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1 Introduction

A standard application of gene expression data is to search for genes which are
differentially expressed between two (or more) conditions. For this, depending
on the nature of the data, tests for continous values (microarrays, t-test and
derivatives, limma-package) or tests discrete counts (RNA-Seq, edgeR- [Rob10]
or DESeq-package [And10], just to name two) can be applied. Having found a
list of differentially expressed genes (DEG), the next step is to get an impression
about the functions of these DEG. I.e. scientists want to know what these genes
are doing and why are they differentially expressed in their experiment.

For this, searching for enriched gene sets has become standard analysis: The
data is implicitly reorganised in 2× 2 contingency tables and a hypergeometric
or chi-squared test is applied to get a P -value. If the P -value is sufficiently
small, the assumption of independence is rejected and some association between
the gene sets assumed. The most popular database providing gene sets is the
Gene Ontology (GO) geneontology.org. Other popular gene set systems are
PFam, KEGG or {C|K}OG.

Most tools focus on a simple enrichment analysis checking whether there is
a dependency between a given DEG list and a list of gene sets, for instance
GOstats [Fal07]. However, Simpson’s Paradoxon tells us that unresolved details
in the gene sets might put a bias to the results and its interpretation. To tackle
this problem, the geecc-package allows for enrichment analysis between three
categories. A potential third category of interest might be the sequence length,
chromosomal position, GC content or phylostrata.

Basically, geecc permits the application of tests for the hierarchy of log-linear
models (e.g. [Agr92]). This includes tests where the assumption of

� mutual independence

� single pairwise (joint) independence

� two pairwise (conditional) independence

� homogenous association, no three-way interaction

defines the null-model (null-hypothesis). Note that the alternative model is the
saturated model. Using these tests, questions like ’Are these variables mutually
independent from each other?’ or ’Is there evidence for three-way interaction?’
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can be answered. Depending on the specific question of interest, testing for
different directions of enrichment, i.e. over-representation, under-representation
or both, is possible. For this, the geecc-package calls routines from the hypergea-
package (hypergeom.test()) and MASS-package (loglm()). The routines from
hypergea-package are calculating P -values from a hypergeometric distribution,
whereby this calculation is done with parallelized C code. The routines can
be used if highly accurate P -values are required and approximation by chi-
squared tests may not be reliable. The loglm()-function provides approximate
chi-squared tests via convenient access by formulas for linear models. Tables
1 and 2 give an overview for different null-models, possible test-directions and
test-types.

Table 1: Tests for 2× 2 questions.

null-model direction test

mutual independence one-sided hypergeometric
mutual independence two-sided hypergeometric, χ2

Table 2: Tests for 2× 2× 2 questions.

null-model direction test

mutual independence one-sided hypergeometric
mutual independence two-sided hypergeometric, χ2

joint independence one-sided hypergeometric
joint independence two-sided hypergeometric, χ2

conditional independence two-sided χ2

homogenous association two-sided χ2

2 General workflow - a worked example

The workflow can be divided into four distinct steps. In a first step the user have
to prepare the data, i.e. a decision has to be made what are the differentially
expressed genes (proper threshoulds for P -values and fold-changes), which GO
terms should be considered, and, in case that a third category should be taken
into account, assign the gene ids to proper categories. The outcome of this step
should be a named list, where each item is again a named list. This inner list
contains the variables and the items assigned to them.

In this worked example we introduce the different steps that have to be
done during a geecc analysis. We use gene expression data from Marioni et al.
[Mar08] (downloaded from http://giladlab.uchicago.edu/data.html), who
compared differences in gene expression in liver and kidney.

To speed up the examples in the vignette we consider only the first 15000
probe sets.
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2.1 Step 1: Data preparation

> library(geecc)

> #load marioni data set

> data(marioni)

> marioni <- marioni[1:15000, ]

> # adjust for multiple testing and get probe sets which are

> # at least two-fold regulated and fdr smaller than 5 %

> fdr <- p.adjust(marioni[, "Pvalue"], "fdr")

> deg.diff <- rownames(marioni)[ which(fdr < 0.05) ]

> deg.up <- rownames(marioni)[ which(fdr < 0.05 & marioni[, "logFC"] > 0) ]

> deg.down <- rownames(marioni)[ which(fdr < 0.05 & marioni[, "logFC"] < 0) ]

> sapply(list(deg.diff, deg.up, deg.down), length)

[1] 9983 5337 4646

Next, prepare the gene sets.

> library(GO.db)

> library(hgu133plus2.db)

> ## divide sequence lengths into 33 percent quantiles

> seqlen <- setNames(marioni[, "End"] - marioni[, "Start"] + 1, rownames(marioni))

> step <- 33; QNTL <- seq(0, 100, step)

> qntl <- cbind(quantile(seqlen, prob=QNTL/100), QNTL)

> cc <- cut(seqlen, breaks=qntl[,1], labels=qntl[-length(QNTL),2], include.lowest=TRUE)

> seqlen.qntl <- cbind(seqlen, cc )

> #check if there are three groups of same size

> table(seqlen.qntl[,2])

1 2 3

4950 4950 4950

> ## prepare a list of levels for each category

> ## restrict to GO category 'cellular component' (CC)

> category1 <- list( diff=deg.diff, up=deg.up, down=deg.down )

> category2 <- GO2list(db=hgu133plus2GO2PROBE, go.cat="CC")

> category3 <- split(rownames(seqlen.qntl), factor(seqlen.qntl[,2]))

> names(category3) <- as.character(c(QNTL[1:(length(QNTL)-1)]))

> ## check content of each category list

> lapply(category1[1:3], head)

$diff

[1] "205626_s_at" "220281_at" "207102_at" "205978_at" "206345_s_at"

[6] "219630_at"

$up

[1] "205626_s_at" "220281_at" "205978_at" "219630_at" "205799_s_at"

[6] "224179_s_at"

$down

[1] "207102_at" "206345_s_at" "207584_at" "220383_at" "206354_at"

[6] "206386_at"
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> lapply(category2[1:3], head)

$`GO:0000015`

IEA IEA IEA IEA IEA

"201231_s_at" "216554_s_at" "217294_s_at" "240258_at" "201313_at"

IEA

"204483_at"

$`GO:0000109`

IDA IDA IDA IDA IDA

"1554882_at" "1554883_a_at" "205162_at" "203719_at" "203720_s_at"

IDA

"228131_at"

$`GO:0000110`

IDA IDA

"210158_at" "235215_at"

> lapply(category3[1:3], head)

$`0`

[1] "206386_at" "224179_s_at" "207262_at" "236646_at" "206350_at"

[6] "242601_at"

$`33`

[1] "219630_at" "205755_at" "206753_at" "205576_at" "206505_at" "207096_at"

$`66`

[1] "205626_s_at" "220281_at" "207102_at" "205978_at" "206345_s_at"

[6] "207584_at"

> CatList <- list(deg=category1, go=category2, len=category3)

2.2 Step 2: Initialize objects

In a second step, the concubfilter-object (storing the filters that should be ap-
plied during analysis) and the concub-object (storing categories, their variables
and other options for the categories) have to be initialized.

In this worked example we perform a simple GO enrichment analysis for
differentially expressed genes. We don’t want to consider only over-represented
GO terms, but also under-represented ones, so we apply a "two.sided" test.

> ## run a simple two-way analysis on 'deg' and 'go'

> ## create a ConCubFilter-object

> CCF.obj <- new("concubfilter", names=names(CatList)[1:2], p.value=0.5,

+ test.direction="two.sided", skip.min.obs=2)

> ## create a ConCub-object

> CC.obj <- new("concub", fact=CatList[1:2], population=rownames(marioni),

+ approx=5, null.model=~deg+go)
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2.3 Step 3: Run tests and filter results

In the third step we run the test and apply some additional filtering on the
outcome.

In this example we consider only the first 400 GO terms.

> ## check current filter settings and change some filters

> CCF.obj

####################

# current filter settings

####################

Number of categories: 2

Maximum P-value: 0.1

Minimum absolute log2 odds ratio: 0

Test direction: two.sided

Skip test in case of

no items: TRUE

number of items less than: 1

minimum marginal (to skip small gene sets): deg=0,go=0

Layers to be dropped in case of

insignificant P-values: deg=FALSE,go=FALSE

wrong direction: deg=FALSE,go=FALSE

small abs(log2(or)): deg=FALSE,go=FALSE

####################

> drop.insignif.layer(CCF.obj) <- setNames(c(FALSE, TRUE), names(CatList)[1:2])

> p.value(CCF.obj) <- 0.01

> CCF.obj

####################

# current filter settings

####################

Number of categories: 2

Maximum P-value: 0.01

Minimum absolute log2 odds ratio: 0

Test direction: two.sided

Skip test in case of

no items: TRUE

number of items less than: 1

minimum marginal (to skip small gene sets): deg=0,go=0

Layers to be dropped in case of

insignificant P-values: deg=FALSE,go=TRUE

wrong direction: deg=FALSE,go=FALSE

small abs(log2(or)): deg=FALSE,go=FALSE

####################

> CC.obj3 <- filterConCub(obj=CC.obj2, filter=CCF.obj, p.adjust.method="BH")
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Additional filters can be applied, which drop useless test results, for instance
those with insignificant P -values (according to the setting of p.value in the
concubfilter-object). In addition, we are able to adjust the P -values for mul-
tiple testing at this stage. This is done within the filterConCub-function by
calling the R-routine p.adjust with the ’method’ set by the user (Benjamini-
Hochberg adjustment [BH95] in this example).

2.4 Step 4: Visualization and storing final table

In the last step, the test results are visualized and can be stored in a data.frame

for further work. Results are visualized in a simple heatmap. This fosters
interpretation of possible associations in the data. The heatmap.2-function from
gplots-package is used. Arguments of this function (see man page of heatmap.2),
especially size of labels and clustering options, can be adapted to the users needs
by passing the settings via the ’args_heatmap.2’-parameter (a list).

> ## interpretation of raw GO ids is difficult, use term description

> translation <- list(go=setNames(sapply(names(category2), Term), names(category2)))

> ## pdf("output.2w.pdf")

> plotConCub( obj=CC.obj3, filter=CCF.obj, col=list(range=c(-5,5))

+ , alt.names=translation, t=TRUE, dontshow=list(deg=c("diff"))

+ , args_heatmap.2=list(Rowv=TRUE, dendrogram="row", margins=c(3,12))

+ )

> ## dev.off()

> res2w <- getTable(obj=CC.obj3, na.rm=TRUE)
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Figure 1: Outcome of step 4. Heatmap showing the result of a simple two way analysis with a category with two variables deg (up and
down) and a category with many variables (go). Colored cells are the log2 odds ratio indicating over- and under-representation. Stars
show significance of the odds ratio.
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For this example the outcome is shown in Figure 1. Each cell in the heatmap
corresponds to the (log2) odds ratio for the variables compared. The default is
to express enrichment (over-representation) of variables by red colors. Under-
representation is emphasized by blue colors. Stars (or a dot) within each cell
show the degree of significance of over- and under-representation in analogy to
other tests, i.e. ’.’ corresponds to a P -value between 0.05 and 0.01, whereas
’****’ indicates that the P -value is smaller than 0.001, for example. Some cells
are white colored. These cells usually correspond to not-performed test due to
filter-settings.

In three-ways approaches the plotConCub-function will create multiple heatmaps
at the same time. So it is recommended to surround this command by a loop
which puts each heatmap into a separate (svg, jpg, ...) file (can be controled by
the ’fix.cat’-parameter) or to put everything into a pdf-file (as indicated by
the comment out lines in the example).

The filterConCub-function allows to adjust P -values for multiple testing at
an early stage. However, the adjustment is made for the whole data, which might
not be the best time point for adjustment for some experiments. In this case,
setting p.adjust.method="none" skips P -value adjustment. The adjustment
can then be done on the table obtained by the getTable-function:

> res2wa <- getTable(CC.obj3, na.rm=TRUE, dontshow=list(deg=c("up", "down")))

> res2wa[, 'p.value.bh'] <- p.adjust(res2wa[, 'p.value'], method="BH")

> res2wa <- res2wa[ res2wa[, 'p.value.bh'] <= 0.05, ]

Here we select the results for all differentially expressed genes and apply a
Benjamini-Hochberg adjustment on the P -values.

3 Working with three categories

3.1 Testing for mutual independence

We stay with the data from the worked example. A typical first question that
might be asked is, if independence of deg, len and go for some combinations
of variables can be confirmed.

We confine ourselves to the results from the worked example to test for
mutual independence of the three categories. For this, we have to set the
’null.model’-parameter accordingly: null.model=∼ deg+go+len.

> CCF.obj.3wmi <- new("concubfilter", names=names(CatList), p.value=0.5,

+ test.direction="two.sided", skip.min.obs=2)

> CC.obj.3wmi <- new("concub", fact=CatList, population=rownames(marioni),

+ null.model=~deg+go+len)

> gorange <- as.character(unique(res2w$go))

> CC.obj2.3wmi <- runConCub( obj=CC.obj.3wmi, filter=CCF.obj.3wmi,

+ nthreads=4, rng=list(go=gorange) )

> drop.insignif.layer(CCF.obj.3wmi) <- setNames(c(FALSE, TRUE, FALSE), names(CatList))

> p.value(CCF.obj.3wmi) <- 0.01

> CC.obj3.3wmi <- filterConCub( obj=CC.obj2.3wmi, filter=CCF.obj.3wmi,

+ p.adjust.method="BH")

8



> ## pdf("output.3w.pdf")

> plotConCub( obj=CC.obj3.3wmi, filter=CCF.obj.3wmi, col=list(range=c(-5,5))

+ , alt.names=translation, t=FALSE, dontshow=list(deg=c("diff"))

+ , args_heatmap.2=list(Rowv=TRUE, dendrogram="row", margins=c(3,12))

+ )

> ## dev.off()

> res3wmi <- getTable(obj=CC.obj3.3wmi, na.rm=TRUE)
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Figure 2: Outcome of a test on mutual independence. Results for up- and down-regulated genes.
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We see some differences in the sequence lengths of up- and down-regulated
genes. For instance, we see that enrichment of GO term ’peroxisomal matrix’
in up-regulated genes is caused by small-size sequences, whereas enrichment of
GO term ’acrosomal vesicle’ is caused by long sequences.

3.2 Joint independence

Testing for mutual independence of all three categories gives a first idea, but
finally little information since there are multiple non-three-way associations that
can cause rejection of this nullhypothesis. We can go deeper to figure out the
single pairwise (joint) dependencies applying ∼ deg+go*len, ∼ deg*go+len,
or ∼ deg*len+go.

> CCF.obj.3wsp1 <- new("concubfilter", names=names(CatList), p.value=0.5,

+ test.direction="two.sided", skip.min.obs=2)

> CC.obj.3wsp1 <- new("concub", fact=CatList, population=rownames(marioni),

+ null.model=~deg+go*len)

> gorange <- as.character(unique(res3wmi$go))

> CC.obj2.3wsp1 <- runConCub( obj=CC.obj.3wsp1, filter=CCF.obj.3wsp1, nthreads=2,

+ rng=list(go=gorange) )

> drop.insignif.layer(CCF.obj.3wsp1) <- setNames(c(FALSE, TRUE, FALSE), names(CatList))

> p.value(CCF.obj.3wsp1) <- 0.05

> CC.obj3.3wsp1 <- filterConCub( obj=CC.obj2.3wsp1, filter=CCF.obj.3wsp1,

+ p.adjust.method="BH")
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Figure 3: Outcome of a test on joint independence. Results for up- and down-regulated genes.
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From Figure 3 we see that this null-modell does not sufficiently describe
most of the combinations between variables of categories. There are still many
rejections (significant P -values). For the following variables this null-model seem
to fit:

> res3wsp1 <- getTable(obj=CC.obj3.3wsp1, na.rm=TRUE)

> res3wmi_sig <- res3wmi[res3wmi$p.value < 0.05, ]

> res3wsp1_sig <- res3wsp1[res3wsp1$p.value < 0.05, ]

> head(res3wmi_sig[ !(do.call("paste", res3wmi_sig[,names(CatList)])

+ %in% do.call("paste", res3wsp1_sig[,names(CatList)])), 1:8])

deg go len n.deg n.go n.len n.tags p.value

21 down GO:0005737 0 4646 10498 4950 301 0.000000e+00

24 down GO:0005739 0 4646 2479 4950 71 1.782605e-05

39 down GO:0005765 0 4646 606 4950 11 7.214359e-03

42 down GO:0005768 0 4646 395 4950 14 4.949656e-03

57 down GO:0005794 0 4646 1700 4950 38 1.485809e-04

63 down GO:0005829 0 4646 6815 4950 159 0.000000e+00

So, for these variables there seem to be no hint that differential expression
on the one hand and function and sequence length on the other hand are not
independent from each other.

3.3 No threeway interaction vs. saturated model

Finally, we test for the last null-model in the hierarchy of log-linear models. Here
we detect those combinations which are probably really completely depending
on each other.

> CCF.obj.3wnti <- new("concubfilter", names=names(CatList), p.value=0.5,

+ test.direction="two.sided", skip.min.obs=2)

> CC.obj.3wnti <- new("concub", fact=CatList, population=rownames(marioni),

+ null.model=~len*go+deg*go+deg*len)

> gorange <- as.character(unique(res3wmi$go))

> CC.obj2.3wnti <- runConCub( obj=CC.obj.3wnti, filter=CCF.obj.3wnti,

+ nthreads=4, rng=list(go=gorange) )

> CC.obj3.3wnti <- filterConCub( obj=CC.obj2.3wnti, filter=CCF.obj.3wnti,

+ p.adjust.method="BH")

> ## pdf("output.3w.ha.pdf")

> plotConCub( obj=CC.obj3.3wnti, filter=CCF.obj.3wnti, col=list(range=c(-5,5))

+ , alt.names=translation, t=FALSE, dontshow=list(deg=c("diff"))

+ , args_heatmap.2=list(Rowv=TRUE, dendrogram="row", margins=c(3,12))

+ )

> ## dev.off()
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Figure 4: Outcome of a test on no three-way interaction. Up- and down-regulated genes.
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It seems that this model describes the data well, i.e. for all combinations
of variables considered here there seem to be no evidence that assumption of
no three-way interaction should be rejected. However, we skipped several other
null-models in the hierarchy of log-linear models, which might fit the data as
well and in a more parsimonious way.

3.4 Making use of ordinal variables

In general, the category variables are nominal, but not ordinal. However, in
the example above the third category (sequence length len) is ordinal. geecc
provides additional methods to ask for simple extended questions. For in-
stance, one might not be interested in enrichment of up-regulated genes hav-
ing the lowest sequence length in the binning and which also belong to a cer-
tain GO term. Instead, one might want to ask, if there is a relationship for
’short’ (’0’) sequences without knowing when a sequence is a short one and
when it is not short anymore. In such case one might make use of the ad-
ditional ’options’. For the case described in this paragraph, one might set
options=list(len=list(grouping="cumf")). This cumulatively summarizes
the len-levels from left to right and performs the test.
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