Using the functions within the ppiData package

T Chiang

October 18, 2014

For those interested in analyzing the publicly available protein-protein interaction (PPI)
data located within the IntAct repository, ppiData is an R-data package with built in functions
that can parse through the IntAct repository and gather empirical PPI data such as physical
binary interactions between protein pairs via the Yeast 2-Hybrid (Y2H) systems or such as
complex co-membership between sets of proteins via the Affinity Purification - Mass Spec-
trometry (AP-MS) systems. In this vignette, we show how one can collect such PPI data from
IntAct, how one can take the collected data and generate useful R-objects (such as the adja-
cency matrix representation, graph representations, etc), and how to do some simply statistical
computations.

For the remainder of the vignette, we shall only be concerned with collecting three particular
Y2H data-sets: those corresponding to "awasthi-2001-1", "cagney-2001-1”, and “zhao-2005-2"
(though we will note which functions are used to create the various data files in this data
package). We also use two new terms: viable baits and viable preys. A viable bait for a
particular experiment is any protein sampled as a bait that detects at least one other protein
as prey within the respective experiment. Viable preys are similarly defined.

The first function that we will call will be the collectIntactPPIData function. As the
name implies, this function goes into the Intact repository, which exists within this package as
a modified XML file downloaded from its primary souce and collects the relevant data given
the particular experiments (as given by its IntAct Accession (AC) Identification Code). In
our working example (“awasthi-2001-17, "cagney-2001-1", "zhao-2005-2”) is identified within
IntAct by the AC codes ("EBI-531419”, "EBI-698096”,"EBI-762635"). Before we can gather
the information concerning any empirical data, we must first identify its corresponding AC
code. (We shall discuss this at the end since this involves searching the internet.)

Let’s begin by collecting the specified data-sets via the function collectIntactPPIData:

> datalist <- collectIntactPPIData(c("EBI-531419", "EBI-698096","EBI-762635"))
> names (datalist)

[1] "allBaits" "allPreys" "indexSetAll" "baitsSystematic"
[5] "preysSystematic" "shortLabel"

> datalist[["shortLabel"]]

[1] "awasthi-2001-1" "cagney-2001-1" "zhao-2005-2"

>

> ##NB - intactPPIData = collectIntactPPIData() using the default parameters
>

The only argument that collectIntactPPIData takes is a character vector of IntAct AC
codes which corresponds to particular data-sets (or equivalently, the experiments).

The return value for the function collectIntactPPIData is a list of five elements. The
"allBaits” and “allPreys” entries of this list contains the IntAct AC Codes of all the unique
proteins that proved to be viable baits (respectively viable preys) over all the experiments
for which we sought data (in our case, over all three experiments). Though we cannot deter-
mine the viable baits from any particular experiment from the “allBaits” entry (similarly for
the 7allPreys”), but we shall see that this can be done another entry to be discussed. The
“baitsSystematic” and "preysSystematic” entries are named lists; the names corrospond to the
IntAct AC codes while the entries are the systematic gene name(s) that each AC code can be
mapped to.

> datalList[["baitsSystematic"]][1:5]

$ EBI-724"
[1] "vILO&1C"

$ EBI-15913"
(1] "YHRO27C"

$ EBI-13905"
[1] "YDR394w"

$ EBI-13914"
[1] "yGLo48C"

$ EBI-15935"
(1] "YDL147w"

The ”indexSetAll” entry of datalList contains the bait to prey associations for each of the
empirical data set. The "indexSetAll” entry contains sub-lists corresponding to each empirical
data set. Fach sub-list contains a number of length two character vectors: the first entry of
this character vector is the bait protein (give by AC code), and the second is the prey protein.
Thus, it is not too difficult to obtain the viable baits and viable prey from the ”indexSetAll”
entry with a little bit of coding. This method is still quite inconvienent since we would still
be left with the intact AC codes rather than anything meaningful about the bait and prey
proteins.

> datalList[["indexSetAl11"]][1]

$awasthi-2001-1"
$~awasthi-2001-1"[[1]]

interactor interactor
"EBI-724" "EBI-27760"

$>awasthi-2001-1" [[2]]
interactor interactor
"EBI-724" "EBI-465"

$~awasthi-2001-1" [[3]]
interactor interactor
"EBI-724" "EBI-21567"

$"awasthi-2001-1" [[4]]
interactor interactor
"EBI-724" "EBI-4618"

As the structure of dataList stands, there is little we can do to manipulate the PPI data
for mathematical, graphical, or statistical tests. Because of the undesirability of the data as
is, we can generate a sparse matrix representation of the bait to prey affiliation data. For
such a representation, we call the createBPList function using the entries “indexSetAll”,
"baitsSystematic”, and "preysSystematic” entries of the dataList R-object as the arguments
for createBPList.

> bpList <- createBPList(dataList[["indexSetAl11"]], dataList[["baitsSystematic"]],
+ datalist[["preysSystematic"]])
> names (bpList)

[1] "awasthi-2001-1" "cagney-2001-1" "zhao-2005-2"
> bpList[1]

$ awasthi-2001-1"

$ awasthi-2001-1"$YILO61C

interactor interactor interactor interactor
"YMLO29W" "YHR165C" "YBR102C" "YNL192W"

>

> ## NB: y2h = createBPList(intactPPIDatal[["indexSetAl11"]], intactPPIDatal[["baitsSystematic"]
>

> ## NB: y2hSysGW = Fixme

The sparse matrix representation is given by a list of list. The top list contains sub-lists
which are named by each experimentor of the data-set (now called the experimental sub-list).
Each experimental sub-list itself contains a number of sub-lists (we shall refer to these sub-lists
as bait sub-lists). Each bait sub-list is named by a viable bait of the corresponding experiment.
The entry for the bait sub-list is a character vector of proteins which were dectected by the
corresponding bait. In essence, we can think of this sparse matrix representation as a rooted

tree. The child of the root brings us to a particular experiment (data-set); the child of an
experiment brings us to a viable bait of that experiment; and finally, the child of a viable bait
(the leaves of this rooted tree) is a viable prey of the viable bait.

How is this a sparse matrix representation? Well if we were to construct an adjacency
matrix for each experimental data-set where the viable baits of the experiment indexed the
rows and the viable preys of the experiment indexed the columns, we could put a non-negative
integer for the number of times a viable bait detected a viable prey. This matrix representation
is generally sparse, and so to avoid carring all the zeros, our R-object bpList suffices.

It will be useful now to mention the two data files in the R-package ppiStats, y2h and
y2hSysGW are of the same structure as bpList. Both y2h and y2hSysGW are collections of sparse
matrix representations for various empirical data-sets: y2h contains 42 Y2H experimental data-
sets while y2hSysGW contains 7 Y2H data-sets under the condition that the prey population is
genome-wide. Therefore y2hSysGW is a subset of y2h.

There will be times, however, when we would like to have the adjacency matrix represen-
tation of our data. When this is necessary, we can build these adjacency matrices by calling
the R-function bpMatrix which comes from the ppiStats.

> bpMats <- lapply(bpList, function(x){

+ bpMatrix(x, symMat = FALSE, homodimer = FALSE, baitAsPrey = FALSE,
+ unWeighted = TRUE, onlyRecip = FALSE, baitsOnly = FALSE)})

> bpMats[1]

$ awasthi-2001-1"
YMLO29W YHR165C YBR102C YNL192W
YILO61C 0 1 1 1

Other than the sparse matrix representation for the empirical data, there are seven other
arguments (all logical) that the R-function bpMatrix takes. We shall discuss these parameters
in turn.

e homodimer: If FALSE, all homodimer relationships will be disregarded, otherwise the
homodimer relationships will be recorded in the adjacency matrix.

e unWeighted: If TRUE, the entries of the adjacency matrix will be binary (0,1) to account
for the presence or absence of the bait to prey interaction without regards for multiplicity.

e onlyRecip: If TRUE, the matrix will be symmetric with only reciprocated interactions
recorded in the adjacency matrix.

e symMat: If TRUE, the union of viable baits and viable preys will index both the rows
and columns of the adjacency matrix.

e baitAsPrey: If TRUE, the union of the viable baits and viable preys will index the
columns while only the viable baits will index the rows.

e baitsOnly: If TRUE, the matrix will be indexed in the row and column by the viable
baits exclusively. NB - if this is set to TRUE, then bait AsPrey must also be set to TRUE.

Based on the mathematical or statistical test or the graphical representation desired, these
parameters should be set accordingly.

Once we have generated the adjacency matrix, we can create an instance of the class graph
by calling the genBPGraph function, also found within the ppiStats.

> bpMatsl <- lapply(bpList, function(x){

+ bpMatrix(x, symMat = TRUE, homodimer = FALSE, baitAsPrey = FALSE,
+ unWeighted = TRUE, onlyRecip = FALSE, baitsOnly = FALSE)})

> bpMats1[1]

$>awasthi-2001-1"
YILO61C YMLO29W YHR165C YBR102C YNL192W

YILO61C 0 1 1 1 1
YMLO29W 0 0 0 0 0
YHR165C 0 0 0 0 0
YBR102C 0 0 0 0 0
YNL192W 0 0 0 0 0

> bpGraphs <- lapply(bpMatsl, function(x){genBPGraph(x, directed=TRUE, bp=FALSE)})
> bpGraphs[1]

$>awasthi-2001-1"

A graphNEL graph with directed edges
Number of Nodes = 5

Number of Edges = 4

>

> ##NB: Each graph data file is generated similarly using the same function
> ##as above. To see how we generated each of the graph objects, look

> ##in inst/Script/genGraphs.R directory at the script used to generate the
> ##graphNELs

The genBPGraph is a simple function that takes three arguments:
e bpMat: The bait to prey adjacency matrix.

e directed: A logical. If TRUE, the function creates a directed graph. If FALSE, the
function attempts to create an undirected graph if possible.

e bp: A logical. If TRUE, the adjacency matrix is that of a empirical bait to prey inter-
action matrix where the bait population is not the same as the prey population. Hence,
the function will extend the matrix to a larger matrix where the rows and columns are
indexed by the union of the baits and preys though the bait to prey interactions are
preserved.

Depending on the type of analysis, we can represent the bait to prey interation data by the
sparse matrix (list of list), the adjacency matrix representation, and a graphical representation.
This vignette only presents enough background on the functions to get a working knowledge
of the R-package ppiStats. We encourage you to use it in concert with other packages such as
Category or coCliteStats to garner more methods on the data-sets.

