peaks involved in overlapping in several groups, set it to "merge"
will count it as only 1, while set it to "min" will count it as the minimal involved
peaks in any concered groups

Details

Efficiently perform overlap queries with an interval tree implemented in GRanges.

Value

return value is An object of overlappingPeaks.

venn_cnt an object of VennCounts

peaklist a list consists of all overlapping peaks or unique peaks
Author(s)

Jianhong Ou
References

l.Interval tree algorithm from: Cormen, Thomas H.; Leiserson, Charles E.; Rivest, Ronald L.;
Stein, Clifford. Introduction to Algorithms, second edition, MIT Press and McGraw-Hill. ISBN 0-
262-53196-8 2.Zhu L.J. et al. (2010) ChIPpeakAnno: a Bioconductor package to annotate ChIP-seq
and ChIP-chip data. BMC Bioinformatics 2010, 11:237doi:10.1186/1471-2105-11-237

findVennCounts 25

See Also

annotatePeakInBatch, makeVennDiagram, getVennCounts, findOverlappingPeaks

Examples

peaks1 <- GRanges(segnames=c(6,6,6,6,5),
IRanges(start=c(1543200,1557200,1563000,1569800,167889600) ,
end=c(1555199,1560599,1565199,1573799,167893599),
names=c("p1"”,"p2","p3","p4","p5")),
strand="+"
peaks2 <- GRanges(segnames=c(6,6,6,6,5),
IRanges(start=c(1549800,1554400,1565000,1569400,167888600) ,
end=c (1550599, 1560799, 1565399,1571199,167888999),
names=c("f1","f2","f3","f4" /"f5")),
strand="+"
t1 <~ findOverlapsOfPeaks(peaks1, peaks2, maxgap=1000)
makeVennDiagram(t1)
t1$venn_cnt

t1$peaklist
findVennCounts Obtain Venn Counts for Venn Diagram, internal function for makeVen-
nDigram
Description

Obtain Venn Counts for two peak ranges using chromosome ranges or feature field, internal function
for makeVennDigram
Usage
findVennCounts(Peaks, NameOfPeaks, maxgap = OL, minoverlap = 1L,
totalTest, useFeature=FALSE)
Arguments

Peaks RangedDataList: See example below.

NameOfPeaks Character vector to specify the name of Peaks, e.g., c("TF1", "TF2"), this will
be used as label in the Venn Diagram.

maxgap Non-negative integer. Intervals with a separation of maxgap or less are consid-
ered to be overlapping.

minoverlap Non-negative integer. Intervals with an overlapping of minoverlap or more are
considered to be overlapping.

totalTest Numeric value to specify the total number of tests performed to obtain the list
of peaks.

useFeature TRUE or FALSE, default FALSE, true means using feature field in the Ranged-

Data for calculating overlap, false means using chromosome range for calculat-
ing overlap.

26 getAllPeakSequence

Value
p.value hypergeometric testing result
vennCounts vennCounts objects containing counts for Venn Diagram generation, see details
in limma package vennCounts
Note

if (interactive())

peaks1l = RangedData(IRanges(start = ¢(967654, 2010897, 2496704), end = c(967754, 2010997,

2496804), names = c("Sitel", "Site2", "Site3")), space = c¢("1", "2", "3"), strand=as.integer(1), fea-

ture=c("a","b", "c")) peaks2 = RangedData(IRanges(start = c(967659, 2010898, 2496700, 3075866,

3123260), end = (967869, 2011108, 2496920, 3076166, 3123470), names = c("t1", "t2", "t3", "t4",

"t5")), space = c("1", "2", "3", "1", "2"), strand = c(1, 1, -1,-1,1), feature=c("a","c","d","e", "a"))
findVennCounts(RangedDataList(peaks1,peaks2), NameOfPeaks=c("TF1", "TF2"), maxgap=0,total Test=100,
useFeature=FALSE) findVennCounts(RangedDataList(peaks1,peaks2), NameOfPeaks=c("TF1", "TF2"),
maxgap=0,total Test=100, useFeature=TRUE) 

Author(s)
Lihua Julie Zhu

See Also

makeVennDiagram

getAllPeakSequence Obtain genomic sequences around the peaks

Description

Obtain genomic sequences around the peaks leveraging BSgenome and biomaRt package

Usage

getAllPeakSequence(myPeaklList, upstream = 200L, downstream = upstream,
genome, AnnotationData)

Arguments
myPeakList An object of GRanges or RangedData: See example below
upstream upstream offset from the peak start, e.g., 200
downstream downstream offset from the peak end, e.g., 200
genome BSgenome object or mart object. Please refer to available.genomes in BSgenome

package and useMart in bioMaRt package for details
AnnotationData RangedData used if mart object is parsed in which can be obtained from getAn-
notation with featureType="TSS". For example, data(TSS.human.NCBI36), data(TSS.mouse.NCBIM37)
data(GO.rat. RGSC3.4) and data(TSS.zebrafish.Zv8). If not supplied, then anno-
tation will be obtained from biomaRt automatically using the mart object

getAnnotation 27

Value

GRanges or RangedData with slot start holding the start position of the peak, slot end holding
the end position of the peak, slot rownames holding the id of the peak and slot space holding the
chromosome location where the peak is located. In addition, the following variables are included.

upstream upstream offset from the peak start
downstream downstream offset from the peak end
sequence the sequence obtained

Author(s)

Lihua Julie Zhu, Jianhong Ou

References

Durinck S. et al. (2005) BioMart and Bioconductor: a powerful link between biological biomarts
and microarray data analysis. Bioinformatics, 21, 3439-3440.

Examples

use Annotation data from BSgenome
peaks <- GRanges(seqnames=c(”"NC_008253", "NC_010468"),
IRanges(start=c(100, 500), end=c(300, 600),
names=c("peak1”, "peak2")))
library(BSgenome.Ecoli.NCBI.20080805)
seq <- getAllPeakSequence(peaks, upstream=20, downstream=20, genome=Ecoli)
write2FASTA(seq, file="test.fa")

getAnnotation Obtain the TSS, exon or miRNA annotation for the specified species

Description

Obtain the TSS, exon or miRNA annotation for the specified species using biomaRt package

Usage

getAnnotation(mart,
featureType=c("TSS", "miRNA", "Exon”, "5utr"”, "3utr"”, "ExonPlusUtr", "transcript”),
output=c("RangedData”, "GRanges"))

Arguments

mart mart object, see useMart of bioMaRt package for details
featureType TSS, miRNA, Exon, 5’UTR, 3’UTR, transcript or Exon plus UTR
output the class of output data, could be GRanges or RangedData

28 getEnrichedGO

Value

GRanges or RangedData with slot start holding the start position of the feature, slot end holding
the end position of the feature, slot names holding the id of the feature, slot space holding the
chromosome location where the feature is located. In addition, the following variables are included.

strand 1 for positive strand and -1 for negative strand where the feature is located
description description of the feeature such as gene
Note

For featureType of TSS, start is the transcription start site if strand is 1 (plus strand), otherwise, end
is the transcription start site

Author(s)

Lihua Julie Zhu, Jianhong Ou

References

Durinck S. et al. (2005) BioMart and Bioconductor: a powerful link between biological biomarts
and microarray data analysis. Bioinformatics, 21, 3439-3440.

Examples

if (interactive())

{

mart<-useMart(biomart="ensembl”,6 dataset="hsapiens_gene_ensembl")
Annotation = getAnnotation(mart, featureType="TSS")

}

getEnrichedGO Obtain enriched gene ontology (GO) terms that near the peaks

Description

Obtain enriched gene ontology (GO) terms that are near the peaks using GO.db package and GO
gene mapping package such as org.Hs.db.eg to obtain the GO annotation and using hypergeometric
test (phyper) and multtest package for adjusting p-values

Usage

getEnrichedGO(annotatedPeak, orgAnn, feature_id_type="ensembl_gene_id",
maxP=0.01, multiAdj=FALSE, minGOterm=10, multiAdjMethod="")

getEnrichedGO

Arguments

annotatedPeak

orgAnn

feature_id_type

maxP

multiAdj
minGOterm
multiAdjMethod

Value

A list of 3

bp

mf

ccC

29

RangedData or GRanges such as data(annotatedPeak) or a vector of feature IDs

organism annotation package such as org.Hs.eg.db for human and org.Mm.eg.db
for mouse, org.Dm.eg.db for fly, org.Rn.eg.db for rat, org.Sc.eg.db for yeast and
org.Dr.eg.db for zebrafish

the feature type in annotatedPeakRanges such as ensembl_gene_id, refseq_id,
gene_symbol or entrez_id

maximum p-value to be considered to be significant
Whether apply multiple hypothesis testing adjustment, TURE or FALSE
minimum count in a genome for a GO term to be included

multiple testing procedures, for details, see mt.rawp2adjp in multtest package

enriched biological process with the following 9 variables
£0.id:GO biological process id

go.term:GO biological process term

go.Definition:GO biological process description
Ontology: Ontology branch, i.e. BP for biological process
count.InDataset: count of this GO term in this dataset
count.InGenome: count of this GO term in the genome
pvalue: pvalue from the hypergeometric test
totaltermInDataset: count of all GO terms in this dataset
totaltermInGenome: count of all GO terms in the genome

enriched molecular function with the following 9 variables
£0.id:GO molecular function id

go.term:GO molecular function term

go.Definition:GO molecular function description
Ontology: Ontology branch, i.e. MF for molecular function
count.InDataset: count of this GO term in this dataset
count.InGenome: count of this GO term in the genome
pvalue: pvalue from the hypergeometric test
totaltermInDataset: count of all GO terms in this dataset
totaltermInGenome: count of all GO terms in the genome

enriched cellular component the following 9 variables
£0.id:GO cellular component id

go.term:GO cellular component term

go.Definition:GO cellular component description
Ontology: Ontology type, i.e. CC for cellular component
count.InDataset: count of this GO term in this dataset

30 getEnrichedPATH

count.InGenome: count of this GO term in the genome
pvalue: pvalue from the hypergeometric test
totaltermInDataset: count of all GO terms in this dataset
totaltermInGenome: count of all GO terms in the genome

Author(s)
Lihua Julie Zhu

References

Johnson, N. L., Kotz, S., and Kemp, A. W. (1992) Univariate Discrete Distributions, Second Edition.
New York: Wiley

See Also

phyper, hyperGtest

Examples

data(enrichedGO0)

enrichedGO$mf[1:10,]

enrichedGO$bp[1:10,]

enrichedGO$cc

if (interactive()) {

data(annotatedPeak)

library(org.Hs.eg.db)

enriched.GO = getEnrichedGO(annotatedPeak[1:6,], orgAnn="org.Hs.eg.db", maxP=0.01,
multiAdj=FALSE, minGOterm=10, multiAdjMethod="")
dim(enriched.GO$mf)

colnames(enriched.GO$mf)

dim(enriched.G0O$bp)

enriched.GO0$cc

getEnrichedPATH Obtain enriched PATH that near the peaks

Description

Obtain enriched PATH that are near the peaks using path package such as reactome.db and path
mapping package such as org.Hs.db.eg to obtain the path annotation and using hypergeometric test
(phyper) and multtest package for adjusting p-values

Usage

getEnrichedPATH(annotatedPeak, orgAnn, pathAnn, feature_id_type="ensembl_gene_id",
maxP=0.01, minPATHterm=1@, multiAdjMethod=NULL)

getEnrichedPATH 31

Arguments

annotatedPeak RangedData or GRanges such as data(annotatedPeak) or a vector of feature IDs

orgAnn organism annotation package such as org.Hs.eg.db for human and org. Mm.eg.db
for mouse, org.Dm.eg.db for fly, org.Rn.eg.db for rat, org.Sc.eg.db for yeast and
org.Dr.eg.db for zebrafish

pathAnn pathway annotation package such as KEGG.db, reactome.db

feature_id_type
the feature type in annotatedPeakRanges such as ensembl_gene_id, refseq_id,
gene_symbol or entrez_id

maxP maximum p-value to be considered to be significant
minPATHterm minimum count in a genome for a path to be included

multiAdjMethod multiple testing procedures, for details, see mt.rawp2ad;jp in multtest package

Value

A dataframe of enriched path with the following variables.

path.id KEGG PATH ID

EntrezID Entrez ID
count.InDataset
count of this PATH in this dataset

count.InGenome count of this PATH in the genome

pvalue pvalue from the hypergeometric test
totaltermInDataset
count of all PATH in this dataset
totaltermInGenome
count of all PATH in the genome
PATH PATH name
Author(s)
Jianhong Ou
References

Johnson, N. L., Kotz, S., and Kemp, A. W. (1992) Univariate Discrete Distributions, Second Edition.
New York: Wiley

See Also

phyper, hyperGtest

32

Examples

getVennCounts

if (interactive()) {

data(annotatedPeak)

library(org.Hs.eg.db)

library(reactome.db)

enriched.PATH = getEnrichedPATH(annotatedPeak, orgAnn="org.Hs.eg.db",

pathAnn="reactome.db"”, maxP=0.01,
minPATHterm=10, multiAdjMethod=NULL)

head(enriched.PATH)

}

getVennCounts

Obtain Venn Counts for Venn Diagram, internal function for makeVen-
nDigram

Description

Obtain Venn Counts for peak ranges using chromosome ranges or feature field, internal function for

makeVennDigram

Usage

getVennCounts(.

.., maxgap = OL, minoverlap=1L, by=c("region”, "feature”, "base"),

ignore.strand=TRUE, connectedPeaks=c("min", "merge", "keepAll"”))

Arguments

maxgap

minoverlap

by

ignore.strand

connectedPeaks

Value

vennCounts

Objects of GRanges or RangedData: See example below.

Non-negative integer. Intervals with a separation of maxgap or less are consid-
ered to be overlapping.

Non-negative integer. Intervals with an overlapping of minoverlap or more are
considered to be overlapping.

region, feature or base, default region. feature means using feature field in the
RangedData or GRanges for calculating overlap, region means using chromo-
some range for calculating overlap, and base means using calculating overlap in
nucleotide level.

When set to TRUE, the strand information is ignored in the overlap calculations.

If multiple peaks involved in overlapping in several groups, set it to "merge"
will count it as only 1, while set it to "min" will count it as the minimal involved
peaks in any concered groups

vennCounts objects containing counts for Venn Diagram generation, see details
in limma package vennCounts

GFF2RangedData 33

Author(s)

Jianhong Ou

See Also

makeVennDiagram, findOverlappingPeaks

Examples

if(interactive()){
peaks1 = RangedData(IRanges(start = c(967654, 2010897, 2496704),
end = c(967754, 2010997, 2496804),
names = c("Sitel"”, "Site2", "Site3")),
space = c("1", "2", "3"),
strand=as.integer(1),
feature=c("a","b", "c"))
peaks2 = RangedData(IRanges(start=c(967659, 2010898, 2496700, 3075866, 3123260),
end=c(967869, 2011108, 2496920, 3076166, 3123470),
names = c("t1", "t2", "t3", "t4", "t5")),
space = c("1", "2", "3", "1", "2"),
strand = c(1, 1, -1,-1,1),
feature=c("a","c","d","e", "a"))
getVennCounts(peaks1,peaks2, maxgap=0)
getVennCounts(peaks1,peaks2, maxgap=0, by="feature")
getVennCounts(peaks1, peaks2, maxgap=0, by="base")
3

GFF2RangedData convert GFF format to RangedData

Description

convert GFF format to RangedData

Usage
GFF2RangedData(data.GFF,header=FALSE, ...)
Arguments
data.GFF GFF format data frame or GFF file name, please refer to http://genome.ucsc.edu/FAQ/FAQformat#format:
for details
header TRUE or FALSE, default to FALSE, indicates whether data.GFF file has GFF
header

any parameter need to be passed into read.delim function

34 make VennDiagram

Value

RangedData with slot start holding the start position of the feature, slot end holding the end position
of the feature, slot names holding the id of the feature, slot space holding the chromosome location
where the feature is located. In addition, the following variables are included.

strand 1 for positive strand and -1 for negative strand where the feature is located.
Note
For converting the peakList in GFF format to RangedData before calling annotatePeakInBatch func-
tion
Author(s)
Lihua Julie Zhu
Examples
test.GFF = data.frame(cbind(segname = c("chr1”, "chr2"), source=rep("Macs"”, 2),
feature=rep("peak”, 2), start=c("100", "1000"), end=c("”200", "1100"), score=c(60, 26),
strand=c(1, -1), frame=c(".", 2), group=c("peakl”, "peak2")))

test.rangedData = GFF2RangedData(test.GFF)

makeVennDiagram Make Venn Diagram from two peak ranges

Description

Make Venn Diagram from two peak ranges and also calculate p-value for determining whether two
peak ranges overlap significantly.

Usage
makeVennDiagram(Peaks, NameOfPeaks, maxgap=0L, minoverlap=1L, totalTest,
by=c("region”, "feature"”, "base"), ignore.strand=TRUE,
connectedPeaks=c("min", "merge", "keepAll"), ...)
Arguments
Peaks A list of GRanges or RangedData: See example below.

NameOfPeaks Character vector to specify the name of Peaks, e.g., c("TF1", "TF2"), this will
be used as label in the Venn Diagram.

maxgap Non-negative integer. Intervals with a separation of maxgap or less are consid-
ered to be overlapping.

minoverlap Non-negative integer. Intervals with an overlapping of minoverlap or more are
considered to be overlapping.

makeVennDiagram

totalTest

by

ignore.strand

connectedPeaks

Details

35

Numeric value to specify the total number of tests performed to obtain the list
of peaks. It should be much larger than the number of peaks in the largest peak
set.

region, feature or base, default region. feature means using feature field in the
RangedData or GRanges for calculating overlap, region means using chromo-
some range for calculating overlap, and base means using calculating overlap in
nucleotide level.

When set to TRUE, the strand information is ignored in the overlap calculations.

If multiple peaks involved in overlapping in several groups, set it to "merge"
will count it as only 1, while set it to "min" will count it as the minimal involved
peaks in any concered groups

Additional arguments to be passed to venn.diagram

For customized graph options, please see venn.diagram in VennDiagram package.

Value

In addition to a Venn Diagram produced, p.value is obtained from hypergeometric test for deter-
mining whether the two peak ranges or features overlap significantly.

Author(s)

Lihua Julie Zhu, Jianhong Ou

See Also

findOverlappingPeaks, venn.diagram

Examples

if (interactive()){
peaks1 <- GRanges(segnames=c("1", "2", "3"),

IRanges(start=c(967654, 2010897, 2496704),
end=c(967754, 2010997, 2496804),
names=c("Sitel"”, "Site2", "Site3")),

strand="+",

feature=c("a","b","f"))

peaks2 = RangedData(segnames=c("1", "2", "3",6 "1", "2"),

IRanges(start = c(967659, 2010898,2496700,
3075866,3123260),
end = c(967869, 2011108, 2496920,
3076166, 3123470),
names = c("t1", "t2", "t3", "t4", "t5")),
strand = c("+", "+", U=V ST ety
feature=c("a","b","c","d","a"))

makeVennDiagram(list(peaks1, peaks2), NameOfPeaks=c("TF1", "TF2"),

totalTest=100,scaled=FALSE, euler.d=FALSE)

36 myPeakList

makeVennDiagram(list(peaks1, peaks2), NameOfPeaks=c("TF1", "TF2"),
totalTest=100)

#it###H# 4-way diagram using annotated feature instead of chromosome ranges

makeVennDiagram(list(peaks1, peaks2, peaksl, peaks2),
NameOfPeaks=c("TF1", "TF2","TF3", "TF4"),
totalTest=100, by="feature”,
main = "Venn Diagram for 4 peak lists”,
fill=c(1,2,3,4))

myPeakList ChIP-seq peak dataset

Description

the putative STAT1-binding regions identified in un-stimulated cells using ChIP-seq technology
(Robertson et al., 2007)

Usage

data(myPeakList)

Format

RangedData with slot rownames containing the ID of peak as character, slot start containing the
start position of the peak, slot end containing the end position of the peak and space containing the
chromosome where the peak is located.

Source

Robertson G, Hirst M, Bainbridge M, Bilenky M, Zhao Y, et al. (2007) Genome-wide profiles of
STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing.
Nat Methods 4:651-7

Examples

data(myPeakList)
slotNames(myPeakList)

Peaks.Stel12.Replicatel 37

Peaks.Stel12.Replicatel
Ste12-binding sites from biological replicate 1 in yeast (see reference)

Description

Ste12-binding sites from biological replicate 1 in yeast (see reference)

Usage
data(Peaks.Stel12.Replicatel)

Format

RangedData with slot rownames containing the ID of peak as character, slot start containing the
start position of the peak, slot end containing the end position of the peak and space containing the
chromosome where the peak is located.

References

Philippe Lefranois, Ghia M Euskirchen, Raymond K Auerbach, Joel Rozowsky, Theodore Gibson,
Christopher M Yellman, Mark Gerstein and Michael Snyder (2009) Efficient yeast ChIP-Seq using
multiplex short-read DNA sequencing BMC Genomics 10:37

Examples

data(Peaks.Stel12.Replicatel)
str(Peaks.Ste12.Replicatel)

Peaks.Ste12.Replicate2
Stel2-binding sites from biological replicate 2 in yeast (see reference)

Description

Ste12-binding sites from biological replicate 2 in yeast (see reference)

Usage
data(Peaks.Stel12.Replicate2)

Format

RangedData with slot rownames containing the ID of peak as character, slot start containing the
start position of the peak, slot end containing the end position of the peak and space containing the
chromosome where the peak is located.

38 Peaks.Stel12.Replicate3

Source

http://www.biomedcentral.com/1471-2164/10/37

References

Philippe Lefranois, Ghia M Euskirchen, Raymond K Auerbach, Joel Rozowsky, Theodore Gibson,
Christopher M Yellman, Mark Gerstein and Michael Snyder (2009) Efficient yeast ChIP-Seq using
multiplex short-read DNA sequencing BMC Genomics 10:37doi:10.1186/1471-2164-10-37

Examples

data(Peaks.Stel12.Replicate?2)
str(Peaks.Stel12.Replicate?2)

Peaks.Stel12.Replicate3
Stel2-binding sites from biological replicate 3 in yeast (see reference)

Description

Ste12-binding sites from biological replicate 3 in yeast (see reference)

Usage

data(Peaks.Stel12.Replicate3)

Format

RangedData with slot rownames containing the ID of peak as character, slot start containing the
start position of the peak, slot end containing the end position of the peak and space containing the
chromosome where the peak is located.

Source

http://www.biomedcentral.com/1471-2164/10/37

References

Philippe Lefranois, Ghia M Euskirchen, Raymond K Auerbach, Joel Rozowsky, Theodore Gibson,
Christopher M Yellman, Mark Gerstein and Michael Snyder (2009) Efficient yeast ChIP-Seq using
multiplex short-read DNA sequencing BMC Genomics 10:37doi:10.1186/1471-2164-10-37

Examples

data(Peaks.Ste12.Replicate3)
str(Peaks.Stel12.Replicate3)

peaksNearBDP 39

peaksNearBDP obtain the peaks near bi-directional promoters

Description

Obtain the peaks near bi-directional promoters. Also output percent of peaks near bi-directional
promoters.

Usage

peaksNearBDP(myPeakList, mart,AnnotationData, MaxDistance=5000,
PeakLocForDistance = c("start"”, "middle”, "end"),
FeatureLocForDistance = c("TSS", "middle"”,"start”, "end"”,"geneEnd"))

Arguments
myPeakList GRanges or RangedData: See example below
mart used if AnnotationData not supplied, a mart object, see useMart of bioMaRt

package for details

AnnotationData annotation data obtained from getAnnotation or customized annotation of class
GRanges or RangedData containing additional variable: strand (1 or + for plus
strand and -1 or - for minus strand). For example, data(TSS.human.NCBI36),data(TSS.mouse. NCBIM37)
data(TSS.rat. RGSC3.4) and data(TSS.zebrafish.Zv8) . If not supplied, then an-
notation will be obtained from biomaRt automatically using the parameters of

mart and featureType TSS
MaxDistance Specify the maximum gap allowed between the peak and nearest gene
PeakLocForDistance

Specify the location of peak for calculating distance,i.e., middle means using
middle of the peak to calculate distance to feature, start means using start of
the peak to calculate the distance to feature. To be compatible with previous
version, by default using start

FeatureLocForDistance

Specify the location of feature for calculating distance,i.e., middle means using
middle of the feature to calculate distance of peak to feature, start means using
start of the feature to calculate the distance to feature, TSS means using start
of feature when feature is on plus strand and using end of feature when feature
is on minus strand, geneEnd means using end of feature when feature is on
plus strand and using start of feature when feature is on minus strand. To be
compatible with previous version, by default using TSS

Value

A list of 4

40

peaksWithBDP

peaksNearBDP

annotated Peaks containing bi-directional promoters.

RangedData with slot start holding the start position of the peak, slot end holding
the end position of the peak, slot space holding the chromosome location where
the peak is located, slot rownames holding the id of the peak. In addition, the
following variables are included.

feature: id of the feature such as ensembl gene ID

insideFeature: upstream: peak resides upstream of the feature; downstream:
peak resides downstream of the feature; inside: peak resides inside the fea-
ture; overlapStart: peak overlaps with the start of the feature; overlapEnd: peak
overlaps with the end of the feature; includeFeature: peak include the feature
entirely.

distancetoFeature: distance to the nearest feature such as transcription start site.
By default, the distance is calculated as the distance between the start of the
binding site and the TSS that is the gene start for genes located on the forward
strand and the gene end for genes located on the reverse strand. The user can
specify the location of peak and location of feature for calculating this
start_position: start position of the feature such as gene

end_position: end position of the feature such as the gene

strand: 1 or + for positive strand and -1 or - for negative strand where the feature
is located

shortestDistance: The shortest distance from either end of peak to either end the
feature

fromOverlappingOrNearest: NearestStart: indicates this PeakLLocForDistance is
closest to the FeatureLocForDistance

percentPeaksWithBDP

n.peaks
n.peaksWithBDP

Author(s)

The percent of input peaks containing bi-directional promoters
The total number of input peaks

The # of input peaks containing bi-directional promoters

Lihua Julie Zhu, Jianhong Ou

References

Zhu L.J. et al. (2010) ChIPpeakAnno: a Bioconductor package to annotate ChIP-seq and ChIP-chip
data. BMC Bioinformatics 2010, 11:237doi:10.1186/1471-2105-11-237

See Also

annotatePeakInBatch, findOverlappingPeaks, makeVennDiagram

Examples

if (interactive())

{
data(myPeakList)

summarizePatternInPeaks 41

data(TSS.human.NCBI36)

annotatedBDP = peaksNearBDP(myPeakList[1:6,], AnnotationData=TSS.human.NCBI36,
MaxDistance=5000,PeakLocForDistance = "middle",

FeaturelLocForDistance = "TSS")

c(annotatedBDP$percentPeaksWithBDP, annotatedBDP$n.peaks, annotatedBDP$n.peaksWithBDP)
3

summarizePatternInPeaks
Output a summary of the occurrence of each pattern in the sequences.

Description

Output a summary of the occurrence of each pattern in the sequences.

Usage

summarizePatternInPeaks(patternFilePath, format = "fasta”,skip=0L,

BSgenomeName, peaks, outfile, append = FALSE)

Arguments

patternFilePath

A character vector containing the path to the file to read the patterns from.
format Either "fasta" (the default) or "fastq"
skip Single non-negative integer. The number of records of the pattern file to skip

before beginning to read in records.

BSgenomeName BSgenome object. Please refer to available.genomes in BSgenome package for

details
peaks GRanges or RangedData containing the peaks
outfile A character vector containing the path to the file to write the summary output.
append TRUE or FALSE, default FALSE

Value

A data frame with 3 columns as n.peaksWithPattern (number of peaks with the pattern), n.totalPeaks
(total number of peaks in the input) and Pattern (the corresponding pattern).

Author(s)

Lihua Julie Zhu

42 toGRanges

Examples

peaks = RangedData(IRanges(start=c(100, 500), end=c(300, 600),
names=c("peak1”, "peak2")),
space=c("NC_008253", "NC_010468"))
filepath =system.file("extdata”, "examplePattern.fa”, package="ChIPpeakAnno")
library(BSgenome.Ecoli.NCBI.20080805)
summarizePatternInPeaks(patternFilePath=filepath, format="fasta",
skip=0L, BSgenomeName=Ecoli, peaks=peaks)

toGRanges Convert dataset to GRanges

Description

Convert BED, GFF, RangeData or any user defined dataset to GRanges

Usage
toGRanges(data, format=c("BED"”, "GFF", "RangedData”, "MACS"”, "others"),
header=FALSE, comment.char="#", colNames=NULL, ...)
Arguments
data BED, GFF, RangedData or any user defined dataset or their file path.
format data format. If the data format is set to BED or GFF, please refer to http://genome.ucsc.edu/FAQ/FAQform
for column order. or MACS output file.
header a logical value indicating whether the file contains the names of the variables as

its first line. If missing, the value is determined from the file format: header is
set to TRUE if and only if the first row contains one fewer field than the number
of columns.

comment.char character: a character vector of length one containing a single character or an
empty string. Use "" to turn off the interpretation of comments altogether.

colNames If the data format is set to "others", colname must be defined. And the colname
must contain space, start and end. If your columne is names as seqname or
chrom, and so on, please rename it as space.

parameters passed to read.table

Value

An object of GRanges

Author(s)

Jianhong Ou

translatePattern 43

Examples

rd <- RangedData(IRanges(start = c(967654, 2010897, 2496704),

end = c(967754, 2010997, 2496804), names = c("Sitel”, "Site2", "Site3")),
space = c("1", "2", "3"), strand=as.integer(1),feature=c("a","b","f"))
toGRanges(rd, format="RangedData")

translatePattern translate pattern from IUPAC Extended Genetic Alphabet to regular
expression

Description

translate pattern containing the IUPAC nucleotide ambiguity codes to regular expression. For
example,Y->[CIT], R-> [AIG], S-> [GIC], W-> [AIT], K-> [TIUIG], M-> [AIC], B-> [CIGIT], D-
> [AIGIT], H-> [AICIT], V-> [AICIG] and N-> [AICITIG].

Usage

translatePattern(pattern)

Arguments

pattern a character vector with the IUPAC nucleotide ambiguity codes

Value

a character vector with the pattern represented as regular expression

Author(s)

Lihua Julie Zhu

See Also

countPatternInSeqs, summarizePatternInPeaks

Examples

patternl = "AACCNWMK"
translatePattern(patternt)

44 TSS.human.GRCh38

TSS. human.GRCh37 TSS annotation for human sapiens (GRCh37) obtained from biomaRt

Description

TSS annotation for human sapiens (GRCh37) obtained from biomaRt

Usage
data(TSS.human.GRCh37)

Format

GRanges with slot start holding the start position of the gene, slot end holding the end position
of the gene, slot names holding ensembl gene id, slot seqnames holding the chromosome location
where the gene is located and slot strand holding the strinad information. In addition, the following
variables are included.

description description of the gene

Details

used in the examples Annotation data obtained by:

mart = useMart(biomart = "ENSEMBL_MART_ENSEMBL", host="grch37.ensembl.org", path="/biomart/martservice",
dataset = "hsapiens_gene_ensembl")

getAnnotation(mart, featureType = "TSS")

Examples

data(TSS.human.GRCh37)
slotNames(TSS.human.GRCh37)

TSS.human.GRCh38 TSS annotation for human sapiens (GRCh38) obtained from biomaRt

Description

TSS annotation for human sapiens (GRCh38) obtained from biomaRt

Usage
data(TSS.human.GRCh38)

Format

Formal class ’GRanges’ [package "GenomicRanges"] with ensembl id as names.

TSS.human.NCBI36 45

Details
used in the examples Annotation data obtained by:
mart = useMart(biomart = "ensembl", dataset = "hsapiens_gene_ensembl")

getAnnotation(mart, featureType = "TSS", output="GRanges")

Examples

data(TSS.human.GRCh38)
slotNames (TSS.human.GRCh38)

TSS.human.NCBI36 TSS annotation for human sapiens (NCBI36) obtained from biomaRt

Description

TSS annotation for human sapiens (NCBI36) obtained from biomaRt

Usage

data(TSS.human.NCBI36)

Format

GRanges with slot start holding the start position of the gene, slot end holding the end position
of the gene, slot names holding ensembl gene id, slot seqnames holding the chromosome location
where the gene is located and slot strand holding the strinad information. In addition, the following
variables are included.

description description of the gene

Details

used in the examples Annotation data obtained by:
mart = useMart(biomart = "ensembl_mart_47", dataset = "hsapiens_gene_ensembl", archive=TRUE)

getAnnotation(mart, featureType = "TSS")

Examples

data(TSS.human.NCBI36)
slotNames (TSS.human.NCBI36)

46 TSS.mouse. NCBIM37

TSS.mouse.GRCm38 TSS annotation data for Mus musculus (GRCm38.pl) obtained from
biomaRt

Description

TSS annotation data for Mus musculus (GRCm38.p1) obtained from biomaRt

Usage

data(TSS.mouse.GRCm38)

Format

GRanges with slot start holding the start position of the gene, slot end holding the end position
of the gene, slot names holding ensembl gene id, slot seqnames holding the chromosome location
where the gene is located and slot strand holding the strinad information. In addition, the following
variables are included.

description description of the gene

Details

Annotation data obtained by:
mart = useMart(biomart = "ensembl”, dataset = "mmusculus_gene_ensembl")

getAnnotation(mart, featureType = "TSS")

Examples

data(TSS.mouse.GRCm38)
slotNames (TSS.mouse.GRCm38)

TSS.mouse.NCBIM37 TSS annotation data for mouse (NCBIM37) obtained from biomaRt

Description

TSS annotation data for mouse (NCBIM37) obtained from biomaRt

Usage

data(TSS.mouse.NCBIM37)

TSS.rat. RGSC3.4 47

Format

GRanges with slot start holding the start position of the gene, slot end holding the end position
of the gene, slot names holding ensembl gene id, slot seqnames holding the chromosome location
where the gene is located and slot strand holding the strinad information. In addition, the following
variables are included.

description description of the gene

Details

Annotation data obtained by:
mart = useMart(biomart = "ensembl", dataset = "mmusculus_gene_ensembl")

getAnnotation(mart, featureType = "TSS")

Examples

data(TSS.mouse.NCBIM37)
slotNames (TSS.mouse.NCBIM37)

TSS.rat.RGSC3.4 TSS annotation data for rat (RGSC3.4) obtained from biomaRt

Description

TSS annotation data for rat (RGSC3.4) obtained from biomaRt

Usage
data(TSS.rat.RGSC3.4)

Format

GRanges with slot start holding the start position of the gene, slot end holding the end position
of the gene, slot names holding ensembl gene id, slot seqnames holding the chromosome location
where the gene is located and slot strand holding the strinad information. In addition, the following
variables are included.

description description of the gene

Details

Annotation data obtained by:
mart = useMart(biomart = "ensembl”, dataset = "rnorvegicus_gene_ensembl")

getAnnotation(mart, featureType = "TSS")

Examples

data(TSS.rat.RGSC3.4)
slotNames(TSS.rat.RGSC3.4)

48 TSS.zebrafish.Zv8

TSS.rat.Rnor_5.0 TSS annotation data for Rattus norvegicus (Rnor_5.0) obtained from
biomaRt

Description

TSS annotation data for Rattus norvegicus (Rnor_5.0) obtained from biomaRt

Usage

data(TSS.rat.Rnor_5.0)

Format

GRanges with slot start holding the start position of the gene, slot end holding the end position
of the gene, slot names holding ensembl gene id, slot seqnames holding the chromosome location
where the gene is located and slot strand holding the strinad information. In addition, the following
variables are included.

description description of the gene

Details

Annotation data obtained by:
mart = useMart(biomart = "ensembl”, dataset = "rnorvegicus_gene_ensembl")

getAnnotation(mart, featureType = "TSS")

Examples

data(TSS.rat.Rnor_5.0)
slotNames(TSS.rat.Rnor_5.0)

TSS.zebrafish.zZv8 TSS annotation data for zebrafish (Zv8) obtained from biomaRt

Description

TSS annotation data for zebrafish (Zv8) obtained from biomaRt

Usage

data(TSS.zebrafish.Zv8)

TSS.zebrafish.Zv9 49

Format

GRanges with slot start holding the start position of the gene, slot end holding the end position
of the gene, slot names holding ensembl gene id, slot seqnames holding the chromosome location
where the gene is located and slot strand holding the strinad information. In addition, the following
variables are included.

description description of the gene

Details

Annotation data obtained by:
mart = useMart(biomart = "ensembl", dataset = "drerio_gene_ensembl")

getAnnotation(mart, featureType = "TSS")

Examples

data(TSS.zebrafish.Zv8)
slotNames(TSS.zebrafish.zZv8)

TSS.zebrafish.zv9 TSS annotation for Danio rerio (Zv9) obtained from biomaRt

Description

TSS annotation for Danio rerio (Zv9) obtained from biomaRt

Usage
data(TSS.zebrafish.zZv9)

Format

GRanges with slot start holding the start position of the gene, slot end holding the end position
of the gene, slot names holding ensembl gene id, slot seqnames holding the chromosome location
where the gene is located and slot strand holding the strinad information. In addition, the following
variables are included.

description description of the gene

Details

Annotation data obtained by:
mart = useMart(biomart = "ensembl", dataset = "drerio_gene_ensembl")

getAnnotation(mart, featureType = "TSS")

Examples

data(TSS.zebrafish.Zv9)
slotNames(TSS.zebrafish.Zv9)

50 write2FASTA

write2FASTA write sequences to a file in fasta format

Description

write the sequences obtained from getAllPeakSequence to a file in fasta format leveraging write-
FASTA in Biostrings package. FASTA is a simple file format for biological sequence data. A
FASTA format file contains one or more sequences and there is a header line which begins with a >
proceeding each sequence.

Usage
write2FASTA(mySeq, file="", width=80)
Arguments
mySeq RangedData with varibles name and sequence ,e.g., results obtained from getAll-
PeakSequence
file Either a character string naming a file or a connection open for reading or writ-
ing. If "" (the default for write2FASTA), then the function writes to the standard
output connection (the console) unless redirected by sink
width The maximum number of letters per line of sequence
Value

Output as FASTA file format to the naming file or the console.

Author(s)
Lihua Julie Zhu

Examples

peaksWithSequences = RangedData(IRanges(start=c(1000, 2000), end=c(1010, 2010),
names=c("id1", "id2")), sequence= c("CCCCCCCCGGGGG", "TTTTTTTAAAAAA"))
write2FASTA(peaksWithSequences, file="testseq.fasta”, width=50)

Index

xTopic \textasciitildekwd1 getEnrichedPATH, 30
assignChromosomeRegion, 11 getVennCounts, 32

*Topic \textasciitildekwd?2 GFF2RangedData, 33
assignChromosomeRegion, 11 peaksNearBDP, 39

*Topic datasets summarizePatternInPeaks, 41
annotatedPeak, 7 toGRanges, 42
enrichedGo, 19 translatePattern, 43
ExonPlusUtr.human.GRCh37, 21 write2FASTA, 50
myPeakList, 36 «Topic package
Peaks.Ste12.Replicatel, 37 ChIPpeakAnno-package, 3

Peaks.Ste12.Replicate2, 37
Peaks.Ste12.Replicate3, 38
TSS.human.GRCh37, 44
TSS.human.GRCh38, 44
TSS.human.NCBI36, 45
TSS.mouse.GRCm38, 46
TSS.mouse .NCBIM37, 46

addAncestors, 4
addGenelDs, 5, 10
annotatedPeak, 7
annotatePeakInBatch, 8, 25
AnnotationDbi, 6
assignChromosomeRegion, 11

TSSratRGSC34, 47 BEDZRangedData, 13

TSS.rat.Rnor_5.0, 48 binOverFeature, 14

TSS.zebrafish.Zvs, 48

TSS.zebrafish.zZv9, 49 ChIPpeakAnno (ChIPpeakAnno-package), 3
xTopic graph ChIPpeakAnno-deprecated, 15

makeVennDiagram, 34 ChIPpeakAnno-package, 3
*Topic misc condenseMatrixByColnames, 16

addAncestors, 4 convert2EntrezID, 17

addGenelDs, 5 countPatternInSegs, 18

annotatePeakInBatch, 8

BED2RangedData, 13 Deprecated, /6

binOverFeature, 14
condenseMatrixByColnames, 16
convert2EntrezID, 17
countPatternInSegs, 18

egOrgMap, 19
enrichedGo, 19
ExonPlusUtr.human.GRCh37, 21

egOrgMap, 19 findOverlappingPeaks, 10, 22, 25, 33, 35
findOverlappingPeaks, 22 findOverlappingPeaks-deprecated
findOverlapsOfPeaks, 24 (findOverlappingPeaks), 22
findvennCounts, 25 findOverlapsOfPeaks, 16, 22, 24
getAllPeakSequence, 26 findVennCounts, 25

getAnnotation, 27

getEnrichedGo, 28 getAllPeakSequence, 26

51

52

getAnnotation, 27

getBM, 6

getEnrichedGo, 28

getEnrichedPATH, 30

getVennCounts, 25, 32

GFF2RangedData, 33

GRanges, 8, 9, 16, 22, 24, 26-28, 32, 34, 39,
41, 42

listAttributes(mart), 6
listFilters(mart), 6

makeVennDiagram, 10, 25, 33, 34
myPeakList, 36

Peaks.Ste12.Replicatel, 37
Peaks.Ste12.Replicate2, 37
Peaks.Ste12.Replicate3, 38
peaksNearBDP, 10, 39

RangedData, 8, 9, 16, 22, 24, 26-28, 32, 34,
39,41
read. table, 42

summarizePatternInPeaks, 10, 41

toGRanges, 42
translatePattern, 43
TSS.human.GRCh37, 44
TSS.human.GRCh38, 44
TSS.human.NCBI36, 45
TSS.mouse.GRCm38, 46
TSS.mouse.NCBIM37, 46
TSS.rat.RGSC3.4, 47
TSS.rat.Rnor_5.0, 48
TSS.zebrafish.Zvs, 48
TSS.zebrafish.Zv9, 49
TxDb, 11, 12

useMart, 5
venn.diagram, 35

write2FASTA, 50

INDEX

	ChIPpeakAnno-package
	addAncestors
	addGeneIDs
	annotatedPeak
	annotatePeakInBatch
	assignChromosomeRegion
	BED2RangedData
	binOverFeature
	ChIPpeakAnno-deprecated
	condenseMatrixByColnames
	convert2EntrezID
	countPatternInSeqs
	egOrgMap
	enrichedGO
	ExonPlusUtr.human.GRCh37
	findOverlappingPeaks
	findOverlapsOfPeaks
	findVennCounts
	getAllPeakSequence
	getAnnotation
	getEnrichedGO
	getEnrichedPATH
	getVennCounts
	GFF2RangedData
	makeVennDiagram
	myPeakList
	Peaks.Ste12.Replicate1
	Peaks.Ste12.Replicate2
	Peaks.Ste12.Replicate3
	peaksNearBDP
	summarizePatternInPeaks
	toGRanges
	translatePattern
	TSS.human.GRCh37
	TSS.human.GRCh38
	TSS.human.NCBI36
	TSS.mouse.GRCm38
	TSS.mouse.NCBIM37
	TSS.rat.RGSC3.4
	TSS.rat.Rnor_5.0
	TSS.zebrafish.Zv8
	TSS.zebrafish.Zv9
	write2FASTA
	Index

