Merging Mixture Components for Cell Population

Identification in Flow Cytometry Data
The flowMerge package

Greg Finak, Raphael Gottardo
October 13, 2014

greg.finak@ircm.qc.ca, raphael.gottardo@ircm.qc.ca

Contents

1 icensing 2

2 Overview] 2

13__Installationl 2

4 _Example: Cluster merging applied to the Rituximab data set| 2
AT Thecorefunctionl. 2
4.2 Parallel computations with the snow package| 8
4.3 Recent updates| L oo 9
4.4 Upcoming improvements|. 10
4.5 Frequently Asked Questions| 11

1 Licensing

Under the Artistic License, you are free to use and redistribute this software.

Greg Finak, Ali Bashashati, Ryan Brinkman, and Raphael Gottardo.
Merging Mixture Components for Cell Population Identification in Flow
Cytometry. Advances in Bioinformatics, vol. 2009, Article ID 247646, 12
pages, 2009. doi:10.1155/2009/247646

2 Overview

We apply a cluster merging approach to perform automated gating of cell popu-
lations in flow cytometry data. The max BIC model fitting criterion for mixture
models generally overestimates the number of cell populations (ie clusters) in
flow cytometry data because the number of mixture components required to
accurately model a distribution is usually greater than the number of distinct
cell populations. Model fitting criteria based on the entropy, such as the ICL,
provide better estimates of the number of clusters but tend to provide a poor
fit to the underlying distribution. We combine these two approaches by merg-
ing mixture components from the max BIC fit based on an entropy criterion.
This approach allows multiple mixture components to represent the same cell
sub—population. Merged clusters are mixtures themselves and are summarized
by a weighted combination of their component model parameters. The result is
a mixture model that retains the good model fitting properties of the max BIC
solution but the number of components more closely reflects the true number of
distinct cell sub—populations.

3 Installation

flowMerge requires several packages to be pre—installed for full functionality.
Specifically, flowClust, flowCore, flowViz and snow (for parallel computa-
tions) should be installed and functional.

4 Example: Cluster merging applied to the Rit-
uximab data set

4.1 The core function

To demonstrate the functionality we use a flow cytometry data set from a drug-
screening project to identify agents that would enhance the anti-lymphoma ac-
tivity of Rituximab, a therapeutic monoclonal antibody. The data set is an
object of class flowFrame; it consists of eight variables, among them only the
two scattering variables (FSC.H, SSC.H) and two channels for the fluorochrome
measurements (FL1.H, FL3.H) are of interest in this experiment. The flowMerge

package may be invoked upon the output of a call to flowClust, or it may be
invoked on a flowFrame directly via the parallelized method pFlowMerge, which
will itself call flowClust but throw away intermediate results. The following
code will model one through 10 clusters using flowClust in a parallel manner
using snow, choose the best BIC solution, merge clusters in the best BIC solu-
tion, choose the best merged solution based on the entropy criterion, then plot
the results. This functionality is wrapped in the pFlowMerge function, with
additional parallelization using snow. Additionally, if the snow cluster object
passed to pFlowMerge is null, the non-parallel version of flowMerge is called.

> library(flowMerge)

> data(rituximab)
> summary (rituximab)

FSC.H SSC.H FL1.H FL2.H FL3.H FL1.A FL1.W Time
Min. 59.0 11.0 0.0 0.0 1.0 0.00 0.0 2
1st Qu. 178.0 130.0 197.0 55.0 150.0 0.00 0.0 140
Median 249.0 199.0 244.0 116.0 203.0 0.00 0.0 285
Mean 287.1 251.8 349.2 126.4 258.3 73.46 17.6 294
3rd Qu. 331.0 307.0 445.0 185.0 315.0 8.00 0.0 451
Max. 1023.0 1023.0 974.0 705.0 1023.0 1023.00 444.0 598

> flowClust.res <- flowClust(rituximab, varNames=c(colnames(rituximab)[1:2]), K=1:6,trans=1,

flowClust.res is a flowClust object containing the 5 cluster solution. We extract
the BIC of each solution with the internal flowMerge function BIC:

> plot(flowMerge: : :BIC(flowClust.res),
+ main="BIC for 1 through 5 cluster flowClust solutions",xlab="K",ylab="BIC",type="o");
> flowClust.maxBIC<-flowClust.res[[which.max(BIC(flowClust.res))]];

BIC for 1 through 5 cluster flowClust solutions

BIC
-36400 -36350

-36450

—-36500

Here we have extracted the max BIC solution, found for K=4. Before we run
the cluster merging algorithm on the max BIC solution, we have to create a
flowObj object from the flowClust result and the flowFrame data. We then
run the merge function on the flowObj and extract then entropy of cluster-
ing from the merged results using the ENT function. The list of merged cluster
solutions are input to the fitPiecewiseLinreg function. This function fits a
piecewise linear regression to the entropy vs number of clusters and locates the
position of the changepoint, if appropriate. Model selection is done via the BIC
criterion. The results of the fit can be optionally plotted.

> flowClust.flowobj<-flowObj (flowClust.maxBIC,rituximab) ;
> flowClust.merge<-merge (flowClust.flowobj,metric="entropy");

Rule of identifying outliers: 90% quantile
Rule of identifying outliers: 90% quantile

Rule of identifying outliers: 90% quantile
Rule of identifying outliers: 907% quantile

> i<-fitPiecewiselinreg(flowClust.merge);

Next we extract the merged solution with number of clusters equal to the po-
sition of the changepoint found by fitPiecewiseLinreg. This is the optimal
merged solution based on the entropy criterion. The solution can be plotted
with the plot method.

> par(mfrow=c(2,2));
> flowClust.mergeopt<-flowClust.merge[[i]];
> plot(flowClust.res[[4]],data=rituximab,main="Max BIC solution");

Rule of identifying outliers: 907 quantile

> plot(flowClust.res[[which.max (flowMerge: : :ICL(flowClust.res))]],data=rituximab,main="Max !
Rule of identifying outliers: 90% quantile

> plot(flowClust.mergeopt,level=0.75,pch=20,main="Merged Solution");

Rule of identifying outliers: 75% quantile

Max BIC solution Max ICL solution

o o
o o
[e0] [e°]
T - T .
J J
] 8 | 9] 8 |
n < n <
o — o -
| | | | | | | | | |
200 400 600 800 200 400 600 800
FSC.H FSC.H
Merged Solution
o
o —
[°3)
T _
J
] 8] 7
0 2 x%
o —

I I I I I
200 400 600 800

FSC.H

We see that the merged solution provides a better fit to the lymphocyte popu-
lation than either the max BIC solution, or the max ICL solution. Additionally,
debris and granulocytes are also clearly identified, in contrast to the ICL so-
lution. We can extract the lymphocyte population and re-run flowClust and
flowMerge on the fluorescence channels of the lymphocytes only.

> pop<-which(apply(apply(getEstimates(flowClust.mergeopt)$locations,2,function(x)order (x,dec
> lymphocytes<-split(flowClust.mergeopt,population=1ist ("lymphocytes"=pop))$lymphocytes;

> lymphocytes<-lymphocytes[,c(3,5)];

> 1.flowC<-flowClust (1ymphocytes, varNames=c("FL1.H","FL3.H") ,K=1:8,B=1000,B.init=100,tol=1e-

The lymphocyte population is between the debris and the granulocytes in the
forward and side—scatter dimensions. We can easily select it by examining the
means of the three populations. We’re only interested in the fluorescence chan-
nels, so we subset those with the [] operator inherited from flowClust. Finally,

another call to flowClust performs a round of clustering on the lymphocyte
sub—population.

> par(mfrow=c(2,2));
> 1.flow0<-flowObj (1.flowC[[which.max(flowMerge:::BIC(1.flowC))]],lymphocytes);
> plot(1l.flow0,main="max BIC solution",new.window=F,pch=20,level=0.9);

Rule of identifying outliers: 90% quantile

> plot(flowObj(1.flowC[[which.max(flowMerge: ::ICL(1.flowC))]],lymphocytes),main="max ICL sol
Rule of identifying outliers: 90% quantile

> 1.flowM<-merge(1.flow0);

Rule of identifying outliers: 907 quantile
Rule of identifying outliers: 90% quantile
Rule of identifying outliers: 90% quantile
Rule of identifying outliers: 90% quantile
Rule of identifying outliers: 90% quantile

> i<-fitPiecewiseLinreg(l.flowM,plot=T);
> plot(1l.flowM[[i]],new.window=F,main="Best Merged Solution",pch=20,level=0.9);

Rule of identifying outliers: 90% quantile

max BIC solution max ICL solution

o o
o o
[¢0] [¢0]
I - T -
% %
T 8 4 T 8 4
< <
o o
| T T T | T T T
200 400 600 800 200 400 600 800
FL1H FL1H
Entropy of Clustering Best Merged Solution
| o
O —
> 8 ®
3 8] : 5
c 7 9
g | L 2
m —
O o -

I I I I I I I I I I I
0 500 1500 2500 200 400 600 800

Cumulative Number of Merged Observations FL1H

We complete the analysis by choosing the best fitting merged solution and com-
paring it to the max BIC and max ICL solutions.

4.2 Parallel computations with the snow package

The methodology described in the first section is wrapped in a single function
call with the additional benefits of utilizing the parallel processing capabilities
of the snow package to speed up model fitting using flowClust. The function
pFlowMerge can be passed multiple flowFrames in the form of a flowSet, or
a list of flowFrames, as well as a snow cluster object, and the usual set of
parameters required by flowClust to specify the model. The call parallelizes
the computation of multiple models for each flowFrame. For example if one
wants to fit all models starting from the one cluster model through to the ten
cluster model for each of ten flowFrames, these will be distributed amongst

the number of processors defined in the snow cluster object. Each processor
will be assigned the calculation for a single flowFrame and model combination,
until all processors are occupied. This speeds up computations significantly in
a high—throughput analysis setting.

The resulting models are evaluated for the max BIC solutions for each
flowFrame, the merging algorithm is run on each max BIC solution, the op-
timal merged solution is found as described in the example and returned to
the user. The non—parallel version can be called via pFlowMerge with the “cl”
argument equal to NULL.

4.3 Recent updates

The flowMerge algorithm has been updated to increase speed and now supports
parallelization when the foreach package is installed. FlowMerge now also sup-
ports merging on the mahalanobis distance metric as well as the entropy. These
can be specified to the merging algorithm via the optional metric argument
(metric=c("entropy","mahalanobis") to the merge () function. The default
is to use "entropy”.

We have added some new features for plotting the tree of merged populations,
and highlighting the nodes/populations according to marker expression. For the
fluorescent markers above:

> require(Rgraphviz)

> f<-ptree("l.flowM",fitPiecewiseLinreg(l.flowM));
> par(mfrow=c(1,2))

> f(1);

A graphNEL graph with directed edges
Number of Nodes = 3
Number of Edges = 2

> £(2);

A graphNEL graph with directed edges
Number of Nodes = 3
Number of Edges = 2

Anti-BrdU FITC 7 AAD

[\

Circular nodes with dashed borders show merged clusters. Elliptical nodes
show the chosen populations in the best fitting model. Square nodes show the
rest of the complete merging to a single cluster. Red indicated higher expression
of the marker, and blue/green shows lower expression. Note that it is normalized
between 0 and 1 on the range of the data.

4.4 Upcoming improvements

FlowMerge is undergoing continuous usability improvements, specifically with
respect to the parallel computation framework. Figures of merit and other
statistics will be output to allow the user to monitor the success or failure of the
merging algorithm as it works through a large data set. A framework for semi—
supervised selection of lymphocyte populations across multiple samples is also
in the works. pFlowMerge does not do any sophisticated memory management,

10

as such if you have a large data set, we suggest feeding it to pFlowMerge piece
by piece, depending on the amount of RAM available to your machine / cluster.

4.5 Frequently Asked Questions

Q: How do I use pFlowMerge?
A: pFlowMerge is implemented to parallelize computations for flowSets or
lists of flowFrames, rather than for multiple clusters in a single flowFrame. For
example, if datais flowSet of ten flowFrames and cl is a snow cluster of ten
nodes, then, running pFlowMerge (cl,flowSet,varNames=c("A","B","C"),K=1:10)
will distribute the ten flowFrames across the ten nodes, and each node will eval-
uate the model for K=1:10 clusters. If you wish to parallelize the K=1:10 cluster
computations across multiple nodes, you would need to make function call that
utilizes snow functionality directly, such as: clusterMap(cl,function(...)try(flowClust(...)),list(flowu
This will distribute the calculation of flowFrame for each value of K=1 through
K=10 components across the ten nodes of c1. The addition of the try () wrapper
ensures the function will return even if an individual model fails to converge for
a given value of K. Alternately, if you wish to do the above for a flowSet you will
need to replicate each element of the flowSet K,,q, times, where K, 4, is the to-
tal number of model components to evaluate per flowFrame. Again, an example:
clusterMap(cl,function(...)try(flowClust(...)) ,rep(as(flowSet,"1list"),each=length(Kvector)),
Please remember to ensure flowClust is loaded in each R work environment on
the nodes by calling clusterEvalQ(cl,library(flowClust)).

11

	Licensing
	Overview
	Installation
	Example: Cluster merging applied to the Rituximab data set
	The core function
	Parallel computations with the snow package
	Recent updates
	Upcoming improvements
	Frequently Asked Questions

