
CQN (Conditional Quantile Normalization)

Kasper Daniel Hansen
khansen@jhsph.edu

Zhijin Wu
zhijin_wu@brown.edu

Modified: August 8, 2012. Compiled: October 13, 2014

Introduction

This package contains the CQN (conditional quantile normalization) method for normalizing
RNA-seq datasets. This method is described in [1].

> library(cqn)

> library(scales)

Data

As an example we use ten samples from Montgomery [2]. The data has been processed as
described in [1]. First we have the region by sample count matrix

> data(montgomery.subset)

> dim(montgomery.subset)

[1] 23552 10

> montgomery.subset[1:4,1:4]

NA06985 NA06994 NA07037 NA10847

ENSG00000000419 69 54 67 70

ENSG00000000457 53 37 27 41

ENSG00000000460 12 25 33 22

ENSG00000000938 168 270 140 103

> colnames(montgomery.subset)

1

[1] "NA06985" "NA06994" "NA07037" "NA10847" "NA11920" "NA11918"

[7] "NA11931" "NA12003" "NA12006" "NA12287"

Because of (disc) space issues, We have removed all genes that have zero counts in all 10
samples. Next we have the sizeFactors which simply tells us how deep each sample was
sequenced:

> data(sizeFactors.subset)

> sizeFactors.subset[1:4]

NA06985 NA06994 NA07037 NA10847

3107420 2388948 3087234 2852972

Finally, we have a matrix containing length and GC-content for each gene.

> data(uCovar)

> head(uCovar)

length gccontent

ENSG00000000419 1207 0.3976802

ENSG00000000457 2861 0.4606781

ENSG00000000460 4912 0.4338355

ENSG00000000938 3524 0.5749149

ENSG00000000971 8214 0.3613343

ENSG00000001036 2590 0.4312741

Note that the row ordering of the count matrix is the same as the row ordering of the matrix
containing length and GC-content and that the sizeFactor vector has the same column order
as the count matrix. We can formally check this

> stopifnot(all(rownames(montgomery.subset) == rownames(uCovar)))

> stopifnot(colnames(montgomery.subset) == names(sizeFactors.subset))

Normalization

The methodology is described in [1]. The main workhorse is the function cqn which fits the
following model

log2(RPM) = s(x) + s(log2(length))

where x is some covariate, s are smooth functions (specifically natural cubic splines with 5
knots), and RPM are “reads per millions”. It is also possible to just fit a model like

log2(RPKM) = s(x)

2

In this model gene length is included as a known offset. This is done by using the cqn(lengthMethod
= "fixed"). If this is done, and lengths is equal to 1000, it is equivalent to not using gene
length at all.

The basic call to cqn is relatively easy, we need the count matrix, a vector of lengths, a
vector of GC content and a vector of sizeFactors. Make sure that they all have the same
ordering.

> cqn.subset <- cqn(montgomery.subset, lengths = uCovar$length,

+ x = uCovar$gccontent, sizeFactors = sizeFactors.subset,

+ verbose = TRUE)

RQ fit

SQN .

> cqn.subset

Call:

cqn(counts = montgomery.subset, x = uCovar$gccontent, lengths = uCovar$length,

sizeFactors = sizeFactors.subset, verbose = TRUE)

Object of class 'cqn' with

23552 regions

10 samples

fitted using smooth length

This normalized matrix is similar, but not equivalent, to the data examined in [1]. The main
differences are (1) in [1] we normalize 60 samples together, not 10 and (2) we have removed
all genes with zero counts in all 10 samples.

We can examine plots of systematic effects by using cqnplot. The n argument refers to the
systematic effect, n=1 is always the covariate specified by the x argument above, while n=2

is lengths.

> par(mfrow=c(1,2))

> cqnplot(cqn.subset, n = 1, xlab = "GC content", lty = 1, ylim = c(1,7))

> cqnplot(cqn.subset, n = 2, xlab = "length", lty = 1, ylim = c(1,7))

3

The normalized expression values are

> RPKM.cqn <- cqn.subset$y + cqn.subset$offset

> RPKM.cqn[1:4,1:4]

NA06985 NA06994 NA07037 NA10847

ENSG00000000419 5.761813 5.568754 5.547280 5.975746

ENSG00000000457 4.436652 4.110397 3.394524 4.139537

ENSG00000000460 2.603203 3.444776 3.777542 3.068756

ENSG00000000938 5.152035 6.084140 4.698142 4.281873

These values are on the log2-scale.

We can do a MA plot of these fold changes, and compare it to fold changes based on standard
RPKM. First we compute the standard RPKM (on a log2 scale):

> RPM <- sweep(log2(montgomery.subset + 1), 2, log2(sizeFactors.subset/10^6))

> RPKM.std <- sweep(RPM, 1, log2(uCovar$length / 10^3))

We now look at differential expression between two groups of samples. We use the same
grouping as in [1], namely

> grp1 <- c("NA06985", "NA06994", "NA07037", "NA10847", "NA11920")

> grp2 <- c("NA11918", "NA11931", "NA12003", "NA12006", "NA12287")

We now do an MA-plot, but we only choose to plot genes with average standard log2-RPKM
of log2(5) or greater, and we also form the M and A values:

4

> whGenes <- which(rowMeans(RPKM.std) >= 2 & uCovar$length >= 100)

> M.std <- rowMeans(RPKM.std[whGenes, grp1]) - rowMeans(RPKM.std[whGenes, grp2])

> A.std <- rowMeans(RPKM.std[whGenes,])

> M.cqn <- rowMeans(RPKM.cqn[whGenes, grp1]) - rowMeans(RPKM.cqn[whGenes, grp2])

> A.cqn <- rowMeans(RPKM.cqn[whGenes,])

Now we do the MA plots, with alpha-blending

> par(mfrow = c(1,2))

> plot(A.std, M.std, cex = 0.5, pch = 16, xlab = "A", ylab = "M",

+ main = "Standard RPKM", ylim = c(-4,4), xlim = c(0,12),

+ col = alpha("black", 0.25))

> plot(A.cqn, M.cqn, cex = 0.5, pch = 16, xlab = "A", ylab = "M",

+ main = "CQN normalized RPKM", ylim = c(-4,4), xlim = c(0,12),

+ col = alpha("black", 0.25))

We can also color the genes according to whether they have high/low GC-content. Here
one needs to be careful, because of overplotting. One solution is to leave out all genes with
intermediate GC content. We define high/low GC content as the 10% most extreme genes:

> par(mfrow = c(1,2))

> gccontent <- uCovar$gccontent[whGenes]

> whHigh <- which(gccontent > quantile(gccontent, 0.9))

> whLow <- which(gccontent < quantile(gccontent, 0.1))

> plot(A.std[whHigh], M.std[whHigh], cex = 0.2, pch = 16, xlab = "A",

+ ylab = "M", main = "Standard RPKM",

5

+ ylim = c(-4,4), xlim = c(0,12), col = "red")

> points(A.std[whLow], M.std[whLow], cex = 0.2, pch = 16, col = "blue")

> plot(A.cqn[whHigh], M.cqn[whHigh], cex = 0.2, pch = 16, xlab = "A",

+ ylab = "M", main = "CQN normalized RPKM",

+ ylim = c(-4,4), xlim = c(0,12), col = "red")

> points(A.cqn[whLow], M.cqn[whLow], cex = 0.2, pch = 16, col = "blue")

Note that genes/regions with very small counts should not be relied upon, even if the CQN
normalized fold change are big. They should be filtered out using some kind of statistical
test, good packages for this are DESeq [3] and edgeR[4, 5].

Import into edgeR

First we construct a DGEList. In the groups argument we use that the first 5 samples
(columns) in montgomery.subset is what we earlier called grp1 and the last 5 samples
(columns) are grp2.

> library(edgeR)

> d.mont <- DGEList(counts = montgomery.subset, lib.size = sizeFactors.subset,

+ group = rep(c("grp1", "grp2"), each = 5), genes = uCovar)

In this object we cannot (unfortunately, yet) also store the computed offsets. Since we will
use the offsets computed by cqn, there is no need to normalize using the normalization tools
from edgeR, such as calcNormFactors. Also, as is clearly described in the edgeR user’s
guide, the lib.size is unnecessary, since we plan to use the offsets computed from cqn.

6

However, we need to use the component glm.offset which is on the natural logarithmic scale
and also includes correcting for sizeFactors. It is possible to include the offset directly into
the DGEList, by post-processing the output like

> ## Not run

> d.mont$offset <- cqn.subset$glm.offset

Using edgeR is well described in the user’s guide, and we refer to that document for further
information. The analysis presented below should be thought of as an example, and not
necessarily the best analysis of this data.

The first step is estimating the dispersion parameter(s). Several methods exists, such as
estimateGLMCommonDisp or estimateTagwiseDisp. We also need to setup a design matrix,
which is particular simple for this two group comparison. Further information about con-
structing design matrices may be found in both the edgeR user’s guide and the limma user’s
guide.

> design <- model.matrix(~ d.mont$sample$group)

> d.mont$offset <- cqn.subset$glm.offset

> d.mont.cqn <- estimateGLMCommonDisp(d.mont, design = design)

After fitting the dispersion parameter(s), we need to fit the model, and do a test for signifi-
cance of the parameter of interest. With this design matrix, there are two coefficients. The
first coefficient is just an intercept (overall level of expression for the gene) and it is (usually)
not meaningful to test for this effect. Instead, the interesting coefficient is the second one
that encodes a group difference.

> efit.cqn <- glmFit(d.mont.cqn, design = design)

> elrt.cqn <- glmLRT(efit.cqn, coef = 2)

> topTags(elrt.cqn, n = 2)

Coefficient: d.mont$sample$groupgrp2

length gccontent logFC logCPM LR

ENSG00000211642 365 0.5835616 -10.27719 6.331103 126.2188

ENSG00000211660 411 0.5888078 -10.09989 6.029329 120.5488

PValue FDR

ENSG00000211642 2.753825e-29 6.485809e-25

ENSG00000211660 4.797328e-28 5.649333e-24

topTags shows (per default) the ”top 10” genes. In this case, since we have biological
replicates and just a random group structure, we would expect no differentially expression
genes. Instead we get

> summary(decideTestsDGE(elrt.cqn))

7

[,1]

-1 146

0 22970

1 436

significantly differentially expressed at an FDR (false discovery rate) of 5%. We may contrast
this with the result of not using cqn:

> d.mont.std <- estimateGLMCommonDisp(d.mont, design = design)

> efit.std <- glmFit(d.mont.std, design = design)

> elrt.std <- glmLRT(efit.std, coef = 2)

> summary(decideTestsDGE(elrt.std))

[,1]

-1 146

0 22970

1 436

In this evaluation, it is not clear that using CQN is better.

What is arguably as important is that we achieve a much better estimation of the fold change
using cqn.

Question and Answers

Can I run cqn() on only 1 sample?

CQN is meant to normalize several samples together. It is not clear that it makes sense at
all to use this normalization technique on a single sample. But it is possible.

Can I use this for small RNA-seq (microRNAs)?

We do not have personal experience with using CQN to normalize small RNA sequencing
data. However, we believe it might be beneficial. As always, it is highly recommended to
evaluate whether it is necessary and beneficial.

One special aspect of small RNAs is that they all have very similar length. Fitting a model
with a smooth effect of gene length might very well lead to mathematical instability (you get
an error). This can be avoided by using the argument lengthMethod = "fixed" which just
divides the gene counts by the gene length instead of using a smooth function. Additionally,
it may be coupled with setting lengths = 1 which completely removes gene length from the
model.

8

Could it be true that genes with higher GC content are higher expressed?

It has been suggested that genes that are either extremely high or extremely low expressed
are under some form of selection leading to “extreme” GC content. What CQN does, is
making the effect of GC content comparable across samples, and we show in [1] that this
leads to improved inference. It also flattens the effect of GC content on gene expression, but
we believe this is better than having the effect of GC content depend on the sample.

Does cqn remove batch effects?

No, unless a batch effect only (or mainly) affects your measurements through GC content.
We believe that the sample-specific effect of GC content on gene expression is a kind of batch
effect, but is unlikely to be the only one. CQN does normalize your RNA-seq data in the same
way that say quantile normalization normalizes microarray data, but such normalization does
not remove batch effects.

I don’t understand the difference between offset and glm.offset?

This comes from a historical error. In our paper, we use the quantity

> cqn$y + cqn$offset

as the CQN-corrected estimated expression measures. However, the offset quantity is on the
wrong scale for inclusion into a GLM-type model (like edgeR or DEseq2). For this purpose,
use glm.offset. We have kept the original naming in order to achieve backwards compatibility.

SessionInfo

� R version 3.1.1 Patched (2014-09-25 r66681), x86_64-unknown-linux-gnu

� Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_US.UTF-8,
LC_COLLATE=C, LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8,
LC_PAPER=en_US.UTF-8, LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C,
LC_MEASUREMENT=en_US.UTF-8, LC_IDENTIFICATION=C

� Base packages: base, datasets, grDevices, graphics, methods, splines, stats, utils

� Other packages: SparseM 1.05, cqn 1.12.0, edgeR 3.8.0, limma 3.22.0, mclust 4.4,
nor1mix 1.2-0, preprocessCore 1.28.0, quantreg 5.05, scales 0.2.4

� Loaded via a namespace (and not attached): Rcpp 0.11.3, colorspace 1.2-4,
munsell 0.4.2, plyr 1.8.1, tools 3.1.1

9

References

[1] KD Hansen, RA Irizarry, and Z Wu. Removing technical variability in RNA-seq data
using conditional quantile normalization. Biostatistics 2012, 13(2), 204–216. DOI: 10.
1093/biostatistics/kxr054.

[2] SB Montgomery et al. Transcriptome genetics using second generation sequencing in a
Caucasian population. Nature 2010, 464, 773–777. DOI: . 10.1038/nature08903

[3] S Anders and W Huber. Differential expression analysis for sequence count data. Genome
Biology 2010, 11(10), R106. DOI: 10.1186/gb-2010-11-10-r106.

[4] MD Robinson, DJ McCarthy, GK Smyth. edgeR: a Bioconductor package for differential
expression analysis of digital gene expression data. Bioinformatics 2010, 26(1), 139–140.
DOI: 10.1093/bioinformatics/btp616.

[5] DJ McCarthy, Y Chen, GK Smyth. Differential expression analysis of multifactor RNA-
Seq experiments with respect to biological variation. Nucleic Acids Research 2012, 40,
4288- 4297. DOI: 10.1093/nar/gks042.

10

http://dx.doi.org/10.1093/biostatistics/kxr054
http://dx.doi.org/10.1093/biostatistics/kxr054
http://dx.doi.org/10.1038/nature08903
http://dx.doi.org/10.1186/gb-2010-11-10-r106
http://dx.doi.org/10.1093/bioinformatics/btp616
http://dx.doi.org/10.1093/nar/gks042

