
The wavClusteR package
(version 2.0)

Federico Comoglio and Cem Sievers
Department of Biosystems Science and Engineering

ETH Zürich, Basel, Switzerland
federico.comoglio@bsse.ethz.ch

cem.sievers@bsse.ethz.ch

October 13, 2014

Abstract

Different recently developed next-generation sequencing based methods (e.g. PAR-CLIP
or Bisulphite sequencing) specifically induce nucleotide substitutions within the short reads
with respect to the reference genome. This package provides functions for the analysis of
the data obtained by such methods - with a major focus on PAR-CLIP - and exploits the
experimentally induced substitutions in order to identify high confidence signals, such as
RNA-binding sites, in the data. The workflow consists of two steps; (i) the estimation
of a non-parametri two-component mixture model, identifying substitution frequencies most
affected by the experimental procedure; (ii) a binding sites (clusters) identification algorithm
which resolves clusters at high resolution. Key functions support multicore computing, if
available. For a detailed description of the method see [1, 2].

Contents

1 Preparing the input 2
1.1 Example dataset . 2
1.2 Importing short reads into the R session . 2
1.3 Extracting the informative positions used for model parameter estimation 3

2 Estimating the non-parametric mixture model 5

3 Identifying protein binding sites (clusters) 8
3.1 Filtering high confidence signal sites . 8
3.2 Identifying cluster boundaries and computing cluster statistics 8

4 Output post-processing 12
4.1 Exporting substitutions, wavClusters and coverage function 12
4.2 wavClusters annotation . 13
4.3 Computing metagene profiles . 15
4.4 Visualizing the size distribution of wavClusters 16

5 Session Info 16

1

1 Preparing the input

Starting with a fastq file, a commonly used short read format, the short reads should be aligned
to the reference genome using a short read aligner, e.g. Bowtie [3]. The output file (e.g. in
SAM format) should then be converted to BAM format (e.g. using samtools view, http:

//samtools.sourceforge.net/samtools.shtml) and sorted (e.g. using samtools sort). Since
wavClusteR requires an indexed BAM file containing the short read alignments, an index file
(.bai) should be generated from the sorted BAM file (see, e.g. samtools index).
The following code provides an example of the steps described above using the samtools toolkit.
The first line is pseudo code. Please replace it with the aligner specific syntax.

ALIGN: sample.fastq -> sample.sam

CONVERT: samtools view -b -S sample.sam -o sample.bam

SORT: samtools sort sample.bam sample_sorted

INDEXING: samtools index sample_sorted.bam

1.1 Example dataset

In this vignette, we consider as an example a chunk of a published Argonaute 2 (AGO2) PAR-
CLIP data set obtained from human HEK293 cells [4]. This chunk contains reads mapping to
chromosome X in the interval: 23996166 - 24023263. This data set is provided in wavClusteR
2.0.

1.2 Importing short reads into the R session

An indexed BAM file can be loaded into the R session using the readSortedBam function. This
calls scanBam from Rsamtools [5] and extracts the mismatch MD field and the read sequence
from the BAM file, returning a GRanges object.

> library(wavClusteR)

> filename <- system.file("extdata", "example.bam", package = "wavClusteR")

> Bam <- readSortedBam(filename = filename)

> Bam

GRanges object with 5358 ranges and 2 metadata columns:

seqnames ranges strand |

<Rle> <IRanges> <Rle> |

[1] chrX [24001819, 24001844] - |

[2] chrX [24001819, 24001843] - |

[3] chrX [24001834, 24001863] - |

[4] chrX [24001836, 24001865] - |

[5] chrX [24001841, 24001876] - |

...

[5354] chrX [24023018, 24023051] - |

[5355] chrX [24023018, 24023051] - |

2

http://samtools.sourceforge.net/samtools.shtml
http://samtools.sourceforge.net/samtools.shtml

[5356] chrX [24023019, 24023051] - |

[5357] chrX [24023019, 24023051] - |

[5358] chrX [24023067, 24023090] - |

qseq MD

<DNAStringSet> <character>

[1] CAGAGATAAAGAAGTATATTTTAAAG 26

[2] CAGAGATAAAGAAGTATATTTTAAG 24A0

[3] ATATTTTAGAGATTAAAAATATTTTATTTA 8A21

[4] TTTTTAAAGATTAAGAATATTTTATTTAAA 0A13A15

[5] AAAGATTAAAAATATTTTATTTAAGCTTTTCTTCAT 24A11

...

[5354] GTTTCACAGCGTTTTGGAGGAAAAAAAAATATGT 10A23

[5355] GTTTCACAGCGTTTTGGAGGAAAAAAAAATATGT 10A23

[5356] TTTCACAGCGTTTTGGAGGAAAAAAAAATATGT 9A23

[5357] TTTCACAGCGTTTTGGAGGAAAAAAAAATATGT 9A23

[5358] CAAAGGCGCGAATGGGTTTATTTT 9A14

seqinfo: 25 sequences from an unspecified genome; no seqlengths

1.3 Extracting the informative positions used for model parameter es-
timation

To estimate the mixture model both mixing coefficients and density functions (components) have
to be estimated from the data. To this purpose, genome-wide substitutions are first identified and
filtered according to a minimum coverage value at substitutions. The minimum coverage, which
should be chosen to account for variables such as sequencing depth, provides a way to select the
positions used for parameter estimation. Hence, it can be used to tune the stringency of the
analysis. There is no obvious theoretical justification to find the optimal minimum coverage.
However since relative substitution frequencies have to be computed for parameter estimation,
the minimum coverage will influence the variance of the estimate. The lowest minimum coverage
used for our analysis was 10.
The getAllSub function identifies the genomic positions that show at least one substitution and
satisfy the minimum coverage requirement. It returns a GRanges object specifying the genomic
position, the strand, the observed substitution (e.g. ”TC” implies a T in the reference genome
and a C in the read), the strand-specific coverage and the number of observed substitutions at
the specific position.

> countTable <- getAllSub(Bam, minCov = 10)

GRanges object with 4957 ranges and 2 metadata columns:

seqnames ranges strand | substitutions coverage

<Rle> <IRanges> <Rle> | <character> <numeric>

[1] chrX [24004509, 24004509] - | TG Inf

[2] chrX [24004510, 24004510] - | TA Inf

[3] chrX [24004509, 24004509] - | TG Inf

[4] chrX [24004510, 24004510] - | TA Inf

[5] chrX [24004509, 24004509] - | TG Inf

...

[4953] chrX [24004523, 24004523] - | AT Inf

[4954] chrX [24004523, 24004523] - | AT Inf

3

[4955] chrX [24004523, 24004523] - | AT Inf

[4956] chrX [24003702, 24003702] - | AG Inf

[4957] chrX [24003702, 24003702] - | AG Inf

seqinfo: 25 sequences from an unspecified genome; no seqlengths

> head(countTable)

GRanges object with 6 ranges and 3 metadata columns:

seqnames ranges strand | substitutions coverage count

<Rle> <IRanges> <Rle> | <character> <numeric> <integer>

[1] chrX [24001959, 24001959] - | TC 17 2

[2] chrX [24001973, 24001973] - | TC 17 12

[3] chrX [24001977, 24001977] - | TC 13 1

[4] chrX [24002046, 24002046] - | TC 10 1

[5] chrX [24002057, 24002057] - | TC 10 6

[6] chrX [24002147, 24002147] - | TC 22 3

seqinfo: 25 sequences from an unspecified genome; no seqlengths

Once all substitutions are computed, the corresponding substitution profile can be plotted with
plotSubstitutions. This function returns a barplot showing the total number of genomic
positions that exhibit a given type of substitution and highlights the substitution type that
is expected to be generated by the experimental procedure. In addition, the percentage of
substitution of this type with respect to all identified substitutions is indicated. This plot conveys
information about the quality of the data and can be used to compare different data sets generated
by the same experimental conditions.

> plotSubstitutions(countTable, highlight = "TC")

AC AG AT CA CG CT GA GC GT TA TC TG

Substitutions (TC = 73.43 %)

N
um

be
r

of
 g

en
om

ic
 p

os
iti

on
s

0
50

10
0

15
0

20
0

25
0

30
0

35
0

4

2 Estimating the non-parametric mixture model

The genomic positions identified above (see getAllSub) are used to estimate the mixture model
densities and mixing coefficients. The estimation is performed by the function fitMixtureModel

for the substitution of interest. The function returns a list containing:

� the two mixing coefficients (l1 and l2)

� the two individual components (p1 and p2).

� the full density (p)

Given an observed relative substitution frequency, the model is used to compute the posterior
probability that it was obtained by experimental induction.
Given the GRanges object countTable the model can be estimated as follows:

> model <- fitMixtureModel(countTable, substitution = "TC") #not run

The small size of the example dataset would not allow a reliable model estimation. Therefore, the
mixture model for the entire AGO2 dataset has been precomputed and is provided in wavClusteR
for convenience. The model can be loaded as

> data(model)

> str(model)

List of 5

$ l1: Named num 0.181

..- attr(*, "names")= chr "TC"

$ l2: Named num 0.819

..- attr(*, "names")= chr "TC"

$ p : num [1:999] 7.52 9.44 10.05 10.38 10.48 ...

$ p1: num [1:999] 89.6 64.4 50.4 41.5 35.3 ...

$ p2: num [1:999] 0 0 1.14 3.51 5 ...

Once the mixture model is estimated, the model fit can be inspected and the RSF interval most
likely to be affected by the experimental procedure can be identified using the getExpInterval

function. Besides then high-confidence RSF interval, two plots are returned. The first one
illustrates the estimated densities p, p1 and p2 and ensuing log odds o

o = log
p(k = 2|x)

p(k = 1|x)

whereas the second plot shows the resulting posterior class probability, i.e. the probability that
a given relative substitution frequency (RSF, horizontal axis) has been experimentally induced.
The area under the curve corresponding to the returned RSF interval is colored, and the RSF
interval indicated. By default, getExpInterval returns the RSF interval according to the Bayes
classifier, i.e. RSF values having probability larger than or equal to 0.5.

> (support <- getExpInterval(model, bayes = TRUE))

$supportStart

[1] 0.007

$supportEnd

[1] 0.98

5

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
10

Model densities

Relative Substitution Frequency

de
ns

ity
p (full density)
p1 (non−experimental)
p2 (experimental)
log odds ratio

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Posterior class probability

Relative Substitution Frequency

P
os

te
rio

r
pr

ob
ab

ili
ty

Support = [0.007, 0.98]

However, the user can modify the stringency of the analysis and determine a custom RSF interval
in two ways:

1. By setting the rightProb and leftProb parameters to a desired posterior probability
cutoff, e.g.

> (support <- getExpInterval(model, bayes = FALSE, leftProb = 0.9, rightProb = 0.9))

$supportStart

[1] 0.076

$supportEnd

[1] 0.905

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
10

Model densities

Relative Substitution Frequency

de
ns

ity

p (full density)
p1 (non−experimental)
p2 (experimental)
log odds ratio

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Posterior class probability

Relative Substitution Frequency

P
os

te
rio

r
pr

ob
ab

ili
ty

Support = [0.076, 0.905]

2. By inspecting the posterior class probability density and directly enter the RSF interval
boundaries when calling high-confidence substitutions (see call to getHighConfSub function
in the next section)

6

Finally, the model can be used to produce further diagnostic plots. Particularly, besides the
barplot returned by plotSubstitutions (see previous section), the total number of reads carry-
ing a given substitution and an RSF-based partitioning of genomic positions with substitutions
is returned by

> plotSubstitutions(countTable, highlight = "TC", model)

within

FALSE TRUE

55 423

AC AT CG GA GT TC

Substitutions (TC = 73.43 %)

N
um

be
r

of
 g

en
om

ic
 p

os
iti

on
s

0
10

0
20

0
30

0

AC AT CG GA GT TC

Substitutions (TC = 96.01%)

N
um

be
r

of
 r

ea
ds

 w
ith

 s
ub

st
itu

tio
n

0
10

00
30

00

AC AT CG GA TA TG

RSF in [0.007,0.98]

N
um

be
r

of
 g

en
om

ic
 p

os
iti

on
s

0
10

0
20

0
30

0

AC AT CG GA GT TC

RSF not in [0.007,0.98]

N
um

be
r

of
 g

en
om

ic
 p

os
iti

on
s

0
2

4
6

8
12

7

3 Identifying protein binding sites (clusters)

3.1 Filtering high confidence signal sites

High-confidence transitions are identified by the getHighConfSub function. The RSF interval
returned by getExpInterval (see previous section) can either directly enter a getHighConfSub

function call as

> highConfSub <- getHighConfSub(countTable,

+ support = support,

+ substitution = "TC")

or, alternatively, the interval can be specified by the user as

> highConfSub <- getHighConfSub(countTable,

+ supportStart = 0.2,

+ supportEnd = 0.7,

+ substitution = "TC")

The function returns a GRanges object with genomic position, strand, strand-specific coverage
(coverage), occurence (count), and relative substitution frequency (rsf) for each identified
high-confidence substitution.

> head(highConfSub)

GRanges object with 6 ranges and 3 metadata columns:

seqnames ranges strand | coverage count

<Rle> <IRanges> <Rle> | <numeric> <integer>

[1] chrX [24002057, 24002057] - | 10 6

[2] chrX [24002331, 24002331] - | 10 5

[3] chrX [24002335, 24002335] - | 10 3

[4] chrX [24002348, 24002348] - | 10 4

[5] chrX [24002677, 24002677] - | 15 4

[6] chrX [24002680, 24002680] - | 15 4

rsf

<numeric>

[1] 0.6

[2] 0.5

[3] 0.3

[4] 0.4

[5] 0.266666666666667

[6] 0.266666666666667

seqinfo: 25 sequences from an unspecified genome; no seqlengths

3.2 Identifying cluster boundaries and computing cluster statistics

Binding sites (referred to as clusters) can be identified by the function getClusters. This
function takes as input high-confidence substitution sites and the overall coverage across the
genome, which can be computed using GenomicRanges as

> coverage <- coverage(Bam)

> coverage$chrX

8

integer-Rle of length 24023090 with 914 runs

Lengths: 24001818 15 2 5 ... 1 15 24

Values : 0 2 3 4 ... 21 0 1

Cluster boundaries in wavClusteR 2.0 are resolved by default using the Mini-Rank Norm (MRN)
algorithm. Briefly, this algorithm finds an optimal cluster boundary for each high-confidence sub-
stitution by solving an optimization problem that integrates prior knowledge on the geometry
of PAR-CLIP clusters. The algorithm first considers differences in the coverage function. Then,
it removes background fluctuations via learning of a local background threshold or hard thresh-
olding (default). This choice is controlled by the threshold parameter. The MRN algorithm
proceeds by evaluating all ensuing possible cluster boundaries and computes ranking of boundary
signals and cluster widths, which are finally used to find the optimum cluster boundary for each
high-confidence substitution. Please see [2] for further details. Please notice that the MRN al-
gorithm is strongly recommended as computationally faster (up to 10x) and more sensitive than
the previously adopted cluster identification algorithm based on continuous wavelet transform
(CWT) of the coverage function (see [1]). The latter computes the continuous wavelet transform
(CWT) of the coverage function on a 1 kb window centered at a high-confidence substitution
site. The minimum required signal-to-noise ratio can be specified with the parameter snr (default
snr=3). Since multiple high-confidence substitution sites can localize in close proximity, the step
size (controlled by thestep parameter) can be set to values larger than 1 (default), such that
the CWT is computed only if the subsequent high-confidence substitution is located further than
the specified value from the previously considered position. Starting from the peak positions the
cluster boundaries are then expanded. This algorithm is still maintained in wavClusteR 2.0 and
can be called by setting method = "cwt" in the getClusters function.
Clusters can be computed by default as

> clusters <- getClusters(highConfSub = highConfSub,

+ coverage = coverage,

+ sortedBam = Bam,

+ method = "mrn",

+ threshold = 1,

+ cores = 1)

> clusters

GRanges object with 74 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] chrX [24002044, 24002057] -

[2] chrX [24002319, 24002339] -

[3] chrX [24002319, 24002339] -

[4] chrX [24002338, 24002348] -

[5] chrX [24002668, 24002683] -

...

[70] chrX [24006170, 24006191] -

[71] chrX [24006533, 24006554] -

[72] chrX [24007061, 24007068] -

[73] chrX [24007061, 24007083] -

[74] chrX [24007061, 24007083] -

seqinfo: 1 sequence from an unspecified genome; no seqlengths

9

by using the MRN algorithm. Two options are available here:

1. Hard thresholding, based on a globally applied threshold determining the extent of noise
in the coverage function. Empirically, 10% of the required minCov at high-confidence
substitutions worked well in practice on all tested datasets (e.g. a value of 1 in this example
where minCov = 10. Alternatively, 10% of the mode of the coverage distribution at high-
confidence substitutions can represent a valuable choice.

2. Local thresholding, based on a global estimation of background levels via a Gaussian mix-
ture model. Omitting the threshold parameter in the call to getClusters enables local
thresholding, e.g.

> clusters <- getClusters(highConfSub = highConfSub,

+ coverage = coverage,

+ sortedBam = Bam,

+ method = "mrn",

+ cores = 1)

> clusters

Once clusters are identified, the reported genomic regions can be merged in a strand-specific
manner and statistics for each resulting cluster, which we call a wavCluster, can be computed
using the filterClusters function, which takes as input the following elements:

� The identified clusters

� The high-confidence substitution sites

� The genome-wide coverage

� The mixture model

� A BSgenome [6] object containing the correct reference sequence

� The reference base expected to be converted by the experimental procedure

� The minimum required width of a wavCluster

The function can be called as follows:

> require(BSgenome.Hsapiens.UCSC.hg19)

> wavclusters <- filterClusters(clusters = clusters,

+ highConfSub = highConfSub,

+ coverage = coverage,

+ model = model,

+ genome = Hsapiens,

+ refBase = "T",

+ minWidth = 12)

> wavclusters

GRanges object with 40 ranges and 7 metadata columns:

seqnames ranges strand | Ntransitions MeanCov

<Rle> <IRanges> <Rle> | <integer> <numeric>

[1] chrX [24002044, 24002057] - | 1 9.642857

10

[2] chrX [24002319, 24002348] - | 3 10.166667

[3] chrX [24002668, 24002683] - | 2 14.937500

[4] chrX [24002710, 24002726] - | 1 154.117647

[5] chrX [24002738, 24002761] - | 2 29.416667

...

[36] chrX [24005918, 24005941] - | 1 14.33333

[37] chrX [24005949, 24005971] - | 2 16.26087

[38] chrX [24006168, 24006191] - | 2 11.12500

[39] chrX [24006533, 24006554] - | 1 31.68182

[40] chrX [24007059, 24007083] - | 3 16.36000

NbasesInRef CrossLinkEff Sequence SumLogOdds

<integer> <numeric> <factor> <numeric>

[1] 4 0.25 CTAGGATTATTTGA 2.979765

[2] 9 0.33 GTGTAATATTGAAGTTATACGGTGTACTGA 8.541695

[3] 6 0.33 CTTTAAATTATGAATT 5.514298

[4] 7 0.14 GATAGCTTATAAACTGA 2.898055

[5] 11 0.18 ATATTATAAACTGAAATGTTATGA 5.639963

...

[36] 7 0.14 CAATGTTAGACCAATGGCTTTGAT 3.010309

[37] 3 0.67 CTGGTGAGGTTTTTCTTTATATG 5.607608

[38] 7 0.29 GTGAGGATGGAATCGCTGTAATGA 5.511650

[39] 6 0.17 GGAGGTGGAAGATGAGGTGATT 2.902204

[40] 8 0.38 TGCTGGTGAACATTCTGAAAGTAAT 8.298195

RelLogOdds

<numeric>

[1] 0.7449412

[2] 0.9490773

[3] 0.9190497

[4] 0.4140079

[5] 0.5127239

... ...

[36] 0.4300442

[37] 1.8692025

[38] 0.7873786

[39] 0.4837006

[40] 1.0372744

seqinfo: 1 sequence from an unspecified genome; no seqlengths

The call returns a GRanges object where for each wavCluster:

� the number of high-confidence transitions (Ntransitions)

� the the mean coverage (MeanCov)

� the number of bases in the reference genome of the same type as the specified refBase

(NbasesInRef)

� the estimated cross-linking efficiency (CrossLinkEff), i.e. the ratio between Ntransitions

and NbasesInRef

� the genomic sequence (Sequence)

11

� the sum of the log odds (SumLogOdds), contributed by each high-confidence transition
within the cluster

� the relative log odds (RelLogOdds), i.e. the ratio between SumLogOdds and Ntransitions

is returned. Notice that the relative log odds can be used to rank clusters according to statistical
confidence.

4 Output post-processing

wavClusteR 2.0 contains a variety of functions (summarized in Table 1) that help the user in the
post-processing of the identified wavClusters.

Task Function Output format
Export all identified substitutions or high-
confidence substitutions

exportHighConfSub BED (for UCSC [7])

Export clusters exportClusters BED (for UCSC [7])
Export coverage function exportCoverage BigWig (for UCSC [7])
Visualize the size distribution of wavClusters plotSizeDistribution histogram
Annotate clusters with respect to genomic fea-
tures (e.g. CDS, introns, 3’-UTRs, 5’-UTRs)
in a strand-specific manner based on the Ge-
nomicFeatures package

annotateClusters dot chart, vector

Compute metagene profiles of wavClusters,
where the density of wavClusters is repre-
sented as a function of a reference genomic
coordinates

getMetaGene line plot, vector

Compute metaTSS profiles based on all
aligned reads in the input BAM file

getMetaTSS line plot, vector

Visualize wavClusteR statistics and meta data
to learn pairwise relationships between vari-
ables

plotStatistics pairs plot

Table 1: Summary of post-processing functions in wavClusteR 2.0.

4.1 Exporting substitutions, wavClusters and coverage function

The identified high-confidence substitutions can be exported as

> exportHighConfSub(highConfSub = highConfSub,

+ filename = "hcTC.bed",

+ trackname = "hcTC",

+ description = "hcTC")

where trackname and description correspond to the very same attributes in the UCSC BED
file format specification and define the name of the BED track and its description, respectively.
Notice that by replacing highConfSub with another set of substitutions (e.g. all identified sub-
stitutions of a given type), those can be exported and visualized using the same function call.
Similarly, wavClusters can be exported as

12

> exportClusters(clusters = wavclusters,

+ filename = "wavClusters.bed",

+ trackname = "wavClusters",

+ description = "wavClusters")

and the coverage function can be exported as

> exportCoverage(coverage = coverage, filename = "coverage.bigWig")

4.2 wavClusters annotation

The identified wavClusters can be annotated with respect to known genomic features using the
annotateClusters function, which generates a strand-specific dot chart representing wavClus-
ters annotation. The function takes as an input the wavClusters and a transcriptDB object
containing all transcript annotations. The latter can either be generated a priori using the
makeTranscriptDbFromUCSC (from the GenomicFeatures package) or is automatically fetch and
built by annotateClusters if not provided. If multiple calls to annotateClusters are planned,
the recommended solution is to build the object once as

> txDB <- makeTranscriptDbFromUCSC(genome = "hg19", tablename = "ensGene")

Then, the annotateClusters can be called as follows

> annotateClusters(clusters = wavclusters,

+ txDB = txDB,

+ plot = TRUE,

+ verbose = TRUE)

13

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

3'−UTR

5'−UTR

CDS

Introns

Multiple

Other

3'−UTR

5'−UTR

CDS

Introns

Multiple

Other

3'−UTR

5'−UTR

CDS

Introns

3'−UTR

5'−UTR

CDS

Introns

S
ense (n=

38702)
A

ntisense (n=
7915)

Transcriptom
e

N
orm

alized

0 25 50 75 100
Percentage

C
om

pa
rt

m
en

t

Four dot charts are returned by the function. The first plot (top) represents the percentage of
clusters mapping to different transcript features localized on the same strand as the identified
clusters. Please note that the dot chart above was produced by providing wavClusters identified
on the entire AGO2 dataset. Multiple hits, i.e. wavClusters that overlap with more than one
genomic feature, are reported as ”multiple”, whereas wavClusters that map outside of the con-
sidered features are labeled as ”other”. The latter are then annotated with respect to features on
the antisense strand and the results are represented in the second plot. The third plot represents

14

the relative sequence length of different compartments relative to the total transcriptome length
of the organism being considered (clearly, this plot does not depend on the PAR-CLIP data).
These ratios are then used to normalize the counts on the sense strand in order to produce the
fourth (bottom) plot, which can be used to show enrichments or depletion of clusters in the
different functional compartments.

4.3 Computing metagene profiles

A metagene profile, namely a graphical representation of the density of wavClusters as a function
of a binning of genomic coordinates across all annotated genes, can be obtained with a call to
the getMetaGene function as follows:

> getMetaGene(clusters = wavclusters,

+ txDB = txDB,

+ upstream = 1e3,

+ downstream = 1e3,

+ nBins = 40,

+ nBinsUD = 10,

+ minLength = 1,

+ plot = TRUE,

+ verbose = TRUE)

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Position

N
or

m
al

iz
ed

 n
um

be
r

of
 w

av
C

lu
st

er
s

−1000 TSS TES +1000

Please note that the line plot above was produced by providing wavClusters identified on the
entire AGO2 dataset. In the function call above, genes were divided in 40 bins (nBins) and an
upstream/downstream region spanning 1kb was considered (width controlled by upstream and
downstream parameters). This, in turn, was subdivided in 10 bins (nBinsUD). No restriction
on gene length was applied (minLength). The numeric vector of length nBins + 2nBinsUD with
normalized counts is returned by the function and therefore can be used, for example, to compare
the distribution of wavClusters across several PAR-CLIP samples.
In addition to metagene profiles, metaTSS profiles based on all aligned reads in the input BAM
file can be generated using the getMetaTSS function. A default function call is as follows:

> getMetaTSS(sortedBam = Bam,

+ txDB = txDB,

15

+ upstream = 1e3,

+ downstream = 1e3,

+ nBins = 40,

+ unique = FALSE,

+ plot = TRUE,

+ verbose = TRUE)

where the upstream and downstream parameters control the width of the window centered on
the transcription start site (TSS) to be considered, nBins determines the resolution of the profile.
If unique is enabled, then overlapping TSSs are discarded. The numeric vector of length nBins

with normalized read counts is returned by the function and therefore can be used, for example,
to compare several PAR-CLIP samples.

4.4 Visualizing the size distribution of wavClusters

The size distribution of wavClusters is visualized as a histogram and returned by the following
function call

> plotSizeDistribution(clusters = wavclusters, col = "skyblue2")

Size distribution

Length (bases)

N
um

be
r

of
 w

av
C

lu
st

er
s

10 20 30 40 50

0
2

4
6

8
10

12
14

where additional parameters of the hist function can be passed in the function call. Finally, if
showCov=TRUE, a scatter plot of average cluster coverage vs. cluster length is returned

> plotSizeDistribution(clusters = wavclusters, showCov = TRUE, col = "skyblue2")

5 Session Info

> sessionInfo()

16

R version 3.1.1 Patched (2014-09-25 r66681)

Platform: x86_64-unknown-linux-gnu (64-bit)

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

[3] LC_TIME=en_US.UTF-8 LC_COLLATE=C

[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8

[7] LC_PAPER=en_US.UTF-8 LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:

[1] stats4 parallel stats graphics grDevices utils datasets

[8] methods base

other attached packages:

[1] BSgenome.Hsapiens.UCSC.hg19_1.4.0 BSgenome_1.34.0

[3] rtracklayer_1.26.0 wavClusteR_2.0.0

[5] Rsamtools_1.18.0 Biostrings_2.34.0

[7] XVector_0.6.0 GenomicRanges_1.18.0

[9] GenomeInfoDb_1.2.0 IRanges_2.0.0

[11] S4Vectors_0.4.0 BiocGenerics_0.12.0

loaded via a namespace (and not attached):

[1] AnnotationDbi_1.28.0 BBmisc_1.7 BatchJobs_1.4

[4] Biobase_2.26.0 BiocParallel_1.0.0 DBI_0.3.1

[7] Formula_1.1-2 GenomicAlignments_1.2.0 GenomicFeatures_1.18.0

[10] Hmisc_3.14-5 MASS_7.3-35 RColorBrewer_1.0-5

[13] RCurl_1.95-4.3 RSQLite_0.11.4 Rcpp_0.11.3

[16] XML_3.98-1.1 acepack_1.3-3.3 base64enc_0.1-2

[19] biomaRt_2.22.0 bitops_1.0-6 brew_1.0-6

[22] checkmate_1.4 cluster_1.15.3 codetools_0.2-9

[25] colorspace_1.2-4 compiler_3.1.1 digest_0.6.4

[28] fail_1.2 foreach_1.4.2 foreign_0.8-61

[31] ggplot2_1.0.0 grid_3.1.1 gtable_0.1.2

[34] ifultools_2.0-1 iterators_1.0.7 labeling_0.3

[37] lattice_0.20-29 latticeExtra_0.6-26 mclust_4.4

[40] munsell_0.4.2 nnet_7.3-8 plyr_1.8.1

[43] proto_0.3-10 reshape2_1.4 rpart_4.1-8

[46] scales_0.2.4 sendmailR_1.2-1 seqinr_3.0-7

[49] splines_3.1.1 splus2R_1.2-0 stringr_0.6.2

[52] survival_2.37-7 tools_3.1.1 wmtsa_2.0-0

[55] zlibbioc_1.12.0

References

[1] Sievers, C., Schlumpf, T., Sawarkar, R., Comoglio, F. & Paro, R. (2012) Mixture models and
wavelet transforms reveal high confidence RNA-protein interaction sites in MOV10 PAR-CLIP

17

data. Nucleic Acids Res 40(2): e160

[2] Comoglio, F., Sievers, C. & Paro, R. wavClusteR: an R package for PAR-CLIP data analysis,
submitted

[3] Langmead,B., Trapnell,C., Pop,M. & Salzberg,S.L. (2009) Ultrafast and memory-efficient
alignment of short DNA sequences to the human genome. Genome Biol, 10, R25

[4] Kishore, S. et al. (2011) A quantitative analysis of CLIP methods for identifying binding sites
of RNA-binding proteins. Nature Methods, 8(7), 559-564

[5] Morgan, M. & Pages, H. Rsamtools: Binary alignment (BAM), variant call (BCF), or tabix
file import, http://bioconductor.org/packages/release/bioc/html/Rsamtools. html

[6] Pages, H., BSgenome: Infrastructure for Biostrings-based genome data packages

[7] Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, Haussler D. (2002)
The human genome browser at UCSC. Genome Res. 12(6), 996-1006.

18

	Preparing the input
	Example dataset
	Importing short reads into the R session
	Extracting the informative positions used for model parameter estimation

	Estimating the non-parametric mixture model
	Identifying protein binding sites (clusters)
	Filtering high confidence signal sites
	Identifying cluster boundaries and computing cluster statistics

	Output post-processing
	Exporting substitutions, wavClusters and coverage function
	wavClusters annotation
	Computing metagene profiles
	Visualizing the size distribution of wavClusters

	Session Info

