
flagme: Fragment-level analysis of

GCMS-based metabolomics data

Mark Robinson
mrobinson@wehi.edu.au

October 13, 2014

1 Introduction

This document gives a brief introduction to the flagme package, which is designed to process, visualize and sta-
tistically analyze sets of GCMS samples. The ideas discussed here were originally designed with GCMS-based
metabolomics in mind, but indeed some of the methods and visualizations could be useful for LC-MSMS datasets.
The fragment-level analysis though, takes advantage of the rich fragmentation patterns observed from electron
impact ionization.

There are many aspects of data processing for GCMS data. Generally, algorithms are run separately on each
sample to detect features, or peaks (e.g. AMDIS). Due to retention time shifts from run-to-run, an alignment
algorithm is employed to allow the matching of the same feature across multiple samples. Alternatively, if known
standards are introduced to the samples, retention indices can be computed for each peak and used for alignment.
After peaks are matched across all samples, further processing steps are employed to create a matrix of abundances,
leading into detecting differences in abundance.

Many of these data processing steps are prone to errors and they often tend to be black boxes. But, with effective
exploratory data analysis, many of the pitfalls can be avoided and any problems can be fixed before proceeding to
the downstream statistical analysis. The package provides various visualizations to ensure the methods applied are
not black boxes.

The flagme package gives a complete suite of methods to go through all common stages of data processing. In
addition, R is especially well suited to the downstream data analysis tasks since it is very rich in analysis tools and
has excellent visualization capabilities. In addition, it is freely available (www.r-project.org), extensible and there
is a growing community of users and developers. For routine analyses, graphical user interfaces could be designed.

2 Reading and visualizing GCMS data

To run these examples, you must have the gcspikelite package installed. This data package contains several
GCMS samples from a spike-in experiment we designed to interrogate data processing methods. So, first, we load
the packages:

To load the data and corresponding peak detection results, we simply create vectors of the filenames and create
a peakDataset object. Note that we can speed up the import time by setting the retention time range to a subset
of the elution, as below:

> gcmsPath<-paste(find.package("gcspikelite"),"data",sep="/")

> data(targets)

> cdfFiles<-paste(gcmsPath,targets$FileName,sep="/")

> eluFiles<-gsub("CDF","ELU",cdfFiles)

> pd<-peaksDataset(cdfFiles,mz=seq(50,550),rtrange=c(7.5,8.5))

1

Reading /home/biocbuild/bbs-3.0-bioc/R/library/gcspikelite/data/0709_468.CDF

Reading /home/biocbuild/bbs-3.0-bioc/R/library/gcspikelite/data/0709_474.CDF

Reading /home/biocbuild/bbs-3.0-bioc/R/library/gcspikelite/data/0709_475.CDF

Reading /home/biocbuild/bbs-3.0-bioc/R/library/gcspikelite/data/0709_485.CDF

Reading /home/biocbuild/bbs-3.0-bioc/R/library/gcspikelite/data/0709_493.CDF

Reading /home/biocbuild/bbs-3.0-bioc/R/library/gcspikelite/data/0709_496.CDF

Reading /home/biocbuild/bbs-3.0-bioc/R/library/gcspikelite/data/0709_470.CDF

Reading /home/biocbuild/bbs-3.0-bioc/R/library/gcspikelite/data/0709_471.CDF

Reading /home/biocbuild/bbs-3.0-bioc/R/library/gcspikelite/data/0709_479.CDF

> pd<-addAMDISPeaks(pd,eluFiles)

Reading retention time range: 7.500133 8.499917

Reading /home/biocbuild/bbs-3.0-bioc/R/library/gcspikelite/data/0709_468.ELU ... Done.

Reading /home/biocbuild/bbs-3.0-bioc/R/library/gcspikelite/data/0709_474.ELU ... Done.

Reading /home/biocbuild/bbs-3.0-bioc/R/library/gcspikelite/data/0709_475.ELU ... Done.

Reading /home/biocbuild/bbs-3.0-bioc/R/library/gcspikelite/data/0709_485.ELU ... Done.

Reading /home/biocbuild/bbs-3.0-bioc/R/library/gcspikelite/data/0709_493.ELU ... Done.

Reading /home/biocbuild/bbs-3.0-bioc/R/library/gcspikelite/data/0709_496.ELU ... Done.

Reading /home/biocbuild/bbs-3.0-bioc/R/library/gcspikelite/data/0709_470.ELU ... Done.

Reading /home/biocbuild/bbs-3.0-bioc/R/library/gcspikelite/data/0709_471.ELU ... Done.

Reading /home/biocbuild/bbs-3.0-bioc/R/library/gcspikelite/data/0709_479.ELU ... Done.

> pd

An object of class "peaksDataset"

9 samples: 0709_468 0709_474 0709_475 0709_485 0709_493 0709_496 0709_470 0709_471 0709_479

501 m/z bins - range: (50 550)

scans: 175 175 175 175 175 174 175 175 175

peaks: 24 23 26 20 27 24 24 25 21

Here, we have added peaks from AMDIS, a well known and mature algorithm for deconvolution of GC-MS data.
For GC-TOF-MS data, we have implemented a parser for the ChromaTOF output (see the analogous addChromaTOF-
Peaks function). Support for XMCS or MzMine may be added in the future. Ask the author if another detection
result format is desired as the parsers are generally easy to design.

Regardless of platform and peak detection algorithm, a useful visualization of a set of samples is the set of total
ion currents (TIC), or extracted ion currents (XICs). To view TICs, you can call:

> plot(pd,rtrange=c(7.5,8.5),plotPeaks=TRUE,plotPeakLabels=TRUE,max.near=8,how.near=.5,col=rep(c("blue","red","black"),each=3))

2

Retention Time

7.6 7.8 8.0 8.2 8.4

0709_468
1 2 3 4 5 6 7 8 9 10 11 12 13 14 1516 17 1819 20 21 22 23 24

0709_474
1 2 34 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

0709_475
1 2 3 4 5 6 7 8 9 10 1112 131415 16 17 18 19 2021 22232425 26

0709_485
1 2 3 4 56 7 8 9 10 11 12 13 1415 16 17 18 19 20

0709_493
1 2 3 45 6 7 8 910 11 12131415 16 1718 19 20 21 22 23 24 25 26 27

0709_496
1 2 3 4 5 6 7 8 9 10 11 1213 1415 1617 18 1920 21 22 23 24

0709_470
1 2 3 4 5 6 7 89 10 11 12 1314 15 16 17 18 19 202122 23 24

0709_471
1 2 3 4 56 7 89 10 11 12 1314 1516 17 1819 202122 23 24 25

0709_479
1 2 3 4 5 678 9 10 11 12 1314 15 1617 18 19 20 21

Note here the little hashes represent the detected peaks and are labeled with an integer index. One of the main
challenges is to match these peak detections across several samples, given that the appear at slightly different times
in different runs.

For XICs, you need to give the indices (of pd@mz, the grid of mass-to-charge values) that you want to plot
through the mzind argument. This could be a single ion (e.g. mzind=24) or could be a range of indices if multiple
ions are of interest (e.g. mzind=c(24,25,98,99)).

There are several other features within the plot command on peaksDataset objects that can be useful. See
?plot (and select the flagme version) for full details.

Another useful visualization, at least for individual samples, is a 2D heatmap of intensity. Such plots can be
enlightening, especially when peak detection results are overlaid. For example (with detected fragment peaks from
AMDIS shown in white):

> r<-1

> plotImage(pd,run=r,rtrange=c(7.5,8.5),main="")

> v<-which(pd@peaksdata[[r]]>0,arr.ind=TRUE) # find detected peaks

> abline(v=pd@peaksrt[[r]])

> points(pd@peaksrt[[r]][v[,2]],pd@mz[v[,1]],pch=19,cex=.6,col="white")

3

7.6 7.8 8.0 8.2 8.4

60
80

10
0

12
0

14
0

16
0

18
0

retention time

m
/z

●
●
●
●
●
●
●

●
●
●
●
●
●
●

●
●

●
●
●
●

●

●

●
●

●
●
●
●

●
●

●
●
●

●
●
●

●

●
●
●

●

●

●

●

●

●
●

●
●
●
●

●
●

●
●
●

●

●
●

●

●
●
●

●
●
●

●
●
●
●
●
●

●

●

●

●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●

●
●

●

●
●

●
●
●

●

●
●

●
●
●
●
●

●

●
●
●
●

●

●

●
●

●

●

●
●
●

●

●

●
●

●

●

●
●
●

●

●

●
●
●
●

●

●
●

●
●
●

●
●

●
●
●

●
●
●

●

●
●
●

●
●
●

●

●
●

●
●

●

●

●
●

●
●
●
●
●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●
●
●

●
●
●

●
●

●
●
●

●
●

●
●
●

●

●

●
●

●
●

●
●
●
●

●
●
●

●

●

●

●

●
●
●

●

●

●

●
●

●

●
●
●
●

●
●
●
●

●

●
●
●

●

●

●
●
●
●
●
●

●
●
●
●
●
●

●

●

●
●
●

●
●

●
●

●

●
●

●

●

●
●

●

●
●

●

●
●

●
●

●
●
●
●

●
●
●

●
●
●

●
●
●
●

●
●
●
●

●

●
●
●
●

●

●
●
●
●
●

●

●
●
●

●

●
●
●
●
●
●

●
●
●
●
●
●
●
●

●

●
●
●

●
●
●

●
●

●
●
●

●
●
●
●
●
●

●
●
●
●

●
●

●
●

●
●
●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●
●
●

●
●

●

●
●
●

●

●
●
●

●
●

●

●

●

●
●

●

●

●

●
●

●

●
●
●
●
●
●
●
●
●
●
●

●

●

●
●
●

●
●
●
●
●

●

●

●
●
●
●
●

●

●

●
●
●

●

●

●
●

●
●
●
●
●
●

●
●
●
●
●
●
●

●
●
●
●
●

●
●
●
●
●

●
●
●

●
●
●
●
●

●
●
●
●
●
●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

●

3 Pairwise alignment with dynamic programming algorithm

One of the first challenges of GCMS data is the matching of detected peaks (i.e. metabolites) across several samples.
Although gas chromatography is quite robust, there can be some drift in the elution time of the same analyte from
run to run. We have devised a strategy, based on dynamic programming, that takes into account both the similarity
in spectrum (at the apex of the called peak) and the similarity in retention time, without requiring the identity
of each peak; this matching uses the data alone. If each sample gives a ‘peak list’ of the detected peaks (such as
that from AMDIS that we have attached to our peaksDataset object), the challenge is to introduce gaps into these
lists such that they are best aligned. From this a matrix of retention times or a matrix of peak abundances can be
extracted for further statistical analysis, visualization and interpretation. For this matching, we created a procedure
analogous to a multiple sequence alignment.

To highlight the dynamic programming-based alignment strategy, we first illustrate a pairwise alignment of two
peak lists. This example also illustrates the selection of parameters necessary for the alignment. From the data read
in previously, let us consider the alignment of two samples, denoted 0709_468 and 0709_474. First, a similarity
matrix for two samples is calculated. This is calculated based on a scoring function and takes into account the
similarity in retention time and in the similarity of the apex spectra, according to:

Sij(D) =

∑K
k=1 xikyjk√∑K

k=1 x
2
ik ·
∑K

k=1 y
2
jk

· exp

(
−1

2

(ti − tj)
2

D2

)

where i is the index of the peak in the first sample and j is the index of the peak in the second sample, xi and yj are
the spectra vectors and ti and tj are their respective retention times. As you can see, there are two components to
the similarity: spectra similarity (left term) and similarity in retention time (right term). Of course, other metrics

4

for spectra similarity are feasible. Ask the author if you want to see other metrices implemented. We have some
non-optimized code for a few alternative metrics.

The peak alignment algorithm, much like sequence alignments, requires a gap parameter to be set, here a number
between 0 and 1. A high gap penalty discourages gaps when matching the two lists of peaks and a low gap penalty
allows gaps at a very low cost. We find that a gap penalty in the middle range (0.4-0.6) works well for GCMS peak
matching. Another parameter, D, modulates the impact of the difference in retention time penalty. A large value
for D essentially eliminates the effect. Generally, we set this parameter to be a bit larger than the average width of
a peak, allowing a little flexibility for retention time shifts between samples. Keep in mind the D parameter should
be set on the scale (i.e. seconds or minutes) of the peaksrt slot of the peaksDataset object. The next example
shows the effect of the gap and D penalty on the matching of a small ranges of peaks.

> Ds<-c(0.1,10,0.1,0.1)

> gaps<-c(0.5,0.5,0.1,0.9)

> par(mfrow=c(2,2),mai=c(0.8466,0.4806,0.4806,0.1486))

> for(i in 1:4) {

+ pa<-peaksAlignment(pd@peaksdata[[1]],pd@peaksdata[[2]],pd@peaksrt[[1]],pd@peaksrt[[2]],D=Ds[i],gap=gaps[i])

+ plot(pa,xlim=c(0,17),ylim=c(0,16),matchCol="yellow",main=paste("D=",Ds[i]," gap=",gaps[i],sep=""))

+ }

[peaksAlignment] Comparing 24 peaks to 23 peaks -- gap= 0.5 D= 0.1

[peaksAlignment] 21 matched. Similarity= 0.2634053

[peaksAlignment] Comparing 24 peaks to 23 peaks -- gap= 0.5 D= 10

[peaksAlignment] 21 matched. Similarity= 0.2458355

[peaksAlignment] Comparing 24 peaks to 23 peaks -- gap= 0.1 D= 0.1

[peaksAlignment] 14 matched. Similarity= 0.01748718

[peaksAlignment] Comparing 24 peaks to 23 peaks -- gap= 0.9 D= 0.1

[peaksAlignment] 22 matched. Similarity= 0.305486

5

0 5 10 15

0
5

10
15

D=0.1 gap=0.5

Peaks − run 1

P
ea

ks
 −

 r
un

 2

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 5 10 15

0
5

10
15

D=10 gap=0.5

Peaks − run 1
P

ea
ks

 −
 r

un
 2

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 5 10 15

0
5

10
15

D=0.1 gap=0.1

Peaks − run 1

P
ea

ks
 −

 r
un

 2

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 5 10 15

0
5

10
15

D=0.1 gap=0.9

Peaks − run 1

P
ea

ks
 −

 r
un

 2

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

You might ask: is the flagme package useful without peak detection results? Possibly. There have been some
developments in alignment (generally on LC-MS proteomics experiments) without peak/feature detection, such
as Prince et al. 2006, where a very similar dynamic programming is used for a pairwise alignment. We have
experimented with alignments without using the peaks, but do not have any convincing results. It does introduce a
new set of challenges in terms of highlighting differentially abundant metabolites. However, in the peaksAlignment

routine above (and those mentioned below), you can set usePeaks=FALSE in order to do scan-based alignments
instead of peak-based alignments. In addition, the flagme package may be useful simply for its bare-bones dynamic
programming algorithm.

3.1 Normalizing retention time score to drift estimates

In what is mentioned above for pairwise alignments, we are penalizing for differences in retention times that are
non-zero. But, as you can see from the TICs, some differences in retention time are consistent. For example, all
of the peaks from sample 0709_485 elute at later times than peaks from sample 0709_496. We should be able to
estimate this drift and normalize the time penalty to that estimate, instead of penalizing to zero. That is, we should
replace ti − tj with ti − tj − d̂ij where d̂ij is the expected drift between peak i of the first sample and peak j of the
second sample.

6

More details coming soon.

3.2 Imputing location of undetected peaks

One goal of the alignment leading into downstream data analyses is the generation of a table of abundances for each
metabolite across all samples. As you can see from the TICs above, there are some low intensity peaks that fall
below detection in some but not all samples. Our view is that instead of inserting arbitrary low constants (such as 0
or half the detection limit) or imputing the intensities post-hoc or having missing data in the data matrices, it is best
to return to the area of the where the peak should be and give some kind of abundance. The alignments themselves
are rich in information with respect to the location of undetected peaks. We feel this is a more conservative and
statistically valid approach than introducing arbitrary values.

More details coming soon.

4 Multiple alignment of several experimental groups

Next, we discuss the multiple alignment of peaks across many samples. With replicates, we typically do an alignment
within replicates, then combine these together into a summarized form. This cuts down on the computational cost.
For example, consider 2 sets of samples, each with 5 replicates. Aligning first within replicates requires 10+10+1
total alignments whereas an all-pairwise alignment requires 45 pairwise alignments. In addition, this allows some
flexibility in setting different gap and distance penalty parameters for the within alignment and between alignment.
An example follows.

> print(targets)

FileName Group

1 0709_468.CDF mmA

2 0709_474.CDF mmA

3 0709_475.CDF mmA

4 0709_485.CDF mmC

5 0709_493.CDF mmC

6 0709_496.CDF mmC

7 0709_470.CDF mmD

8 0709_471.CDF mmD

9 0709_479.CDF mmD

> ma<-multipleAlignment(pd,group=targets$Group,wn.gap=0.5,wn.D=.05,bw.gap=.6,bw.D=0.05,usePeaks=TRUE,filterMin=2,df=50,verbose=FALSE)

> ma

An object of class "multipleAlignment"

3 groups: 3 3 3 samples, respectively.

21 merged peaks

If you set verbose=TRUE, many nitty-gritty details of the alignment procedure are given. Next, we can take the
alignment results and overlay it onto the TICs, allowing a visual inspection.

> plot(pd,rtrange=c(7.5,8.5),runs=ma@betweenAlignment@runs,mind=ma@betweenAlignment@ind,plotPeaks=TRUE,plotPeakLabels=TRUE,max.near=8,how.near=.5,col=rep(c("blue","red","black"),each=3))

7

Retention Time

7.6 7.8 8.0 8.2 8.4

0709_485
1 2 3 4 56 7 8 9 10 11 12 13 1415 16 17 18 19 20

0709_493
1 2 3 45 6 7 8 910 11 12131415 16 1718 19 20 21 22 23 24 25 26 27

0709_496
1 2 3 4 5 6 7 8 9 10 11 1213 1415 1617 18 1920 21 22 23 24

0709_468
1 2 3 4 5 6 7 8 9 10 11 12 13 14 1516 17 1819 20 21 22 23 24

0709_474
1 2 34 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

0709_475
1 2 3 4 5 6 7 8 9 10 1112 131415 16 17 18 19 2021 22232425 26

0709_470
1 2 3 4 5 6 7 89 10 11 12 1314 15 16 17 18 19 202122 23 24

0709_471
1 2 3 4 56 7 89 10 11 12 1314 1516 17 1819 202122 23 24 25

0709_479
1 2 3 4 5 678 9 10 11 12 1314 15 1617 18 19 20 21

1 3 4 5 7 8 9 10 11 12 14 15 17 18 19 20 21

4.1 Gathering results

The alignment results can be extracted from the multipleAlignment object as:

> ma@betweenAlignment@runs

[1] 4 5 6 1 2 3 7 8 9

> ma@betweenAlignment@ind

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]

[1,] 1 1 1 1 1 1 1 1 1

[2,] NA NA NA 2 2 2 NA NA NA

[3,] 2 3 2 3 3 3 3 3 2

[4,] 3 4 3 4 4 4 4 4 3

[5,] 4 6 5 6 5 5 6 6 4

[6,] NA NA NA 7 6 6 NA NA NA

[7,] 5 7 6 8 7 7 7 7 5

[8,] 7 9 7 10 9 8 NA NA NA

[9,] 8 10 8 11 10 9 9 9 8

[10,] 9 13 9 14 12 10 10 12 11

[11,] 11 15 10 15 13 11 11 13 12

[12,] 12 18 13 NA NA NA 13 15 13

[13,] NA NA NA NA NA NA 14 16 14

[14,] 13 19 15 17 15 15 15 17 15

8

[15,] 14 21 16 18 17 16 17 18 16

[16,] NA NA NA NA NA NA 18 19 17

[17,] 16 23 19 20 19 19 19 20 18

[18,] 17 24 21 21 20 20 NA NA NA

[19,] 18 25 22 22 21 22 22 23 19

[20,] 19 26 23 23 22 24 23 24 20

[21,] 20 27 24 24 23 26 24 25 21

This table would suggest that matched peak 8 (see numbers below the TICs in the figure above) corresponds to
detected peaks 9, 12, 11 in runs 4, 5, 6 and so on, same as shown in the above plot.

In addition, you can gather a list of all the merged peaks with the gatherInfo function, giving elements for
the retention times, the detected fragment ions and their intensities. The example below also shows the how to
construct a table of retention times of the matched peaks (No attempt is made here to adjust retention times onto
a common scale. Instead, the peaks are matched to each other on their original scale). For example:

> outList<-gatherInfo(pd,ma)

> outList[[8]]

$rt

mmC.4 mmC.5 mmC.6 mmA.1 mmA.2 mmA.3 mmD.7 mmD.8

7.802617 7.803567 7.711417 7.800000 7.799283 7.803050 NA NA

mmD.9

NA

$mz

[1] 50 73 75 147 148 207 249 265 281 282 283 369

$data

mmC.4 mmC.5 mmC.6 mmA.1 mmA.2 mmA.3 mmD.7 mmD.8 mmD.9

[1,] 0 8760 11537 0 0 0 NA NA NA

[2,] 20272 47480 15818 14263 17608 18432 NA NA NA

[3,] 19952 26312 23864 16920 20592 19648 NA NA NA

[4,] 19648 22064 17848 12905 17464 17312 NA NA NA

[5,] 2947 3398 2796 2286 2941 2516 NA NA NA

[6,] 1843 2202 523 1221 1448 1930 NA NA NA

[7,] 969 1420 0 955 1144 1239 NA NA NA

[8,] 1611 1594 0 835 1016 1015 NA NA NA

[9,] 12939 15915 0 8249 10101 10884 NA NA NA

[10,] 3965 4746 0 2477 3046 3122 NA NA NA

[11,] 2773 2772 0 1832 1971 2396 NA NA NA

[12,] 3274 3285 0 1674 1633 2055 NA NA NA

> rtmat<-matrix(unlist(lapply(outList,.subset,"rt"),use.names=FALSE),nr=length(outList),byrow=TRUE)

> colnames(rtmat)<-names(outList[[1]]$rt); rownames(rtmat)<-1:nrow(rtmat)

> round(rtmat,3)

mmC.4 mmC.5 mmC.6 mmA.1 mmA.2 mmA.3 mmD.7 mmD.8 mmD.9

1 7.534 7.512 7.506 7.526 7.531 7.540 7.520 7.519 7.531

2 NA NA NA 7.549 7.559 7.557 NA NA NA

3 7.580 7.558 7.551 7.566 7.576 7.574 7.560 7.565 7.577

4 7.597 7.575 7.569 7.583 7.588 7.592 7.577 7.582 7.594

5 7.614 7.615 7.614 7.617 7.616 7.614 7.617 7.610 7.617

9

6 NA NA NA 7.663 7.691 7.649 NA NA NA

7 7.717 7.695 7.694 7.709 7.714 7.712 7.703 7.702 7.714

8 7.803 7.804 7.711 7.800 7.799 7.803 NA NA NA

9 7.825 7.809 7.803 7.823 7.828 7.826 7.812 7.816 7.823

10 7.946 7.958 7.951 7.966 7.976 7.975 7.966 7.965 7.977

11 8.008 7.986 7.980 7.994 7.999 7.997 7.989 7.993 8.000

12 8.077 8.061 8.060 NA NA NA 8.069 8.068 8.080

13 NA NA NA NA NA NA 8.086 8.085 8.091

14 8.111 8.107 8.111 8.109 8.114 8.112 8.109 8.108 8.114

15 8.254 8.244 8.237 8.246 8.251 8.249 8.246 8.245 8.251

16 NA NA NA NA NA NA 8.280 8.262 8.263

17 8.334 8.324 8.323 8.332 8.337 8.335 8.326 8.330 8.337

18 8.363 8.352 8.352 8.360 8.359 8.357 NA NA NA

19 8.403 8.392 8.386 8.394 8.399 8.403 8.395 8.393 8.400

20 8.437 8.432 8.432 8.434 8.434 8.437 8.435 8.433 8.440

21 8.477 8.461 8.460 8.469 8.474 8.472 8.469 8.468 8.474

5 Future improvements and extension

There are many procedures that we have implemented in our investigation of GCMS data, but have not made part
of the package just yet. Some of the most useful procedures will be released, such as:

1. Parsers for other peak detection algorithms (e.g. XCMS, MzMine) and parsers for other alignment procedures
(e.g. SpectConnect) and perhaps retention indices procedures.

2. More convenient access to the alignment information and abundance table.

3. Statistical analysis of differential metabolite abundance.

4. Fragment-level analysis, an alternative method to summarize abundance across all detected fragments of a
metabolite peak.

6 References

See the following for further details:

1. Robinson MD. Methods for the analysis of gas chromatography - mass spectrometry data. Ph.D. Thesis. Oc-
tober 2008. Department of Medical Biology (Walter and Eliza Hall Institute of Medical Research), University
of Melbourne.

2. Robinson MD, De Souza DP, Keen WW, Saunders EC, McConville MJ, Speed TP, Likić VA. (2007) A dynamic
programming approach for the alignment of signal peaks in multiple gas chromatography-mass spectrometry
experiments. BMC Bioinformatics. 8:419.

3. Prince JT, Marcotte EM (2006) Chromatographic alignment of ESI-LC-MS proteomics data sets by ordered
bijective interpolated warping. Anal Chem. 78(17):6140-52.

7 This vignette was built with/at ...

> sessionInfo()

10

R version 3.1.1 Patched (2014-09-25 r66681)

Platform: x86_64-unknown-linux-gnu (64-bit)

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

[3] LC_TIME=en_US.UTF-8 LC_COLLATE=C

[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8

[7] LC_PAPER=en_US.UTF-8 LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:

[1] parallel stats graphics grDevices utils datasets methods

[8] base

other attached packages:

[1] flagme_1.22.0 CAMERA_1.22.0 igraph_0.7.1

[4] xcms_1.42.0 Biobase_2.26.0 BiocGenerics_0.12.0

[7] mzR_2.0.0 Rcpp_0.11.3 gcspikelite_1.3.0

loaded via a namespace (and not attached):

[1] Formula_1.1-2 Hmisc_3.14-5 KernSmooth_2.23-13

[4] MASS_7.3-35 RBGL_1.42.0 RColorBrewer_1.0-5

[7] SparseM_1.05 acepack_1.3-3.3 bitops_1.0-6

[10] caTools_1.17.1 cluster_1.15.3 codetools_0.2-9

[13] foreign_0.8-61 gdata_2.13.3 gplots_2.14.2

[16] graph_1.44.0 grid_3.1.1 gtools_3.4.1

[19] lattice_0.20-29 latticeExtra_0.6-26 nnet_7.3-8

[22] rpart_4.1-8 splines_3.1.1 stats4_3.1.1

[25] survival_2.37-7 tools_3.1.1

> date()

[1] "Mon Oct 13 18:08:10 2014"

11

