Using the inSilicoDb package

Jonatan Taminau*

CoMo, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels,
Belgium

1 The inSilico database

With more than 500,000 genomic profiles freely available in the public domain,
there is a huge amount of information accessible for computational biologists or
bioinformaticians. However, accessibility to these data requires complex com-
putational steps. Manual parsing of annotations and keywords, which is in
most cases a necessary evil, tends to be time-consuming and is known to be
error-prone. Also the wide variety of normalization and preprocessing methods
makes the comparability of different existing studies hard, or even impossible.
The inSilico initiative (http://insilico.ulb.ac.be) provides an answer to
those problems with its freely available web-based database tool: the inSilico
database!. Starting with all public available human Affymetrix studies from
Gene Expression Omnibus (GEO) [1] it provides those studies in a consistent
and well curated form. With a direct connection to GenePattern [3] and the
ability to export the data to different formats, the inSilico database is an efficient
mean to re-analyse public datasets and improve reproducibility in genome-wide
research.

To further ease the use of this vast amount of genomic data the inSilicoDb
R package was developed. This package can be seen as a different front-end to
the core inSilico database and, although it provides only limited functionality
compared to the web-based tool, it can become very valuable for R programmers
or anyone who is interested in large scale analysis using automated scripting.

Similar packages to retrieve gene expression data in R exist [5, 4], but the
added value and strength of this package is tightly connected to the innovative
concept of the inSilico database and will therefore circumvent common obstacles
like incompatibility and missing or malformed annotations.

*jtaminau@vub.ac.be
IManuscript in preparation

2 Getting started using inSilicoDb

As this section will show, accessing data from the inSilico database is surprisingly
easy and straightforward.

2.1 Simple access

Suppose one is interested in a number of publicly available gene expression
studies which he found while browsing Gene Expression Omnibus (GEO) or
the inSilico database. Using only the GSE identifier, a completely annotated
and formatted dataset can be downloaded in just seconds, without any need for
further manual parsing: You need to login to access datasets and datasetinfo.
Use your InSilicoDB login and an md5 hash of your password. For this example
we’re using a restricted test account.

> library("inSilicoDb");
> InSilicoLogin("rpackage_tester@insilicodb.com", "5c4d0b231e5cba4a0Obc54783b385¢cc9a');

[1] 5296

> res = getDatasets("GSE4635") ;
> eset = res[[1]];

The result of getDataset is a list, containing a Bioconductors ExpressionSet
(eset) for every platform that exists for this dataset (in the example there is only
one platform). An alternative approach to obtain the same data is to specify
the platform. In this case no list but the expression set is directly returned:

> eset = getDataset ("GSE4635", "GPL96");

And in case the platform is unknown, the auxiliary function getPlatforms
is provided:

> platforms = getPlatforms ("GSE4635");
> print(platforms);

[1] "GPL96"

Once an expression set is retrieved, all available Bioconductor packages can
be applied for further analysis, as the following code illustrates:

#eset = getDataset ("GSE4635", "GPL96", features = "gene");
#heatmap (exprs (eset) [1:100,1);
library("limma")
eset = getDataset ("GSE4635", "GPL96",
norm="FRMA", features = '"gene");
Find 50 most discriminating genes
f = pData(eset)[,"Smoker"]

VV + VVvyVvy

design = model.matrix("f);

fit = eBayes(ImFit(eset,design));

t = topTable(fit, coef=2, number=50);

selected = is.element (rownames (exprs(eset)),
t[,"SYMBOL"])

eset = eset[selected,];

labels = pData(eset) [, "Smoker"];

heatmap (exprs (eset), labCol=labels);

e o |

VVV+ VVVYV

1-smoker
1-smoker
1-smoker
1-smoker
1t smoker
1t smoker
1t smoker
1t smoker

(Only the first 100 genes are printed for simplicity).

In case only the annotation information is needed and there is no need for
the numerical data, the getAnnotations function also exists for convenience:

> annot = getAnnotations("GSE4635", "GPL96");
> pData(annot) ;

Age Sex Anatomical Site Cell Type Smoker
GSM15729 N/A N/A bronchus, lung bronchial epithelial cell non-smoker
GSM104072 N/A N/A Dbronchus, lung bronchial epithelial cell current smoker
GSM104074 N/A N/A Dbronchus, lung bronchial epithelial cell current smoker
GSM104075 45 female bronchus, lung N/A current smoker
GSM104076 N/A N/A bronchus, lung bronchial epithelial cell current smoker

GSM104078 N/A N/A Dbronchus, lung bronchial epithelial cell non-smoker

GSM104080 N/A N/A Dbronchus, lung bronchial epithelial cell non-smoker
GSM104082 N/A N/A bronchus, lung bronchial epithelial cell non-smoker
Ethnicity Cigarette Consumption (pack/years) platform
GSM15729 N/A N/A GPL96
GSM104072 N/A N/A GPL96
GSM104074 N/A N/A GPL96
GSM104075 african-american (AFA) 14 GPL96
GSM104076 N/A N/A GPL96
GSM104078 N/A N/A GPL96
GSM104080 N/A N/A GPL96
GSM104082 N/A N/A GPL96

2.2 More options

By default all numerical data is retrieved the same way the original authors have
submitted the data to GEO and can therefore have been processed by a wide
variety of preprocessing methods. However, when combining different studies a
consistent preprocessing is required and therefore all studies for which there are
CEL files available, are also precomputed by applying the FRMA preprocessing
method [2]. The user can retrieve those studies as fast and easy as the original
ones, simply by using the optional norm parameter.

> eset = getDataset ("GSE4635", "GPL96", norm="FRMA");

All gene expression matrices contain probes as features, although it is also
possible to retrieve the genes instead. This probe to gene mapping is precom-
puted for every dataset and can be selected using the genes parameter. By
default probes are selected, as this is how the data was submitted to GEO.

> eset = getDataset("GSE4635", "GPL96");
> print(nrow(eset));

Features
22215

> eset = getDataset ("GSE4635", "GPL96", features="gene");
> print(nrow(eset));

Features
12698

2.3 Create your own loop...

One of the advantages of retrieving data through R is the possibility to develop
a whole automated workflow in just a few lines of code. The following example
illustrates the many opportunities researchers can have using this tool.

In the example code below, we iterate over a list of series GSE identifiers
and try to retrieve every dataset from the database. Once retrieved some basic
analysis is performed (printing the number of annotations and missing values).
Note that the getDataset function can throw an error (e.g. no internet con-
nection, dataset is not available, etc.) which is best caught in a try-catch loop,
as is shown in the example.

> 1st 1ist ("GSE4635", "GSExxx", "GSE781");
> gpl = "GPL96";

> for(gse in 1lst)

+ 9

catn = function(...) { cat(...,"\n"); }
catn("Processing",gse) ;

catn(" ");

eset = tryCatch({getDataset (gse, gpl);},

if(is.null(eset)) { next; }
catn("Number of annotations:");
catn(ncol (pData(eset)));
catn("Number of missing values:");
catn(sum(is.na(exprs(eset))));

}

+ 4+ + + + + F o+ o+ o+ o+

Processing GSE4635

Number of annotations:

8

Number of missing values:
0

Processing GSExxx

[1] "Error: Stopped because of previous errors\n"
Processing GSE781

Number of annotations:
24

Number of missing values:
0

3 Conclusion

This package is built in addition to a very powerful web-based database tool for
genomic analysis. Despite its simplicity, it captures many of the benefits of this
tool and provides the typical R users efficient means of performing large scale
genomic analysis using automated scripting.

error = function(x) { print(as.character(x)); NULL;

P

4 Session Info
> sessionInfo()

R version 3.1.2 (2014-10-31)
Platform: x86_64-unknown-linux-gnu (64-bit)

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

[3] LC_TIME=en_US.UTF-8 LC_COLLATE=C

[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:
[1] parallel stats graphics grDevices utils datasets methods
[8] Dbase

other attached packages:

[1] limma_3.22.4 inSilicoDb_2.2.1 RCurl_1.95-4.5

[4] bitops_1.0-6 Biobase_2.26.0 BiocGenerics_0.12.1
[7] rjson_0.2.15

loaded via a namespace (and not attached):
[1] tools_3.1.2

References

[1] Ron Edgar, Michael Domrachev, and Alex E Lash. Gene expression omnibus:
NCBI gene expression and hybridization array data repository. Nucleic Acids
Res, 30(1):207-10, Jan 2002.

[2] Matthew N McCall, Benjamin M Bolstad, and Rafael A Irizarry. Frozen
robust multiarray analysis (fRMA). Biostatistics, 11(2):242-53, Apr 2010.

[3] Michael Reich, Ted Liefeld, Joshua Gould, Jim Lerner, Pablo Tamayo, and
Jill P Mesirov. Genepattern 2.0. Nat Genet, 38(5):500-1, May 2006.

[4] Davis Sean and Paul S Meltzer. GEOquery: a bridge between the gene
expression omnibus (GEO) and bioconductor. Bioinformatics, 23(14):1846—
7, Jul 2007.

[5] Yuelin Zhu, Sean Davis, Robert Stephens, Paul S Meltzer, and Yidong Chen.
GEOmetadb: powerful alternative search engine for the gene expression om-
nibus. Bioinformatics, 24(23):2798-800, Dec 2008.

