
A short tutorial on using pRoloc for

spatial proteomics data analysis

Laurent Gatto∗ and Lisa M. Breckels

Computational Proteomics Unit

University of Cambridge

March 21, 2015

This tutorial illustrates the usage of the pRoloc R package for the anal-

ysis and interpretation of spatial proteomics data. It walks the reader

through the creation of MSnSet instances, that hold the quantitative

proteomics data and meta-data and introduces several aspects of data

analysis, including data visualisation and application of machine learning

to predict protein localisation.

Keywords : Bioinformatics, organelle proteomics, machine learning, visualisation

∗lg390@cam.ac.uk

1

mailto:lg390@cam.ac.uk

Contents

1 Introduction 4

1.1 Spatial proteomics . 4

1.2 About R and pRoloc . 4

2 Data structures 6

2.1 Test data description . 6

2.2 Importing and loading data . 6

2.2.1 The original data file . 6

2.2.2 From csv files to R data . 7

2.2.3 The MSnSet class . 10

2.3 pRoloc’s organelle markers . 12

2.4 Data processing . 13

3 Data visualisation 15

3.1 Features of interest . 17

3.2 Interactive visualisation . 20

4 Data analysis 21

4.1 Unsupervised ML . 21

4.2 Supervised ML . 26

4.2.1 Classification algorithm parameters optimisation 26

4.2.2 Classification . 28

4.3 Semi-supervised ML . 33

4.4 Following up on novelty discovery . 35

5 Conclusions 38

2

Foreword

MSnbase and pRoloc are under active developed; current functionality is evolving

and new features will be added. This software is free and open-source software. If

you use it, please support the project by citing it in publications:

Gatto L. and Lilley K.S. MSnbase - an R/Bioconductor package for iso-

baric tagged mass spectrometry data visualization, processing and quan-

titation. Bioinformatics 28, 288-289 (2011).

Gatto L, Breckels LM, Wieczorek S, Burger T, Lilley KS. Mass-spectrometry-

based spatial proteomics data analysis using pRoloc and pRolocdata. Bioin-

formatics. 2014 Feb 5.

If you are using the phenoDisco function, please also cite

Breckels L.M., Gatto L., Christoforou A., Groen A.J., Kathryn Lilley

K.S. and Trotter M.W. The effect of organelle discovery upon sub-cellular

protein localisation. J Proteomics, S1874-3919(13)00094-8 (2013)

Questions and bugs

You are welcome to contact the maintainer about pRoloc. For bugs, typos, sugges-

tions or other questions, please file an issue in our tracking system1 providing as

much information as possible as well as the output of sessionInfo().

If you wish to reach a broader audience for general questions about proteomics

analysis using R, you may want to use the Bioconductor mailing list2.

1https://github.com/lgatto/pRoloc/issues
2https://stat.ethz.ch/mailman/listinfo/bioconductor

3

https://github.com/lgatto/pRoloc/issues
https://stat.ethz.ch/mailman/listinfo/bioconductor

1 Introduction

1.1 Spatial proteomics

Spatial (or organelle) proteomics is the study of the localisation of proteins inside

cells. The sub-cellular compartment can be organelles, i.e. structures defined by lipid

bi-layers,macro-molecular assemblies of proteins and nucleic acids or large protein

complexes. In this document, we will focus on mass-spectrometry based approaches

that assay a population of cells, as opposed as microscopy based techniques that

monitor single cells, as the former is the primary concern of pRoloc, although the

techniques described below and the infrastructure in place could also be applied the

processed image data. The typical experimental use-case for using pRoloc is a set

of fractions, originating from a total cell lysate. These fractions can originate from

a continuous gradient, like in the LOPIT (Dunkley et al., 2006) or PCP (Foster

et al., 2006) approaches, or can be discrete fractions. The content of the fractions is

then identified and quantified (using labelled or un-labelled quantitation techniques).

Using relative quantitation of known organelle residents, termed organelle markers,

organelle-specific profiles along the gradient are determined and new residents are

identified based on matching of these distribution profiles. See for example Gatto

et al. (2010) and references therein for a detailed review on organelle proteomics.

It should be noted that large protein complexes, that are not necessarily separately

enclosed within their own lipid bi-layer, can be detected by such techniques, as long

as a distinct profile can be defined across the fractions.

1.2 About R and pRoloc

R (R Development Core Team, 2011) is a statistical programming language and

interactive working environment. It can be expanded by so-called packages to confer

new functionality to users. Many such packages have been developed for the analysis

of high-throughput biology, notably through the Bioconductor project (Gentleman

et al., 2004). Two packages are of particular interest here, namely MSnbase (Gatto

and Lilley, 2012) and pRoloc. The former provides flexible infrastructure to store

and manipulate quantitative proteomics data and the associated meta-data and the

latter implements specific algorithmic technologies to analyse organelle proteomics

data.

Among the advantages of R are robust statistical procedures, good visualisation

capabilities, excellent documentation, reproducible research3, power and flexibility

of the R language and environment itself and a rich environment for specialised

3The content of this document is compiled (the code is executed and its output, text and figures,
is displayed dynamically) to generate the pdf file.

4

functionality in many domains of bioinformatics: tools for many omics technologies,

including proteomics, bio-statistics, gene ontology and biological pathway analysis,

. . . Although there exists some specific graphical user interfaces (GUI) – see for ex-

ample the GUI implemented in the synapter package4 for the analysis MSE data,

interaction with R is executed through a command line interface. Although this

mode of interaction might look alien to new users, experience has proven that after

a first steep learning curve, great results can be achieved by non-programmers. Fur-

thermore, specific and general documentation is plenty and beginners and advanced

course material are also widely available.

Once R is started, the first step to enable functionality of a specific packages is to

load them using the library function, as shown in the code chunk below:

> library("MSnbase")

> library("pRoloc")

> library("pRolocdata")

MSnbase implements the data containers that are used by pRoloc. pRolocdata is

a data package that supplies several published organelle proteomics data sets.

As a final setup step, we set the default colour palette for some of our custom

plotting functionality to use semi-transparent colours in the code chunk below (see

?setStockcol for details). This facilitates visualisation of overlapping points.

> setStockcol(paste0(getStockcol(), 70))

4http://bioconductor.org/packages/devel/bioc/html/synapter.html

5

http://bioconductor.org/packages/devel/bioc/html/synapter.html

2 Data structures

2.1 Test data description

The data used in this tutorial has been published in Tan et al. (2009). The LOPIT

technique (Dunkley et al., 2006) is used to localise integral and associated membrane

proteins in Drosophila melanogaster embryos. Briefly, embryos were collected at 0

– 16 hours, homogenised and centrifuged to collect the supernatant, removing cell

debris and nuclei. Membrane fractionation was performed on a iodixanol gradient

and fractions were quantified using iTRAQ isobaric tags (Ross et al., 2004) as fol-

lows: fractions 4/5, 114; fractions 12/13, 115; fraction 19, 116 and fraction 21, 117.

Labelled peptides were then separated using cation exchange chromatography and

analysed by LS-MS/MS on a QSTAR XL quadrupole-time-of-flight mass spectrom-

eter (Applied Biosystems). The original localisation analysis was performed using

partial least square discriminant analysis (PLS-DA). Relative quantitation data was

retrieved from the supplementary file pr800866n si 004.xls5 and imported into R

as described below. We will concentrate on the first replicate.

2.2 Importing and loading data

This section illustrates how to import data in comma-separated value (csv) format

into an appropriate R data structure. The first section shows the original csv (comma

separated values) spreadsheet, as published by the authors, and how one can read

such a file into R using the read.csv function. This spreadsheet file is similar to the

output of many quantitation software.

In the next section, we show 2 csv files containing a subset of the columns of

original pr800866n si 004-rep1.csv file and another short file, created manually,

that will be used to create the appropriate R data.

2.2.1 The original data file

> ## The original data for replicate 1, available

> ## from the pRolocdata package

> f0 <- dir(system.file("extdata", package = "pRolocdata"),

+ full.names = TRUE, pattern = "pr800866n_si_004-rep1.csv")

> csv <- read.csv(f0)

The three first lines of the original spreadsheet, containing the data for replicate

one, are illustrated below (using the function head). It contains 888 rows (proteins)

5http://pubs.acs.org/doi/suppl/10.1021/pr800866n/suppl_file/pr800866n_si_004.xls

6

http://pubs.acs.org/doi/suppl/10.1021/pr800866n/suppl_file/pr800866n_si_004.xls

and 16 columns, including protein identifiers, database accession numbers, gene sym-

bols, reporter ion quantitation values, information related to protein identification,

. . .

> head(csv, n=3)

Protein.ID FBgn Flybase.Symbol

1 CG10060 FBgn0001104 G-ialpha65A

2 CG10067 FBgn0000044 Act57B

3 CG10077 FBgn0035720 CG10077

No..peptide.IDs Mascot.score No..peptides.quantified

1 3 179.86 1

2 5 222.40 9

3 5 219.65 3

area.114 area.115 area.116 area.117

1 0.379000 0.281000 0.225000 0.114000

2 0.420000 0.209667 0.206111 0.163889

3 0.187333 0.167333 0.169667 0.476000

PLS.DA.classification Peptide.sequence

1 PM

2 PM

3

Precursor.ion.mass Precursor.ion.charge pd.2013

1 PM

2 PM

3 unknown

pd.markers

1 unknown

2 unknown

3 unknown

2.2.2 From csv files to R data

There are several ways to create the desired R data object, termed MSnSet, that will

be used to perform the actual sub-cellular localisation prediction. Here, we illustrate

a method that uses separate spreadsheet files for quantitation data, feature meta-

data and sample (fraction) meta-data and the readMSnSet constructor function,

that will hopefully be the most straightforward for new users.

7

> ## The quantitation data, from the original data

> f1 <- dir(system.file("extdata", package = "pRolocdata"),

+ full.names = TRUE, pattern = "exprsFile.csv")

> exprsCsv <- read.csv(f1)

> ## Feature meta-data, from the original data

> f2 <- dir(system.file("extdata", package = "pRolocdata"),

+ full.names = TRUE, pattern = "fdataFile.csv")

> fdataCsv <- read.csv(f2)

> ## Sample meta-data, a new file

> f3 <- dir(system.file("extdata", package = "pRolocdata"),

+ full.names = TRUE, pattern = "pdataFile.csv")

> pdataCsv <- read.csv(f3)

exprsFile.csv containing the quantitation (expression) data for the 888 proteins

and 4 reporter tags.

> head(exprsCsv, n=3)

FBgn X114 X115 X116 X117

1 FBgn0001104 0.379000 0.281000 0.225000 0.114000

2 FBgn0000044 0.420000 0.209667 0.206111 0.163889

3 FBgn0035720 0.187333 0.167333 0.169667 0.476000

fdataFile.csv containing meta-data for the 888 features (here proteins).

> head(fdataCsv, n=3)

FBgn ProteinID FlybaseSymbol NoPeptideIDs

1 FBgn0001104 CG10060 G-ialpha65A 3

2 FBgn0000044 CG10067 Act57B 5

3 FBgn0035720 CG10077 CG10077 5

MascotScore NoPeptidesQuantified PLSDA

1 179.86 1 PM

2 222.40 9 PM

3 219.65 3

pdataFile.csv containing samples (here fractions) meta-data. This simple file has

been created manually.

8

> pdataCsv

sampleNames Fractions

1 X114 4/5

2 X115 12/13

3 X116 19

4 X117 21

A self-contained data structure, called MSnSet (defined in the MSnbase package)

can now easily be generated using the readMSnSet constructor, providing the respec-

tive csv file names shown above and specifying that the data is comma-separated

(with sep = ","). Below, we call that object tan2009r1 and display its content.

> tan2009r1 <- readMSnSet(exprsFile = f1,

+ featureDataFile = f2,

+ phenoDataFile = f3,

+ sep = ",")

> tan2009r1

MSnSet (storageMode: lockedEnvironment)

assayData: 888 features, 4 samples

element names: exprs

protocolData: none

phenoData

sampleNames: X114 X115 X116 X117

varLabels: Fractions

varMetadata: labelDescription

featureData

featureNames: FBgn0001104 FBgn0000044 ...

FBgn0001215 (888 total)

fvarLabels: ProteinID FlybaseSymbol ... PLSDA

(6 total)

fvarMetadata: labelDescription

experimentData: use 'experimentData(object)'

Annotation:

- - - Processing information - - -

MSnbase version: 1.14.2

9

2.2.3 The MSnSet class

Although there are additional specific sub-containers for additional meta-data (for

instance to make the object MIAPE compliant), the feature (the sub-container, or

slot featureData) and sample (the phenoData slot) are the most important ones.

They need to meet the following validity requirements (see figure 1):

� the number of row in the expression/quantitation data and feature data must

be equal and the row names must match exactly, and

� the number of columns in the expression/quantitation data and number of

row in the sample meta-data must be equal and the column/row names must

match exactly.

It is common, in the context of pRoloc to update the feature meta-data (described

in section 4) by adding new columns, without breaking the objects validity. Simi-

larly, the sample meta-data can also be updated by adding new sample variables.

A detailed description of the MSnSet class is available by typing ?MSnSet in the R

console.

Figure 1: Dimension requirements for the respective expression, feature and sample
meta-data slots.

The individual parts of this data object can be accessed with their respective

accessor methods:

� the quantitation data can be retrieved with exprs(tan2009r1),

� the feature meta-data with fData(tan2009r1) and

� the sample meta-data with pData(tan2009r1).

The advantage of this structure is that it can be manipulated as a whole and the

respective parts of the data object will remain compatible. The code chunk below,

for example, shows how to extract the first 5 proteins and 2 first samples:

10

> smallTan <- tan2009r1[1:5, 1:2]

> dim(smallTan)

[1] 5 2

> exprs(smallTan)

X114 X115

FBgn0001104 0.379000 0.281000

FBgn0000044 0.420000 0.209667

FBgn0035720 0.187333 0.167333

FBgn0003731 0.247500 0.253000

FBgn0029506 0.216000 0.183000

Several data sets, including the 3 replicates from Tan et al. (2009), are distributed

as MSnSet instances in the pRolocdata package. Others include, among others, the

Arabidopsis thaliana LOPIT data from Dunkley et al. (2006) (dunkley2006) and

the mouse PCP data from Foster et al. (2006) (foster2006). Each data set can be

loaded with the data function, as show below for the first replicate from Tan et al.

(2009).

> data(tan2009r1)

The original marker proteins are available as a feature meta-data variables called

markers.orig and the output of the partial least square discriminant analysis, ap-

plied in the original publication, in the PLSDA feature variable. The most up-to-date

marker list for the experiment can be found in markers. This feature meta-data

column can be added from a simple csv markers files using the addMarkers function

- see ?addMarkers for details.

The organelle markers are illustrated below using the convenience function getMarkers,

but could also be done manually with table(fData(tan2009r1)$markers.orig)

and table(fData(tan2009r1)$PLSDA) respectively.

> getMarkers(tan2009r1, fcol = "markers.orig")

organelleMarkers

ER Golgi PM

20 6 15

mitochondrion unknown

14 833

11

> getMarkers(tan2009r1, fcol = "PLSDA")

organelleMarkers

ER/Golgi PM mitochondrion

235 180 74

unknown

399

Important As can be seen above, some proteins are labelled "unknown", defining

non marker proteins. This is a convention in many pRoloc functions. Missing anno-

tations (empty string) will not be considered as of unknown localisation; we prefer to

avoid empty strings and make the absence of known localisation explicit by using the

"unknown" tag. This information will be used to separate marker and non-marker

proteins when proceeding with data visualisation and clustering (sections 3 and 4.1)

and classification analysis (section 4.2.2).

2.3 pRoloc’s organelle markers

The pRoloc package distributes a set of markers that have been obtained by mining

the pRolocdata datasets and curation by various members of the Cambridge Centre

for Proteomics. The available marker sets can be obtained and loaded using the

pRolocmarkers functions:

> pRolocmarkers()

6 marker lists available:

Arabidopsis thaliana [atha]:

Ids: TAIR, 543 markers

Drosophila melanogaster [dmel]:

Ids: Annotation symbol, 144 markers

Gallus gallus [ggal]:

Ids: IPI, 102 markers

Homo sapiens [hsap]:

Ids: Uniprot, 205 markers

Mus musculus [mmus]:

Ids: Uniprot, 1305 markers

Saccharomyces cerevisiae [scer]:

Ids: SGD, 128 markers

> head(pRolocmarkers("dmel"))

12

FBgn0010638 FBgn0028689 FBgn0032799 FBgn0003732

"ER" "Proteasome" "ER" "Nucleus"

FBgn0028691 FBgn0017397

"Proteasome" "Nucleus"

> table(pRolocmarkers("dmel"))

Cytoskeleton ER Golgi

7 20 6

Lysosome Mitochondrion Nucleus

8 14 20

PM Peroxisome Proteasome

15 4 11

Ribosome 40S Ribosome 60S

14 25

These markers can then be added to a new MSnSet using the addMarkers function

by matching the marker names (protein identifiers) and the feature names of the

MSnSet. See ?addMarkers for examples.

2.4 Data processing

The quantitation data obtained in the supplementary file is normalised to the sum

of intensities of each protein; the sum of fraction quantitation for each protein equals

1 (considering rounding errors). This can quickly be verified by computing the row

sums of the expression data.

> summary(rowSums(exprs(tan2009r1)))

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.9990 0.9999 1.0000 1.0000 1.0000 1.0010

The normalise method (also available as normalize) from the MSnbase package

can be used to obtain relative quantitation data, as illustrated below on another

iTRAQ test data set, available from MSnbase. Several normalisation methods are

available and described in ?normalise. For many algorithms, including classifiers

in general and support vector machines in particular, it is important to properly

per-process the data. Centering and scaling of the data is also available with the

scale method, described in the scale manual.

13

In the code chunk below, we first create a test MSnSet instance6 and illustrate the

effect of normalise(..., method = "sum").

> ## create a small illustrative test data

> data(itraqdata)

> itraqdata <- quantify(itraqdata, method = "trap",

+ reporters = iTRAQ4,

+ verbose = FALSE, parallel = FALSE)

> ## the quantification data

> head(exprs(itraqdata), n = 3)

iTRAQ4.114 iTRAQ4.115 iTRAQ4.116 iTRAQ4.117

X1 1347.6158 2247.3097 3927.6931 7661.1463

X10 739.9861 799.3501 712.5983 940.6793

X11 27638.3582 33394.0252 32104.2879 26628.7278

> summary(rowSums(exprs(itraqdata)))

Min. 1st Qu. Median Mean 3rd Qu.

59.06 5638.00 15340.00 38010.00 42260.00

Max. NA's

305700.00 1

> ## normalising to the sum of feature intensitites

> itraqnorm <- normalise(itraqdata, method = "sum")

> processingData(itraqnorm)

- - - Processing information - - -

Data loaded: Wed May 11 18:54:39 2011

iTRAQ4 quantification by trapezoidation: Sat Mar 21 20:01:34 2015

Normalised (sum): Sat Mar 21 20:01:34 2015

MSnbase version: 1.1.22

> head(exprs(itraqnorm), n = 3)

iTRAQ4.114 iTRAQ4.115 iTRAQ4.116 iTRAQ4.117

X1 0.08875373 0.1480074 0.2586772 0.5045617

X10 0.23178064 0.2503748 0.2232022 0.2946424

X11 0.23077081 0.2788287 0.2680598 0.2223407

6Briefly, the itraqdata raw iTRAQ4-plex data is quantified by trapezoidation using MSnbase
functionality. See the MSnbase-demo vignette for details.

14

> summary(rowSums(exprs(itraqnorm)))

Min. 1st Qu. Median Mean 3rd Qu. Max.

1 1 1 1 1 1

NA's

1

Note above how the processing undergone by the MSnSet instances itraqdata and

itraqnorm is stored in another such specific sub-container, the processingData slot.

The different features (proteins in the tan2009r1 data above, but these could also

represent peptides or MS2 spectra) are characterised by unique names. These can

be retrieved with the featureNames function.

> head(featureNames(tan2009r1))

[1] "P20353" "P53501" "Q7KU78" "P04412" "Q7KJ73"

[6] "Q7JZN0"

If we look back at section 2.2.2, we see that these have been automatically assigned

using the first columns in the exprsFile.csv and fdataFile.csv files. It is thus

crucial for these respective first columns to be identical. Similarly, the sample names

can be retrieved with sampleNames(tan2009r1).

3 Data visualisation

The following sections will focus on two closely related aspects, data visualisation

and data analysis (i.e. organelle assignments). Data visualisation is used in the

context on quality control, to convince ourselves that the data displays the expected

properties so that the output of further processing can be trusted. Visualising results

of the localisation prediction is also essential, to control the validity of these results,

before proceeding with orthogonal (and often expensive) dry or wet validation.

The underlying principle of gradient approaches is that we have separated or-

ganelles along the gradient and by doing so, generated organelle-specific protein

distributions along the gradient fractions. The most natural visualisation is shown

on figure 2, obtained using the sub-setting functionality of MSnSet instances and the

plotDist function, as illustrated below.

15

indices of the mito markers

j <- which(fData(tan2009r1)$markers.orig == "mitochondrion")

indices of all proteins assigned to the mito

i <- which(fData(tan2009r1)$PLSDA == "mitochondrion")

plotDist(tan2009r1[i,],

markers = featureNames(tan2009r1)[j])

0.
1

0.
2

0.
3

0.
4

0.
5

Fractions

In
te

ns
ity

4/5 12/13 19 21

●

● ●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

● ●

●

●

● ●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

● ●

●

●

● ●

●

●

● ●

●

mitochondrion

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Fractions

In
te

ns
ity

4/5 12/13 19 21

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

ER

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Fractions

In
te

ns
ity

4/5 12/13 19 21

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

Golgi

0.
1

0.
2

0.
3

0.
4

0.
5

Fractions

In
te

ns
ity

4/5 12/13 19 21

● ●

●

●

●
●

●

●

● ●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

PM

Figure 2: Distribution of protein intensities along the fractions of the separation gradient
for 4 organelles: mitochondrion (red), ER/Golgi (blue, ER markers and green, Golgi
markers) and plasma membrane (purple).

Alternatively, we can combine all organelle groups in one single 2 dimensional fig-

ure by applying a dimensionality reduction technique such as Principal Component

Analysis (PCA) using the plot2D function (see figure 3). The protein profile vectors

are summarised into 2 values that can be visualised in two dimensions, so that the

variability in the data will be maximised along the first principal component (PC1).

The second principal component (PC2) is then chosen as to be orthogonal to PC1

while explaining as much variance in the data as possible, and so on for PC3, PC4,

etc.

Using a PCA representation to visualise a spatial proteomics experiment, we can

16

easily plot all the proteins on the same figure as well a many sub-cellular clusters

(see figure 14 for a case with 11 clusters). These clusters are defined in a feature

meta-data column (slot featureData/fData) that is declaraed with the fcol argu-

ment (default is "markers" which contains the most current known markers for the

experiment under investigation, the original markers published with the data can

be found in the slot "markers.orig").

> plot2D(tan2009r1, fcol = "PLSDA", fpch = "markers.orig")

> addLegend(tan2009r1, fcol = "PLSDA",

+ where = "bottomright", bty = "n", cex = .7)

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

PC1 (58.53%)

P
C

2
(2

9.
96

%
)

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●
● ●●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

ER/Golgi
mitochondrion
PM
unknown

Figure 3: Representation of the 888 protein of tan2009r1 after reduction of the 4
reporter quantitation data to 2 principal components.

3.1 Features of interest

In addition to highlighting sub-cellular niches as coloured clusters on the PCA plot,

it is also possible to define some arbitrary features of interest that represent, for

example, proteins of a particular pathway or a set of interaction partners. Such

17

sets of proteins are recorded as FeaturesOfInterest instances, as illstrated below

(using the ten first features of our experiment):

> foi1 <- FeaturesOfInterest(description = "Feats of interest 1",

+ fnames = featureNames(tan2009r1[1:10]))

> description(foi1)

[1] "Feats of interest 1"

> foi(foi1)

[1] "P20353" "P53501" "Q7KU78" "P04412" "Q7KJ73"

[6] "Q7JZN0" "Q7KLV9" "Q9VM65" "Q9VCK0" "Q9VIU7"

Several such features of interest can be combined into collections:

> foi2 <- FeaturesOfInterest(description = "Feats of interest 2",

+ fnames = featureNames(tan2009r1[880:888]))

> foic <- FoICollection(list(foi1, foi2))

> foic

A collection of 2 features of interest.

FeatureOfInterest instances can now be overlaid on the PCA plot with the

highlightOnPlot function.

See ?FeaturesOfInterest and ?highlightOnPlot for more details.

18

> plot2D(tan2009r1, fcol = "PLSDA")

> addLegend(tan2009r1, fcol = "PLSDA",

+ where = "bottomright", bty = "n", cex = .7)

> highlightOnPlot(tan2009r1, foi1, col = "black", lwd = 2)

> highlightOnPlot(tan2009r1, foi2, col = "purple", lwd = 2)

> legend("topright", c("FoI 1", "FoI 2"), bty = "n",

+ col = c("black", "purple"), pch = 1)

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

PC1 (58.53%)

P
C

2
(2

9.
96

%
)

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●
● ●●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

ER/Golgi
mitochondrion
PM
unknown

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

FoI 1
FoI 2

Figure 4: Adding features of interest on a PCA plot.

19

3.2 Interactive visualisation

The pRolocGUI application allows one to explore the spatial proteomics data using

an interactive, web-based shiny interface (RStudio and Inc., 2014). The package is

available from Bioconductor and can be installed and started as follows:

> library("BiocInstaller")

> biocLite("pRolocGUI")

> library("pRolocGUI")

> pRolocVis(tan2009r1)

Figure 5: Screenshot of the pRolocGUI interface.

More details are available in the vignette that can be started from the application

by clicking on any of the question marks, by starting the vignette from R with

vignette("pRolocGUI") or can be accessed online7.

7http://bioconductor.org/packages/devel/bioc/vignettes/pRolocGUI/inst/doc/

pRolocGUI.html

20

http://bioconductor.org/packages/devel/bioc/vignettes/pRolocGUI/inst/doc/pRolocGUI.html
http://bioconductor.org/packages/devel/bioc/vignettes/pRolocGUI/inst/doc/pRolocGUI.html

4 Data analysis

Classification of proteins, i.e. assigning sub-cellular localisation to proteins, is the

main aspect of the present data analysis. The principle is the following and is, in

its basic form, a 2 step process. First, an algorithm learns from the known markers

that are shown to him and models the data space accordingly. This phase is also

called the training phase. In the second phase, un-labelled proteins, i.e. those that

have not been labelled as resident of any organelle, are matched to the model and

assigned to a group (an organelle). This 2 step process is called machine learning

(ML), because the computer (machine) learns by itself how to recognise instances

that possess certain characteristics and classifies them without human intervention.

That does however not mean that results can be trusted blindly.

In the above paragraph, we have defined what is called supervised ML, because

the algorithm is presented with some know instances from which it learns (see section

4.2.2). Alternatively, un-supervised ML does not make any assumptions about the

group memberships, and uses the structure of the data itself to defined sub-groups

(see section 4.1). It is of course possible to classify data based on labelled and

unlabelled data. This extension of the supervised classification problem described

above is called semi-supervised learning. In this case, the training data consists

of both labelled and unlabelled instances with the obvious goal of generating a

better classifier than would be possible with the labelled data only. The phenoDisco

algorithm, will be illustrated in that context (section 4.3).

4.1 Unsupervised ML

The plot2D can also be used to visualise the data on a PCA plot omitting any

marker definitions, as shown on figure 6. This approach avoids any bias towards

marker definitions and concentrate on the data and its underlying structure itself.

Alternatively, pRoloc also gives access to MLInterfaces’s MLean unified interface

for, among others, unsupervised approaches using k-means (figure 7 on page 23),

hierarchical (figure 8 on page 24) or partitioning around medoids (figure 9 on page

25), clustering.

21

> plot2D(tan2009r1, fcol = NULL)

●●

●

●

●

●

●

●

● ●
●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

● ●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●
● ●

●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●
●

●

●

●

●
●

●

● ●

●

●●
●

●

●

●

●

● ●●

●

● ●
●

●●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●●

● ●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

PC1 (58.53%)

P
C

2
(2

9.
96

%
)

Figure 6: Plain PCA representation of the tan2009r1 data.

22

> kcl <- MLearn(~ ., tan2009r1, kmeansI, centers=5)

> plot(kcl, exprs(tan2009r1))

part.; features

ca
se

s

part. X114 X115 X116 X117

Silhouette width si

0.0 0.2 0.4 0.6 0.8 1.0

silhouette

Average silhouette width : 0.41

n = 888 5 clusters Cj

j : nj | avei∈Cj si
1 : 231 | 0.38

2 : 67 | 0.35
3 : 145 | 0.28

4 : 239 | 0.59

5 : 206 | 0.34

PCA screeplot

V
ar

ia
nc

es

0.
00

0.
02

0.
04

●●

●

●

●

●

●

●●
●
●●

●

●

●
●●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

● ●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●
●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

● ●

●

● ●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●
●

●
●

●

●
●

●

● ●

●

●●
●

● ●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
● ●

●● ●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●●

●

●

●●

●

●
●

●

●

●

●●

●

● ●

●

●
●

●
●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

● ●

●

●

● ●● ●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●●
●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●
●

●
●

●
●

●
●

●
●

● ●

●

●

●
●●

●

●

●

●
●●

●

●

●

●

●●

●

●

●

●
●

●

●

●● ●

● ●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●
●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

● ●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●●

●

●

●

●

●

●
●

●
●

●
●

●●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

● ●●

●

●●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●
●

● ●

●
●●

●

●

●

● ●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

−0.4 −0.2 0.0 0.2

−
0.

2
0.

2
0.

4

PCA colored by partition

PC1

P
C

2

Figure 7: k-means clustering on the tan2009r1 data.

23

> hcl <- MLearn(~ ., tan2009r1,

+ hclustI(distFun = dist, cutParm = list(k = 5)))

> plot(hcl, labels = FALSE)

0.
0

0.
4

0.
8

Cluster Dendrogram

lfun (*, "complete")
dstruc

H
ei

gh
t

Silhouette width si

−0.5 0.0 0.5 1.0

silhouette

Average silhouette width : 0.38

n = 888 5 clusters Cj

j : nj | avei∈Cj si
1 : 226 | 0.40

2 : 109 | 0.44

3 : 278 | 0.11

4 : 259 | 0.59

5 : 16 | 0.73

PCA screeplot

V
ar

ia
nc

es

0.
00

0.
02

0.
04

●●

●

●

●

●

●

●●
●
●●

●

●

●
●●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

● ●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●
●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

● ●

●

● ●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●
●

●
●

●

●
●

●

● ●

●

●●
●

● ●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
● ●

●● ●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●●

●

●

●●

●

●
●

●

●

●

●●

●

● ●

●

●
●

●
●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

● ●

●

●

● ●● ●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●●
●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●
●

●
●

●
●

●
●

●
●

● ●

●

●

●
●●

●

●

●

●
●●

●

●

●

●

●●

●

●

●

●
●

●

●

●● ●

● ●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●
●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

● ●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●●

●

●

●

●

●

●
●

●
●

●
●

●●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

● ●●

●

●●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●
●

● ●

●
●●

●

●

●

● ●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

−0.4 −0.2 0.0 0.2

−
0.

2
0.

2
0.

4

PCA colored by partition

PC1

P
C

2

Figure 8: Hierarchical clustering on the tan2009r1 data.

24

> pcl <- MLearn(~ ., tan2009r1, pamI(dist), k = 5)

> plot(pcl, data = exprs(tan2009r1))

−3 −2 −1 0 1 2 3

−
3

−
1

1
2

3

clusplot(lfun(x = dstruc, k = 5))

Component 1

C
om

po
ne

nt
 2

These two components explain 88.48 % of the point variability.

● ●

●

●●
●

● ●

●

●

● ●

●
●●●

●

●
● ●

●
●

●
●

●

●

●

●

●
●

●● ●

●
●

●

●

●
● ●

●

●
●

● ●

●
●

●

●
●●

●

●

● ●

●● ●
● ●

● ●

●
●

●
●

●
●

●

●
●

●

●

● ●
●

●

●
●●

●

●

●

●
●

● ●
●●●

●

●●

●

●

●
●

●●
●

●
●

●
●

●

●
●

● ●

●

●
●

●
●

●

●

●

●

●

●

●
●●

●
●

●● ●

●
●

●

●

●

●
●

●

●

●

●
●

●

●
●● ●

● ●●

●●● ●
●

●

●
●

●

●

● ●

●

●●

●

●

●

●

●
●

● ●

●

●

●

●

●

● ●
●

● ●●

●

●
● ●

●

●

●
●

●
●● ●

●

●
●

●

●

●
●

●

●
● ●●

●
●

●●

●

●

●
●

●

●

●

●

●

●
●

Silhouette width si

0.0 0.2 0.4 0.6 0.8 1.0

silhouette

Average silhouette width : 0.4

n = 888 5 clusters Cj

j : nj | avei∈Cj si
1 : 221 | 0.38

2 : 207 | 0.35

3 : 148 | 0.26

4 : 228 | 0.58

5 : 84 | 0.26

PCA screeplot

V
ar

ia
nc

es

0.
00

0.
02

0.
04

●●

●

●

●

●

●

●●
●
●●

●

●

●
●●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

● ●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●
●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

● ●

●

● ●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●
●

●
●

●

●
●

●

● ●

●

●●
●

● ●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
● ●

●● ●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●●

●

●

●●

●

●
●

●

●

●

●●

●

● ●

●

●
●

●
●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

● ●

●

●

● ●● ●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●●
●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●
●

●
●

●
●

●
●

●
●

● ●

●

●

●
●●

●

●

●

●
●●

●

●

●

●

●●

●

●

●

●
●

●

●

●● ●

● ●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●
●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

● ●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●●

●

●

●

●

●

●
●

●
●

●
●

●●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

● ●●

●

●●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●
●

● ●

●
●●

●

●

●

● ●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

−0.4 −0.2 0.0 0.2

−
0.

2
0.

2
0.

4

PCA colored by partition

PC1

P
C

2

Figure 9: Partitioning around medoids on the tan2009r1 data.

25

4.2 Supervised ML

In this section, we show how to use pRoloc to run a typical supervised ML analysis.

Several ML methods are available, including k-nearest neighbour (knn), partial least

square discriminant analysis (plsda), random forest (rf), support vector machines

(svm), . . . The detailed description of each method is outside of the scope of this

document. We will use support vector machines to illustrate a typical pipeline and

the important points that should be paid attention to. These points are equally valid

and work, from a pRoloc user perspective, exactly the same for the other approaches.

4.2.1 Classification algorithm parameters optimisation

Before actually generating a model on the new markers and classifying unknown

residents, one has to take care of properly setting the model parameters. Wrongly

set parameters can have a very negative impact on classification performance. To

do so, we create testing (to model) and training (to predict) subsets using known

residents. By comparing observed and expected classification prediction, we can

assess how well a given model works using the macro F1 score (see below). This

procedure is repeated for a range of possible model parameter values (this is called

a grid search), and the best performing set of parameters is then used to construct

a model on all markers and predict un-labelled proteins.

Model accuracy is evaluated using the F1 score, F1 = 2 precision×recall
precision+recall

, calculated

as the harmonic mean of the precision (precision = tp
tp+fp

, a measure of exactness

– returned output is a relevant result) and recall (recall = tp
tp+fn

, a measure of

completeness – indicating how much was missed from the output). What we are

aiming for are high generalisation accuracy, i.e high F1, indicating that the marker

proteins in the test data set are consistently correctly assigned by the algorithms.

In order to evaluate how well a classifier performs on profiles it was not exposed to

during its creation, we implemented the following schema. Each set of marker protein

profiles, i.e. labelled with known organelle association, are separated into training

and test/validation partitions by sampling 80% of the profile corresponding to each

organelle (i.e. stratified) without replacement to form the training partition Str with

the remainder becoming the test/validation partition Sts. The svm regularisation

parameter C and Gaussian kernel width sigma are selected using a further round of

stratified five-fold cross-validation on each training partition. All pairs of parameters

(Ci, sigmaj) under consideration are assessed using the macro F1 score and the

pair that produces the best performance is subsequently employed in training a

classifier on all training profiles Str prior to assessment on all test/validation profiles

Sts. This procedure is repeated N times (in the example below 10) in order to

produce N macro F1 estimated generalisation performance values (figure 10). This

26

procedure is implemented in the svmOptimisation. See ?svmOptimisation for

details, in particular the range of C and sigma parameters and how the relevant

feature variable is defined by the fcol parameters, which defaults to "markers".

Note that here, we demonstrate the function with only perform 10 iterations8 (times

= 10), which is enough for testing, but we recommend 100 (which is the default

value) for a more robust analysis.

> params <- svmOptimisation(tan2009r1, fcol = "markers.orig",

+ times = 10, xval = 5, verbose = FALSE)

> params

Object of class "GenRegRes"

Algorithm: svm

Hyper-parameters:

cost: 0.0625 0.125 0.25 0.5 1 2 4 8 16

sigma: 0.01 0.1 1 10 100 1000

Design:

Replication: 10 x 5-fold X-validation

Partitioning: 0.2/0.8 (test/train)

Results

macro F1:

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.8889 0.8889 1.0000 0.9556 1.0000 1.0000

best sigma: 0.1 1

best cost: 0.5 1

In addition to the plots on figure 10, f1Count(params) returns, for each combi-

nation of parameters, the number of best (highest) F1 observations. One can use

getParams to see the default set of parameters that are chosen based on the ex-

ecuted optimisation. Currently, the first best set is automatically extracted, and

users are advised to critically assess whether this is the most wise choice.

> f1Count(params)

0.5 1

0.1 1 0

1 NA 5

8In the interest of time, the optimisation is not executed but loaded from
dir(system.file("extdata", package = "pRoloc"), full.names = TRUE, pattern

= "params.rda").

27

> plot(params)

> levelPlot(params)

svm

sigma

F
1

0.90

0.92

0.94

0.96

0.98

1.00

0.1 1

●

0.5

0.1 1

●

●

1

svm

sigma
co

st

0.0625

0.125

0.25

0.5

1

2

4

8

16

0.01 0.1 1 10 100 1000

0.6

0.7

0.8

0.9

1.0

Figure 10: Assessing parameter optimisation. On the left, we see the respective distri-
butions of the 10 macro F1 scores for the best cost/sigma parameter pairs. See also the
output of f1Count in relation to this plot. On the right, we see the averaged macro F1
scores, for the full range of parameter values.

> getParams(params)

sigma cost

0.1 0.5

4.2.2 Classification

We can now re-use the result from our parameter optimisation (a best cost/sigma

pair is going to be automatically extracted, using the getParams method, although it

is possible to set them manually), and use them to build a model with all the marker

proteins and predict unknown residents using the svmClassification function (see

the manual page for more details). By default, the organelle markers will be defined

by the "markers" feature variables (and can be defined by the fcol parameter) e.g.

here we use the original markers in "markers.orig" as a use case. New feature

variables containing the organelle assignments and assignment probabilities9, called

scores hereafter, are automatically added to the featureData slot; in this case, using

the svm and svm.scores labels.

9The calculation of the classification probabilities is dependent on the classification algorithm.
These probabilities are not to be compared across algorithms; they do not reflect any biolog-
ically relevant sub-cellular localisation probability but rather an algorithm-specific classifica-
tion confidence score.

28

> ## manual setting of parameters

> svmres <- svmClassification(tan2009r1, fcol = "markers.orig",

+ sigma = 1, cost = 1)

> ## using default best parameters

> svmres <- svmClassification(tan2009r1, fcol = "markers.orig",

+ assessRes = params)

> processingData(svmres)

- - - Processing information - - -

Added markers from 'mrk' marker vector. Thu Oct 30 18:21:04 2014

Performed svm prediction (sigma=0.1 cost=0.5) Sat Mar 21 20:01:38 2015

MSnbase version: 1.13.16

> tail(fvarLabels(svmres), 4)

[1] "markers.orig" "markers" "svm"

[4] "svm.scores"

The original markers, classification results and scores can be accessed with the

fData accessor method, e.g. fData(svmres)$svm or fData(svmres)$svm.scores.

Two helper functions, getMarkers and getPredictions are available and add some

level of automation and functionality, assuming that the default feature labels are

used. Both (invisibly) return the corresponding feature variable (the markers or

assigned classification) and print a summary table. The fcol parameter must be

specified for getPredictions. It is also possible to defined a classification proba-

bility below which classifications are set to "unknown".

> p1 <- getPredictions(svmres, fcol = "svm")

ans

ER Golgi PM

253 32 315

mitochondrion

288

> minprob <- median(fData(svmres)$svm.scores)

> p2 <- getPredictions(svmres, fcol = "svm", t = minprob)

ans

29

ER Golgi PM

175 15 148

mitochondrion unknown

106 444

> table(p1, p2)

p2

p1 ER Golgi PM mitochondrion unknown

ER 175 0 0 0 78

Golgi 0 15 0 0 17

PM 0 0 148 0 167

mitochondrion 0 0 0 106 182

To graphically illustrate the organelle-specific score distributions, use

> boxplot(svm.scores ~ svm, data = fData(svmres), ylab = "SVM scores")

> abline(h = minprob, lwd = 2, lty = 2)

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

ER Golgi PM mitochondrion

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

S
V

M
 s

co
re

s

Figure 11: Organelle-specific SVM score distributions.

As can be see on figure 11, different organelles are characterised by different score

distributions. Using a unique threshold (minprob with value 0.78 above) results in

accepting 69 % of the initial ER predictions and only 37 % of the mitochondrion pre-

dictions. The getPredictions function also accepts organelle-specific score thresh-

olds. Below, we calculate organelle-specific median scores.

30

> ## including marker scores

> (ts1 <- tapply(fData(svmres)$svm.scores, fData(svmres)$svm, median))

ER Golgi PM

0.8453380 0.7455145 0.7713502

mitochondrion

0.7321776

Above, we include markers proteins (that have scores of 1 by default) when cal-

culating the respective organelle-specific scores. Alternatively, once might choose to

ignoring them.

> ## ignoring markers scores (i.e. scores == 1)

> (ts2 <- tapply(fData(svmres)$svm.scores, fData(svmres)$svm,

+ function(x) {
+ ## assuming scores of 1 are markers

+ scr <- median(x[x != 1])

+ ## in case no proteins were assigned to an organelle,

+ ## scr would be NA. Setting these cases to 1.

+ ifelse(is.na(scr), 1, scr)

+ }))

ER Golgi PM

0.8340708 0.7162588 0.7575094

mitochondrion

0.7246074

Using these scores equates to choosing the 50% predictions with highest scores for

organelle.

> getPredictions(svmres, fcol = "svm", t = ts2)

ans

ER Golgi PM

137 19 165

mitochondrion unknown

151 416

We can now visualise these results using the plotting functions presented in sec-

tion 4.1, as shown on figure 12. We clearly see that besides the organelle marker

clusters that have been assigned high confidence members, many other proteins have

substantially lower prediction scores.

31

> ptsze <- exp(fData(svmres)$svm.scores) - 1

> plot2D(svmres, fcol = "svm", fpch = "markers.orig", cex = ptsze)

> addLegend(svmres, fcol = "svm",

+ where = "bottomright", bty = "n", cex = .5)

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

PC1 (58.53%)

P
C

2
(2

9.
96

%
)

ER
Golgi
PM
mitochondrion

Figure 12: Representation of the svm prediction on the 888 data set. The svm scores
have been used to set the point size (cex argument; the scores have been transformed
to emphasise the extremes). Different symbols (fpch) are used to differentiate markers
and new assignments.

32

4.3 Semi-supervised ML

It is obvious that the original set of markers initially used (ER, Golgi, mitochondrion,

PM) is not a biologically realistic representation or the organelle diversity. Manually

finding markers is however time consuming, as it requires careful verification of the

annotation, and possibly critical for the subsequent analysis, as markers are directly

used in the training phase of the supervised ML approach.

As can be seen in the PCA plots above, there is inherent structure in the data

that can be made use of to automate the detection of new clusters. The phenoDisco

algorithm (Breckels et al., 2013) is an iterative method, that combines classification

of proteins to known groups and detection of new clusters. It is available in pRoloc

though the phenoDisco function10.

> pdres <- phenoDisco(tan2009r1, GS = 10, times = 100, fcol = "PLSDA")

The results are also appended to the featureData slot.

> processingData(pdres)

- - - Processing information - - -

Combined [888,4] and [1,4] MSnSets Wed Feb 13 17:28:54 2013

Run phenoDisco using 'PLSDA': Wed Feb 13 17:28:54 2013

with parameters times=100, GS=10, p=0.05, r=1.

MSnbase version: 1.5.13

> tail(fvarLabels(pdres), 3)

[1] "PLSDA" "markers" "pd"

The plot2D function, can, as previously, be utilised to visualise the results, as

shown on figure 13.

10In the interest of time, phenoDisco is not executed when the vignette is dynamically built.
The data object can be located with dir(system.file("extdata", package = "pRoloc"),

full.names = TRUE, pattern = "pdres.rda") and loaded with load.

33

> plot2D(pdres, fcol = "pd")

> addLegend(pdres, fcol = "pd", ncol = 2,

+ where = "bottomright", bty = "n", cex = .5)

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

PC1 (58.53%)

P
C

2
(2

9.
96

%
)

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

ER/Golgi
PM
Phenotype 1
Phenotype 2
Phenotype 3

Phenotype 4
Phenotype 5
mitochondrion
unknown

Figure 13: Representation of the phenoDisco prediction and cluster discovery results.

34

4.4 Following up on novelty discovery

The newly discovered phenotypes need to be carefully validated prior to further

analysis. Indeed, as the structure of the data is made use of in the discovery al-

gorithm, some might represent peculiar structure in the data and not match with

biologically relevant groups. The tan2009r1 data has been submitted to a careful

phenodisco analysis and validation in Breckels et al. (2013). The results of this new,

augmented marker set is available in the pd.markers feature data. These markers

represent a combined set of the original markers and validated proteins from the

new phenotypes.

> getMarkers(tan2009r1, fcol = "pd.markers")

organelleMarkers

Cytoskeleton ER Golgi

7 20 6

Lysosome Nucleus PM

8 20 15

Peroxisome Proteasome Ribosome 40S

4 11 14

Ribosome 60S mitochondrion unknown

25 14 744

The augmented set of markers is now employed to repeat the classification using

the support vector machine classifier. We apply a slightly different analysis than

described in section 4.2.2 (page 28). In the code chunks below11, we use class

specific weights when creating the svm model; the weights are set to be inversely

proportional to class frequencies.

> w <- table(fData(tan2009r1)[, "pd.markers"])

> (w <- 1/w[names(w) != "unknown"])

Cytoskeleton ER Golgi

0.14285714 0.05000000 0.16666667

Lysosome Nucleus PM

0.12500000 0.05000000 0.06666667

Peroxisome Proteasome Ribosome 40S

0.25000000 0.09090909 0.07142857

Ribosome 60S mitochondrion

11As previously, the results are pre-computed and available in the extdata package directory.

35

0.04000000 0.07142857

> params2 <- svmOptimisation(tan2009r1, fcol = "pd.markers",

+ times = 10, xval = 5,

+ class.weights = w,

+ verbose = FALSE)

> tan2009r1 <- svmClassification(tan2009r1, params2,

+ class.weights = w,

+ fcol = "pd.markers")

The data is visualised as described previously, were we use the svm classification

a-posteriori probability to set the point size.

36

> ptsze <- exp(fData(tan2009r1)$svm.scores) - 1

> plot2D(tan2009r1, fcol = "svm", cex = ptsze)

> addLegend(tan2009r1, fcol = "svm", where = "bottomright",

+ ncol = 2, bty = "n", cex = .5)

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

PC1 (58.53%)

P
C

2
(2

9.
96

%
)

Cytoskeleton
ER
Golgi
Lysosome
Nucleus
PM

Peroxisome
Proteasome
Ribosome 40S
Ribosome 60S
mitochondrion

Figure 14: Second round of classification using the augmented set of markers obtained
using phenoDisco as detailed in Breckels et al. (2013) and a weighted svm classifier.

37

5 Conclusions

This tutorial focuses on practical aspects of organelles proteomics data analysis using

pRoloc. Two important aspects have been illustrates: (1) data generation, manip-

ulation and visualisation and (2) application of contemporary and novel machine

learning techniques. Other crucial parts of a full analysis pipeline that were not

covered here are raw mass-spectrometry quality control, quantitation, post-analysis

and data validation.

Data analysis is not a trivial task, and in general, one can not assume that any off-

the-shelf algorithm will perform well. As such, one of the emphasis of the software

presented in this document is allowing users to track data processing and critically

evaluate the results.

38

Acknowledgement

We would like to thank Mr Daniel J.H. Nightingale, Dr Arnoud J. Groen, Dr Claire

M. Mulvey and Dr Andy Christoforou for their organelle marker contributions.

Session information

All software and respective versions used to produce this document are listed below.

� R version 3.1.3 (2015-03-09), x86_64-unknown-linux-gnu

� Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_US.UTF-8,
LC_COLLATE=C, LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8,
LC_PAPER=en_US.UTF-8, LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C,
LC_MEASUREMENT=en_US.UTF-8, LC_IDENTIFICATION=C

� Base packages: base, datasets, grDevices, graphics, methods, parallel, stats,
stats4, utils

� Other packages: AnnotationDbi 1.28.2, Biobase 2.26.0, BiocGenerics 0.12.1,
BiocParallel 1.0.3, GenomeInfoDb 1.2.4, IRanges 2.0.1, MLInterfaces 1.46.0,
MSnbase 1.14.2, Rcpp 0.11.5, S4Vectors 0.4.0, XML 3.98-1.1,
annotate 1.44.0, class 7.3-12, cluster 2.0.1, knitr 1.9, mzR 2.0.0, pRoloc 1.6.2,
pRolocdata 1.4.1, xtable 1.7-4

� Loaded via a namespace (and not attached): BBmisc 1.9, BatchJobs 1.6,
BiocInstaller 1.16.2, BradleyTerry2 1.0-6, DBI 0.3.1, FNN 1.1,
MALDIquant 1.11, MASS 7.3-40, Matrix 1.1-5, RColorBrewer 1.1-2,
RSQLite 1.0.0, SparseM 1.6, affy 1.44.0, affyio 1.34.0, base64enc 0.1-2,
brew 1.0-6, brglm 0.5-9, car 2.0-25, caret 6.0-41, checkmate 1.5.2,
codetools 0.2-11, colorspace 1.2-6, digest 0.6.8, doParallel 1.0.8, e1071 1.6-4,
evaluate 0.5.5, fail 1.2, foreach 1.4.2, formatR 1.0, gdata 2.13.3,
genefilter 1.48.1, ggplot2 1.0.1, grid 3.1.3, gtable 0.1.2, gtools 3.4.1, highr 0.4,
impute 1.40.0, iterators 1.0.7, kernlab 0.9-20, lattice 0.20-30, limma 3.22.7,
lme4 1.1-7, lpSolve 5.6.10, mclust 4.4, mgcv 1.8-5, minqa 1.2.4, munsell 0.4.2,
mvtnorm 1.0-2, mzID 1.4.1, nlme 3.1-120, nloptr 1.0.4, nnet 7.3-9,
pbkrtest 0.4-2, pcaMethods 1.56.0, pls 2.4-3, plyr 1.8.1,
preprocessCore 1.28.0, proto 0.3-10, proxy 0.4-14, quantreg 5.11,
randomForest 4.6-10, rda 1.0.2-2, reshape2 1.4.1, rpart 4.1-9, sampling 2.6,
scales 0.2.4, sendmailR 1.2-1, sfsmisc 1.0-27, splines 3.1.3, stringr 0.6.2,
survival 2.38-1, tools 3.1.3, vsn 3.34.0, zlibbioc 1.12.0

References

Lisa M Breckels, Laurent Gatto, Andy Christoforou, Arnoud J Groen, Kathryn S
Lilley, and Matthew W B Trotter. The effect of organelle discovery upon sub-
cellular protein localisation. J Proteomics, Mar 2013. doi: 10.1016/j.jprot.2013.
02.019.

39

Tom P. J. Dunkley, Svenja Hester, Ian P. Shadforth, John Runions, Thilo Weimar,
Sally L. Hanton, Julian L. Griffin, Conrad Bessant, Federica Brandizzi, Chris
Hawes, Rod B. Watson, Paul Dupree, and Kathryn S. Lilley. Mapping the ara-
bidopsis organelle proteome. Proc Natl Acad Sci USA, 103(17):6518–6523, Apr
2006. doi: 10.1073/pnas.0506958103. URL http://dx.doi.org/10.1073/pnas.

0506958103.

Leonard J. Foster, Carmen L. de Hoog, Yanling Zhang, Yong Zhang, Xiaohui Xie,
Vamsi K. Mootha, and Matthias Mann. A mammalian organelle map by protein
correlation profiling. Cell, 125(1):187–199, Apr 2006. doi: 10.1016/j.cell.2006.03.
022. URL http://dx.doi.org/10.1016/j.cell.2006.03.022.

Laurent Gatto and Kathryn S Lilley. MSnbase – an R/Bioconductor package for iso-
baric tagged mass spectrometry data visualization, processing and quantitation.
Bioinformatics, 28(2):288–9, Jan 2012. doi: 10.1093/bioinformatics/btr645.

Laurent Gatto, Juan Antonio Vizcáıno, Henning Hermjakob, Wolfgang Huber, and
Kathryn S Lilley. Organelle proteomics experimental designs and analysis. Pro-
teomics, 2010. doi: 10.1002/pmic.201000244.

Robert C. Gentleman, Vincent J. Carey, Douglas M. Bates, Ben Bolstad, Mar-
cel Dettling, Sandrine Dudoit, Byron Ellis, Laurent Gautier, Yongchao Ge, Jeff
Gentry, Kurt Hornik, Torsten Hothorn, Wolfgang Huber, Stefano Iacus, Rafael
Irizarry, Friedrich Leisch, Cheng Li, Martin Maechler, Anthony J. Rossini, Gun-
ther Sawitzki, Colin Smith, Gordon Smyth, Luke Tierney, Jean Y. H. Yang,
and Jianhua Zhang. Bioconductor: open software development for computa-
tional biology and bioinformatics. Genome Biol, 5(10):–80, 2004. doi: 10.1186/
gb-2004-5-10-r80. URL http://dx.doi.org/10.1186/gb-2004-5-10-r80.

R Development Core Team. R: A Language and Environment for Statistical Com-
puting. R Foundation for Statistical Computing, Vienna, Austria, 2011. URL
http://www.R-project.org/. ISBN 3-900051-07-0.

Philip L. Ross, Yulin N. Huang, Jason N. Marchese, Brian Williamson, Kenneth
Parker, Stephen Hattan, Nikita Khainovski, Sasi Pillai, Subhakar Dey, Scott
Daniels, Subhasish Purkayastha, Peter Juhasz, Stephen Martin, Michael Bartlet-
Jones, Feng He, Allan Jacobson, and Darryl J. Pappin. Multiplexed protein
quantitation in saccharomyces cerevisiae using amine-reactive isobaric tagging
reagents. Mol Cell Proteomics, 3(12):1154–1169, Dec 2004. doi: 10.1074/mcp.
M400129-MCP200. URL http://dx.doi.org/10.1074/mcp.M400129-MCP200.

RStudio and Inc. shiny: Web Application Framework for R, 2014. URL http:

//CRAN.R-project.org/package=shiny. R package version 0.10.1.

Denise J Tan, Heidi Dvinge, Andy Christoforou, Paul Bertone, Alfonso A Mar-
tinez, and Kathryn S Lilley. Mapping organelle proteins and protein complexes
in drosophila melanogaster. J Proteome Res, 8(6):2667–78, Jun 2009. doi:
10.1021/pr800866n.

40

http://dx.doi.org/10.1073/pnas.0506958103
http://dx.doi.org/10.1073/pnas.0506958103
http://dx.doi.org/10.1016/j.cell.2006.03.022
http://dx.doi.org/10.1186/gb-2004-5-10-r80
http://www.R-project.org/
http://dx.doi.org/10.1074/mcp.M400129-MCP200
http://CRAN.R-project.org/package=shiny
http://CRAN.R-project.org/package=shiny

	1 Introduction
	1.1 Spatial proteomics
	1.2 About R and pRoloc

	2 Data structures
	2.1 Test data description
	2.2 Importing and loading data
	2.2.1 The original data file
	2.2.2 From csv files to R data
	2.2.3 The MSnSet class

	2.3 pRoloc's organelle markers
	2.4 Data processing

	3 Data visualisation
	3.1 Features of interest
	3.2 Interactive visualisation

	4 Data analysis
	4.1 Unsupervised ML
	4.2 Supervised ML
	4.2.1 Classification algorithm parameters optimisation
	4.2.2 Classification

	4.3 Semi-supervised ML
	4.4 Following up on novelty discovery

	5 Conclusions

